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The pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has become a global crisis. Replication of SARS-CoV-2 requires the viral
RNA-dependent RNA polymerase (RdRp) enzyme, a target of the antiviral drug remdesivir. Here we report the
cryo–electron microscopy structure of the SARS-CoV-2 RdRp, both in the apo form at 2.8-angstrom
resolution and in complex with a 50-base template-primer RNA and remdesivir at 2.5-angstrom resolution.
The complex structure reveals that the partial double-stranded RNA template is inserted into the central
channel of the RdRp, where remdesivir is covalently incorporated into the primer strand at the first
replicated base pair, and terminates chain elongation. Our structures provide insights into the mechanism
of viral RNA replication and a rational template for drug design to combat the viral infection.

T
he coronavirus disease 2019 (COVID-19)
pandemic that has arisen from wide-
spread severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection
has become a humanitarian crisis, with

more than 1.5 million infections and 87,000
deaths reported on 8 April 2020 (1, 2). These
numbers have increased rapidly to more
than 2.99 million infections and 207,000
deaths as of 27 April of 2020 (2). SARS-CoV-2 is
closely related to severe acute respiratory syn-
drome coronavirus (SARS-CoV) and several
members of the betacoronavirus family, in-
cluding bat and pangolin coronaviruses (3–5).
Compared with the binding behavior of other
coronaviruses, however, the spike protein of
SARS-CoV-2 has a stronger binding affinity
for the host receptor (6–10), whichmay explain
why SARS-CoV-2 has a much higher incidence
of human-to-human transmission, resulting
in infections throughout the world.

SARS-CoV-2 is a positive-strand RNA vi-
rus. Its replication is mediated by a multi-
subunit replication-and-transcription complex
of viral nonstructural proteins (nsps) (11).
The core component of this complex is the
catalytic subunit (nsp12) of an RNA-dependent
RNA polymerase (RdRp) (12, 13). By itself,
nsp12 has little activity and its functions re-
quire accessory factors, including nsp7 and

nsp8 (14, 15), that increase RdRp template
binding and processivity. RdRp is also pro-
posed to be the target of a class of antiviral
drugs that are nucleotide analogs; this cat-
egory includes remdesivir (16–18), which
is a prodrug that is converted to the active
drug in the triphosphate form [remdesivir
triphosphate (RTP)] within cells (19). As
such, RdRp has been the subject of inten-
sive structural biology efforts. The structures
of nsp7, nsp8, and the complex of nsp12-nsp7-
nsp8 have been determined (15, 20–23), pro-
viding the overall architecture of the RdRp
complex. However, the drug discovery effort
is hampered because the structures of the
SARS-CoV-2 RdRp in complex with an RNA
template and with nucleotide inhibitors are
not known. In this study, we determined two
cryo–electron microscopy (cryo-EM) structures
of the SARS-CoV-2 RdRp complex: one in the
apo form and the other in a complex with a
template-primer RNA and the antiviral drug
remdesivir.
For cryo-EM studies, we coexpressed nsp12

with nsp7 and nsp8 to form the core RdRp
complex in insect cells (Fig. 1A and fig. S1,
A to D). The stoichiometric amount of nsp7
and nsp8 appeared to be less than that of
nsp12, and thus additional bacterially ex-
pressed nsp7 and nsp8 were supplemented
before the final purification step to improve
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Fig. 1. Assembly of an active nsp12-nsp7-nsp8 RdRp complex and its inhibition by remdesivir.
(A) Schematic diagram for the components of the RdRp complex, containing nsp12, nsp7, and nsp8.
The polymerase motif (A to G) and the b hairpin specific to SARS-CoV-2 are highlighted. (B) Sequence of
the RNA duplex with a 5′ U10 overhang as a template for primer extension and RdRp-RNA complex
assembly. (C) The recombinant RdRp complex shows polymerase activity in vitro. The primer strand is
labeled with fluorescence at the 5′ end. (D) Elongation of the partial RNA duplex by the purified RdRp
complex and its inhibition by RTP.

Corrected 25 June 2020. See full text. 

https://science.sciencemag.org/content/368/6498/1499


the yield of heterotrimeric complex. The pu-
rified nsp12 alone showed little activity in
binding to a 50-base partial double-stranded
template-primer RNA (Fig. 1B and fig. S1E),
which is similar to the SARS-CoV nsp12 (14).
The presence of nsp7 and nsp8 markedly in-
creased nsp12 binding to the template-primer
RNA (fig. S1E). The nsp12-nsp7-nsp8 complex
also showed RNA polymerization activity
on a poly-U template upon addition of adeno-
sine triphosphate (ATP) (Fig. 1, B and C). This
RNA polymerization activity was effectively
inhibited by the addition of RTP (Fig. 1D).
Even in the presence of 10 mMATP, which is
within the range of physiological concentra-
tions of ATP, 1 mMRTP completely inhibited
RdRp polymerization activity. In addition,
100 µM RTP completely blocked the full ex-
tension but allowed partial extension of the
primer RNA (Fig. 1D), consistent with a de-
layed chain termination mechanism (24).
However, this mechanism is dependent on
low RTP concentrations and low RTP/ATP
ratios. By contrast, 5 mM remdesivir (as a pro-
drug) had no inhibitory effect on the polym-
erization activity of the purified enzyme (fig.
S1F), nor did remdesivir in itsmonophosphate
form (RMP) (fig. S1G).
The purified RdRp complex is relatively

thermostable, with a melting temperature
of 53°C (fig. S1H). Negative-stain EM visual-
ization of the nsp12-nsp7-nsp8 complex dis-
played monodispersed particles with excellent
homogeneity (fig. S1I). For the apo nsp12-
nsp7-nsp8 complex, we vitrified the sample in
the presence of the detergent DDM. The ini-
tial attempt at image processing revealed that
the particles are preferentially oriented (fig.
S2A). Therefore, we collected >7400 micro-
graph movies of more than 5.7 million par-
ticle projections to increase the number of
projections from the nonpreferential orien-
tation. Of these, 81,494 particles were used to
yield a density map of 2.8-Å resolution (fig. S2,
B and E). Cryo-EM studies of the nsp12-nsp7-
nsp8 complex bound with the template-primer
RNA and RTP (termed the template-RTP RdRp
complex) faced two challenges (fig. S3). First,
most particles were adsorbed to cryo-EM grid
bars rather than staying in the vitreous ice.
Second, the RNA duplex was dissociated from
the template-RTP RdRp complex, likely owing
to conditions of cryo-EM specimen prepara-
tion. Eventually, we prepared the cryo-EM
specimen of the template-RTP RdRp complex
at 15 mg/ml, which is much higher than the
normal concentrations used for EM studies
of soluble protein complexes. The high con-
centration of the complex has a mass action
effect to stabilize the RNA-protein complex
and has an excess amount of the complex to
escape the absorption of cryo-EM grid bars to
enter the vitreous ice (fig. S3). We collected
2886 micrograph movies, which yielded a

2.5-Å resolution structure using 130,386 par-
ticle projections. Because of the relatively high
resolution of our structure, the EM map is
clear for key structural features across the
complex (fig. S4, A to F).
The structure of the apo RdRp complex

contains one nsp12, one nsp7, and two nsp8
proteins, with an overall arrangement resem-
bling those seen in SARS-CoV and the re-
cently solved structure of SARS-CoV-2 (15, 23)
(Fig. 2, A and B). Our structure, which dif-
fers from the SARS-CoV RdRp structure but
is similar to the recent SARS-CoV-2 RdRp
structure, reveals that nsp12 also contains
an N-terminal b hairpin (residues 31 to 50)

and an extended nidovirus RdRp-associated
nucleotidyl-transferase domain (NiRAN; re-
sidues 115 to 250) (24) with seven helices
and three b strands (15, 23). After the NiRAN
domain is an interface domain (residues 251
to 365), composed of three helices and five b
strands, that is connected to the RdRp do-
main (residues 366 to 920) (Figs. 1A and
2B). The nsp12 RdRp domain displays the
canonical cupped right-handed configura-
tion (25), with the finger subdomain (residues
397 to 581 and 621 to 679) forming a closed
circle with the thumb subdomain (residues
819 to 920) (Fig. 2, A and B). The closed con-
formation is stabilized by the binding of
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Fig. 2. Cryo-EM structure of the apo nsp12-nsp-7-nsp8 RdRp complex. (A and B) Two views of the
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Fig. 1A and is used throughout the figures. (C) The conserved zinc binding motifs are highlighted in the
apo structure rendered in ribbon. The coordinate details of the zinc-binding residues are shown in stick
representation, with the EM map in gray surface representation.
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nsp7 and nsp8, with one nsp8 molecule sit-
ting atop the finger subdomain and inter-
acting with the interface domain. The closed
conformation of nsp12 is further stabilized by
the nsp7-nsp8 heterodimer, which is packed

against the thumb-finger interface (Fig. 2,
A and B). In addition, we were able to assign
two zinc ions in the conserved metal binding
motifs composed of H295-C301-C306-C310 and
C487-H642-C645-C646 (Fig. 2C), which are

also observed in the SARS-CoV RdRp struc-
ture (15). These zinc ions likely function as
conserved structural components in maintain-
ing the integrity of the RdRp architecture.
The structure of the template-RTP RdRp

complex contains one nsp12, one nsp7, and
one nsp8 (Fig. 3, A andB). The secondnsp8was
largely invisible in the EMmap of the template-
RTP complex (fig. S4C); therefore, it was not
included in the final model. In addition, the
template-RTPRdRp structure contains 14-base
RNA in the template strand, 11-base RNA in the
primer strand, and the inhibitor RMP (Fig. 3,
C and D), which is covalently linked to the
primer strand, aswell as a pyrophosphate and
two magnesium ions that may serve as cata-
lytic ions near the active site (Fig. 3D and fig.
S4, D to F) (26).
The overall structure of the template-RTP

RdRp complex is similar to the apo RdRp
structure, with nsp12 in a closed conforma-
tion (Figs. 2A and 3A). The double-stranded
RNA helix, formed by 11 base pairs from the
template-primer RNA (Figs. 3C and 4, A to E),
is held by the finger-palm-thumb subdomains.
Extensive protein-RNA interactions are ob-
served between the template-primer RNA and
nsp12, with a total of 41 residues from nsp12
directly participating in RNA binding (within
4.0 Å of RNA, 26 residues to the template
strand and 15 residues to the primer strand;
Fig. 4E). Surprisingly, no RNA interactions
are mediated by nsp7 or nsp8, although these
two proteins are required for RNA binding by
RdRp. Most protein-RNA interactions involve
the RNA phosphate-ribose backbones, with
many interactions directly to 2′-OH groups
(Fig. 4E), thus providing a basis to distinguish
RNA from DNA. There are no contacts from
nsp12 to any base pairs of the template-primer
RNA, suggesting a sequence-independent bind-
ing of RNA by RdRp. This is consistent with
the fact that no specific sequence is required
for the enzymatic activity of RdRp at the elon-
gation step.
At the 3′ end of the primer strand is RMP

(Figs. 3D and 4, D and E, and fig. S4, E and F),
which is covalently incorporated into theprimer
strand at the +1 position (Fig. 4E). Additional
nucleotides at the +2 and +3 positions of the
template strand interact with residues from
the back of finger subdomain (Fig. 4, A and B).
Despite the presence of excess RTP in complex
assembly, only a single RMP is assembled into
the primer strand, as observed in the struc-
ture. Consistentwith the data fromFig. 1D, the
primer extension is immediately terminated
whenRTP concentration is high andATP/RTP
ratio is low. Thus, remdesivir, like many nu-
cleotide analog prodrugs, inhibits viral RdRp
activity throughnonobligate RNA chain termi-
nation, a mechanism that requires conversion
of the parent drug to the active triphosphate
form (27, 28).
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The RMP position is at the center of the
catalytic active site (Fig. 3D). As an adenosine
monophosphate analog, RMP forms base-
stacking interactions with an upstream base
from the primer strand and two hydrogen
bonds with the uridine base from the tem-
plate strand (Fig. 3D and fig. S5). In addition,
RMP forms interactions with side chains from
K545 and R555. Near the bound RMP are two
magnesium ions and a pyrophosphate. Both
magnesium ions interact with the phosphate
diester backbone and are part of the catalytic
active site. The pyrophosphate is at the gate
of the nucleotide entry channel to the active
site and may block the entry of nucleotide
triphosphate to the active side (Fig. 3, C
and D).
The catalytic active site of the nsp12 RdRp

consists of seven conserved motifs (A to G;
Figs. 1A and 3E and fig. S6). Motifs A, B, C, and
D are from the palm subdomain, with an SDD
sequence (residues 759 to 761) inmotif C form-
ing the catalytic active center (Fig. 3D). Both
D760 and D761 are involved in coordination
of the two magnesium ions at the catalytic
center. Motifs F and G are located within the
finger subdomain; they interact with the tem-
plate strand RNA and direct this strand into
the active site (Fig. 3E). Motif F also interacts
with the primer strand RNA, with the side
chains of K545 and R555 contacting the +1 base
(Fig. 3D) and thus stabilizing the incoming
nucleotide in the correct position for catalysis.
The orientation of template-primer RNA in
the active site is similar to the orientation of
template-primer RNA in the poliovirus RdRp
elongation complex (29) and the hepatitis C
virus NS5B RdRp inhibitor complex (30) (fig.
S7). The residues involved in RNA binding
and those that constitute the catalytic active
site are highly conserved (31, 32), highlight-
ing the conserved mechanism of genome
replication by RdRp in these diverse RNA
viruses and suggesting that it may be pos-
sible to develop broad-spectrum antiviral in-
hibitors such as remdesivir (18) and galidesivir
(BCX4430) (33).
Structural comparison reveals several nota-

ble differences between the apo and complex
structures (Fig. 3, E and F, and fig. S8, A and
B). First, nsp7 moves toward the RdRp core by
1.5 Å (asmeasured by nsp7 residue F49; fig. S8,
A and B), leading to a rearrangement of the
interface, which results in weaker association
of the second nsp8 in the complex. Second, the
loop that connects the first and second helices
of the thumb subdomain moves outward by
2.8 Å (as measured by nsp12 residue I847)
to accommodate the binding of the double-
stranded RNA helix (Fig. 3F). Third, motif G
residues K500 and S501 also move outward
by 2.0 Å to accommodate the binding of the
template-strandRNA.Outside of these changes,
the apo nsp12 and the RNA complex nsp12 are

very similar, with a root mean square devia-
tion of 0.52 Å for all Ca atoms across thewhole
protein. In particular, the structural elements
that make up the catalytic active site can be
precisely superimposed (Fig. 3E), which sug-
gests that the SARS-CoV-2 RdRp is a relatively
stable enzyme that is ready to function as a
replicase upon RNA template binding. Viral
RdRp is a highly processive enzyme with a rep-
lication rate of up to 100 nucleotides per second
(34). No substantial conformational changes
between the apo and active enzyme structures
are consistent with the high processivity of the

viral RNA polymerase, which does not need
to consume additional energy for conforma-
tional changes in the active site during the
replication cycle.
Besides remdesivir, several nucleotide ana-

log drugs—including favipiravir, ribavirin,
galidesivir, and EIDD-2801—efficiently inhibit
SARS-CoV-2 replication in cell-based assays
(35, 36). Like remdesivir, these nucleotide ana-
logs are proposed to inhibit the viral RdRp
through nonobligate RNA chain termination,
a mechanism that requires conversion of the
parent compound to the triphosphate active
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form (33). The structure of the template-RTP
RdRp complex provides a useful model to
rationalize how these drugs inhibit the ac-
tivity of SARS-CoV-2 RdRp (fig. S8C). In par-
ticular, EIDD-2801 has been shown to be 3 to
10 times as potent as remdesivir in blocking
SARS-CoV-2 replication (36). The N4 hydroxyl
group off the cytidine ring forms an extra
hydrogen bond with the side chain of K545,
and the cytidine base also forms an extra
hydrogen bond with the guanine base from
the template strand. These two extra hydro-
gen bonds may explain the apparent higher
potency of EIDD-2801 in inhibiting SARS-
CoV-2 replication.
The COVID-19 pandemic has inflicted emo-

tional pain and economic burden across the
globe. Enzymes that are vital for the viral life
cycle are suitable antiviral drug targets be-
cause they differ from host proteins. Among
viral enzymes, RdRp is the primary target
of many existing nucleotide drugs. In this
paper, we report the structures of the SARS-
CoV-2 RdRp complex in the apo form as well
as in complex with a template-primer RNA
and the active form of remdesivir. The struc-
tures reveal how the template-primer RNA is
recognized by the enzyme and how chain
elongation is inhibited by remdesivir. Struc-
ture comparison and sequence alignment
suggest that the mode of substrate RNA rec-
ognition and remdesivir inhibition of RdRp
is highly conserved in diverse RNA viruses,
providing a foundation for designing broad-
spectrum antiviral drugs based on nucleo-
tide analogs. Moreover, our structures provide
a solid template for modeling and modifying
the existing nucleotide drugs, including the
highly potent EIDD-2801. Together, these ob-
servations provide a rational basis to design
evenmore potent inhibitors to combat SARS-
CoV-2 infection.
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