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Abstract: Staphylococcus aureus is a leading pathogen
for animals and humans, not only being one of the most
frequently isolated bacteria in hospital-associated infec-
tions but also causing diseases in the community. To
coordinate the expression of its numerous virulence
genes for growth and survival, S. aureus uses various
signalling pathways that include two-component regula-
tory systems, transcription factors, and also around 250
regulatory RNAs. Biological roles have only been deter-
mined for a handful of these sRNAs, including cis, trans,
and cis-trans acting RNAs, some internally encoding small,
functional peptides and others possessing dual or
multiple functions. Here we put forward an inventory of
these fascinating sRNAs; the proteins involved in their
activities; and those involved in stress response, metab-
olisms, and virulence.

Introduction

Staphylococcus aureus is a commonly isolated bacterial pathogen in

humans and animals and a serious threat to health. It can live as a

commensal but, provided suitable opportunity, can initiate severe

infections at various body sites. S. aureus is one of the most

frequently isolated pathogens in hospital-associated infections but

can also cause diseases in the community [1]. Nosocomial and

community-acquired S. aureus infections include superficial skin

lesions such as boils, abscesses, and impetigo, while invasive

infections include septic arthritis, pneumonia, osteomyelitis,

and endocarditis. S. aureus is an aggressive pathogen due to the

combination of elevated antibiotic resistance and prominent

virulence. The virulence of S. aureus is defined by a series of

determinants that are often redundant in their functions. This

bacterium produces an array of cell surface and secreted factors,

including proteins that promote adhesion to host cells and tissues

and some that bind proteins in blood toevade triggered immune

responses. The organism also secretes extracellular enzymes

such as proteases, a hyaluronidase, a lipase, and a nuclease that

facilitate host tissue destruction and spreading. It produces

membrane-damaging toxins that lyse host cells, as well as

superantigens that are immunostimulatory exotoxins [2].

To face and adapt to various environmental conditions,

including host colonization and spreading, S. aureus possesses

many signaling pathways, some that are redundant, to coordinate

the expression of its numerous virulence genes. At least 12 two-

component regulatory systems and several transcription factors

control these regulatory circuits, with multiple and intricate

interplays to specifically reprogram the expression of target genes

for continuous adaptation. Dozens of regulatory RNAs (sRNAs)

are also involved in such dedicated control of gene expression,

but their direct mRNA targets are, for the most part, currently

unknown. Additionally, translation control and decay of selected

S. aureus mRNAs, in response to specific signals during S. aureus

growth and adaptation, can be achieved by specific ribonucleases

[3] organized into large multi-enzyme complexes [4]. Widespread

mRNA antisense transcription all over the S. aureus genome [5], as

well as dedicated cis and trans sRNAs (reviewed in [6,7]), actively

participate in these gene expression controls.

More than 250 srna genes were discovered and detected as

expressed transcripts in various S. aureus strains and experimental

conditions [8–15]. The vast majority of these sRNAs are only

expressed in S. aureus, a few are detected in Bacillaceae (e.g. RsaE),

and several housekeeping sRNAs are detected in all eubacteria

(e.g. tmRNA, RNase P RNA, 6S RNA). Most S. aureus sRNAs are

located within the core genome, with a few expressed from the

pathogenicity islands and from plasmids. For the most part, their

functional, structural, and mechanistic details are unknown. This

review will focus on the current functional understanding of cis-

and trans- regulatory RNAs expressed in this organism, the unusual

cases of cis sRNAs acting in trans, those expressing small peptides,

and the sRNAs possessing multiple functions. We will exclude the

S. aureus riboswitches that are cis-acting regulatory domains of

mRNAs. The various proteins associated with S. aureus sRNA

functions will be described, including the controversial roles of

Hfq. The emphasis will be placed on sRNAs involved in stress

response and metabolisms and on several sRNAs implicated in S.

aureus pathogenesis.

A Multiplicity of sRNAs Expressed by S. aureus

Cis-encoded antisense RNAs
Cis-encoded antisense sRNAs are transcribed on the strand

opposite to their target mRNAs [16,17] and regulate gene

expression by base-pairing with their complementary mRNAs

(Figure 1A). Despite an extended complementarity with their

primary target encoded on the opposite DNA strand, the initial

interaction between the mRNA and the sRNA, ‘‘a kissing inter-

action,’’ occurs by contact between a few nucleotides usually
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located in accessible hairpins. This interaction is followed by

additional pairings involving structural rearrangements of the

two interacting RNAs [18]. In S. aureus, the first cis-encoded sRNA

identified controls the rolling-circle replication of plasmid pT181

by transcriptional attenuation [13]. pT181 regulates its replication

by the expression of an antisense RNA (RNAI) that blocks the

expression of the plasmid-encoded replication initiation protein

RepC. This mechanism involves pairings between complementary

loops in the mRNA leader and the antisense RNA, which results in

the formation of a transcription-termination hairpin 59 to the Rep

initiation codon. Attenuation is very efficient, aborting .90%

of the Rep transcripts under standard growth conditions. Several

other cis-encoded sRNAs expressed by S. aureus were detected in

mobile genetic elements (PIs, plasmids, transposons) that are

complementary to mRNAs expressing transposases involved in

genome plasticity and integrity. RsaOX is complementary to the

coding sequence of the SA0062 mRNA encoding a putative

transposase [11]. Another transposase, IS1181, is probably also

regulated by two additional sRNAs, RsaOW/Teg17 and Teg24as,

which are complementary to its 59 UTR, including a portion of

the Shine Dalgarno (SD) sequence, and also to the 39 UTR

[10,11]. In strain N315, the gene encoding the transposase is

repeated eight times and these two sRNAs are systematically

detected on the tnp locus [10]. Cis-encoded sRNAs can also

interact with additional mRNA targets at distant genetic loci, in

trans.

Trans-encoded sRNAs
In contrast to the cis, the trans-encoded sRNAs are transcribed at

distant genetic loci from their molecular targets and share only

partial and often interrupted pairing complementarities, as for the

eukaryotic microRNAs (Figure 1B). Although a seeding interaction

of six to seven nucleotides is sufficient to initiate the ‘‘sRNA–

mRNA’’ interaction in E. coli [19], pairings are usually much

longer for the sRNAs expressed by S. aureus, probably due to its

AT-rich genome. In most cases, the interaction involves the 59

domains of the sRNAs that encompass the translation initiation

signals (TIS) of the mRNA targets [20]. Conserved and accessible

motifs were detected in several S. aureus sRNAs containing

consensus sequences involved in the initial pairing with their

Figure 1. A variety of mechanisms of actions for the S. aureus sRNAs. (A) Cis-encoded sRNAs bind via perfect complementarities with mRNA
targets at the translation initiation sequence, preventing ribosome binding and therefore translation. (B) Trans-acting sRNAs. The trans-encoded
sRNAs bind and block the ribosome binding site by interrupted pairings, using one or two hairpin(s) to repress translation initiation. (C) Cis-encoded
antisense sRNAs acting in trans. In the SprA1/A1AS TA module, SprA1AS prevents SprA1 translation to prevent toxic peptide expression. On the two
interacting sRNAs, the cis and trans pairing-regions are indicated in blue and red, respectively.
doi:10.1371/journal.ppat.1003767.g001
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target mRNAs. Several sRNAs from the Rsa family contain

unpaired and accessible UCCC motives located in conserved

hairpin regions of the sRNAs predicted to interact with the target

mRNA translation initiation signals [12]. The RNAIII also

harbors several UCCC motifs in the three loops H7, H13, and

H14, which interact with the SD sequences of several target

mRNAs. These UCCC motives were also detected in sRNAs

expressed from other gram-positive bacteria such as L. monocytogenes

and B. subtilis [21–24]. Accessible C-rich boxes could be a general

signature of regulatory RNAs controlling translation initiation of

various target mRNAs.

Cis-encoded antisense sRNAs acting in trans
Type I Toxin/Antitoxin (TA) pairs are present on plasmids or

chromosomes, or both simultaneously [25], and consist of stable

toxins and labile antitoxins encoded within small genetic modules.

In S. aureus, several candidates of type I TA were detected based

on sequence homology [26], among which are SprA1/A1AS and

the SprG/F modules. SprA1-SprA1AS is an RNA pair transcribed

from a pathogenicity island, a genetic element acquired by

horizontal transfers. SprA1 is a stable and structured 208 nt-long

RNA that contains an internal open reading frame (ORF)

encoding a cytolytic peptide, pepA1 [27]. PepA1 inserts within

the biological membranes, alters their integrity, and induces cell

death [28]. A small cis-antisense RNA of SprA1, named SprA1AS

(Teg152, [10]), is transcribed from the complementary DNA

strand. Although 35 nt at SprA1AS 39-end are perfectly comple-

mentary to a sequence located at SprA1 39-end, SprA1AS acts in

trans by base pairing with the 59 domain of SprA1 to repress pepA1

translation by occluding the TIS, preventing its toxicity for the

bacteria (Figure 1C). By analogy, the SprA2/A2AS pair, consid-

ered as a second copy due to elevated sequence identity with

SprA1/A1AS, may also act in trans. Another unconventional case

of a cis-trans RNA was detected in a plasmid from Enterococcus

faecalis, another gram-positive bacterium, within the par stability

determinant of a plasmid required for stable inheritance in its host

[29]. In that case, overlapping RNAs I and II share a bidirectional

transcription terminator but interact with one another by two non-

overlapping direct repeats.

sRNAs with Multiple Functions

SsrA/tmRNA responsible for trans-translation and acting
as a trans-RNA

Transfer-messenger RNA (tmRNA or SsrA) is an sRNA

expressed in all bacteria that displays both tRNA and mRNA

properties. tmRNA, with the help of the SmpB protein, governs

trans-translation, a process that rescues the ribosomes stalled

during translation of defective mRNAs, such as those lacking in-

frame termination codons [30,31]. tmRNA is recruited by the

ribosomes through the smpB protein, an essential participant for

ribosome rescue, and acts first as transfer RNA (tRNA) to add an

alanine to the stalled polypeptide chain. Translation then switches

from the problematic mRNA to a short tmRNA internal ORF that

encodes a proteolytic tag [32,33]. The stalled ribosome is released

at the tmRNA termination codon, and the problematic mRNA

and the tagged protein are degraded by specific RNAses and

proteases, respectively. Trans-translation allows ribosome recy-

cling and degradation of potentially toxic truncated mRNAs and

proteins. A recent study [34] showed that tmRNA activity in S.

aureus was not restricted to trans-translation. Inactivation of ssra-

expressing tmRNA leads to an increase of pigment synthesis that is

counteracted by expressing a tmRNA harboring a mutated tag.

Furthermore, this phenotype is not imputable to the alteration of

trans-translation since SmpB inactivation did not modify the

quantity of pigments produced by S. aureus. The phenotype is due

to the overexpression of the crtMN operon which encodes two

enzymes involved in pigment synthesis. As the tmRNA sequence

displays partial complementarity with the 59 UTR of the crtMN

mRNA, it could also act as an antisense sRNA acting in trans to

regulate crtMN mRNA translation [34].

RNAIII, the Paradigm

RNAIII is the effector of the agr quorum-sensing system which

coordinates gene expression in S. aureus according to the local

density of bacteria [35]. The agr locus is transcribed from two

divergent promoters, P2 and P3. Four genes (agrA, B, C, and D) are

expressed as an operon from the P2 promoter, and RNAIII is

transcribed from the P3 promoter [35]. An autoinducing peptide

(AIP) is produced from agrD and secreted in the extracellular

medium. The AIP binds to the agrC transmembrane protein,

which, in turn, activates the agrA response regulator. AgrA, in

conjunction with the global regulator SarA, activates transcription

of its own operon and that of RNAIII. RNAIII controls the switch

between early expression of surface proteins and late production

of S. aureus exotoxins. RNAIII represents a paradigm in the field

of bacterial RNAs exerting influence on pathogenesis. RNAIII

controls target gene expression at multiple levels, including

transcription, translation, and mRNA stability. RNAIII regulates

by antisense pairings, at the post-transcriptional level, the

expression of numerous targets involved in virulence and cell wall

metabolism. RNAIII represses the expression of hydrolases and

amidases involved in peptidoglycan turnover, an effect occurring

at high cell density when RNAIII accumulates. RNAIII is a

514 nt-long RNA that possesses an intricate fold [36], is composed

of 14 stem-loops (H1-H14) and three long-distance helices, and

meets the definition of a multifunctional, ‘‘all-in-one’’ RNA.

It encodes internally the d-hemolysin peptide, which displays

hemolytic and microbial activities [37–39]. Through various

structural domains, RNAIII acts as both an activator and a

repressor of dedicated mRNA targets. As for several trans-acting

sRNAs, RNAIII coordinates complex regulatory networks.

RNAIII activates translation of the hla mRNA encoding the a-

hemolysin [40]. In the absence of RNAIII, the 59-end of the hla

mRNA forms a structure that blocks access to the ribosome on

the Shine-Dalgarno (SD) sequence. RNAIII, via hairpins H2 and

H3, interacts with the 59UTR of the hla mRNA and provides

accessibility to the SD site and, consequently, triggers a-hemolysin

translation. RNAIII also up-regulates MAP production by

interacting with the map mRNA via antisense pairings [41].

MAP, also named Eap (Extracellular adherence protein), is a

surface adhesion protein involved in S. aureus immune evasion

[42]. The mechanism of regulation, however, remains to be

elucidated. On the other hand, RNAIII inhibits translation of

various target genes by pairing at the TIS of several target mRNAs

to inhibit their translation and trigger their degradations. In some

cases, a single loop binding is not sufficient for down-regulation,

and RNAIII binding requires additional interactions at the vicinity

of the initial binding site [43,44]. RNAIII represses translation of

the SA1000 mRNA expressing a fibrinogen-binding protein

involved in S. aureus adhesion to epithelial cells, of SA2353 mRNA

producing a secreted antigen precursor [43], of spa mRNA

encoding the immune escape protein A [14], of coa mRNA

encoding a coagulase [43,44], as well as of rot mRNA encoding a

transcription factor repressing toxin production [43,45]. Several

proteins that are regulated by RNAIII are major virulence factors

produced by the S. aureus clinical isolates during infection. The
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influence of RNAIII on membranes, surface proteins, and cell wall

turnovers contributes to virulence by controlling nutrients’ entries

and host defences, struggle, and resistance by regulating hemoly-

sins production and host immune evasion. We expect that RNAIII

possesses additional targets involved in S. aureus virulence control,

which will be progressively identified by high throughput methods

using Deep RNA sequencing technologies combined with target

affinity purifications.

Proteins Involved in S. aureus sRNA Functions

Hfq: A controversial factor
Since trans-encoded sRNAs display short and imperfect com-

plementarity to their target mRNAs, the effective sRNA-mRNA

annealing requires an auxiliary factor in some bacterial species.

Hfq, a member of the conserved RNA-binding Sm-like protein

family, is needed for the efficient annealing of some sRNAs to

target mRNAs and for the intracellular stability of these sRNAs. In

the case of canonical sRNA, the Hfq protein enhances the binding

of sRNA on the translational start site of their mRNA targets and

prevents ribosome binding. Hfq is only active in its multimeric

form. The Hfq ring formed by homohexameric Hfq proteins

displays a characteristic doughnut-shaped structure containing two

single-stranded RNA-binding faces located on opposite sides of the

ring. The proximal face binds to AU-rich sequences and sRNAs,

whereas the distal face interacts with poly(A) sequences [46,47].

The dual RNA-binding surface allows the simultaneous recruit-

ment of an sRNA and its mRNA target on one Hfq molecule. Hfq

facilitates sRNA–mRNA interaction by increasing the local

concentration of the RNA species and/or by enhancing the base

pairing interaction through a restructuring of these RNAs. In E.

coli, the chaperon Hfq affects the turnover of some target mRNA

by recruiting an RNase E in an activated state on the sRNA–

mRNA duplex [48,49]. The requirement of Hfq for riboregula-

tions by trans-encoded sRNAs depends on the small RNAs,

mRNAs, and the bacterial species. Potential links between the free

energy for sRNAs–mRNA pairing, the GC-content of the bacterial

genome, and the involvement of Hfq protein have been proposed

[50]. A highest DG value and a lowest GC-content correlate with a

dispensability of Hfq protein for the sRNAs–mRNAs pairing.

Accordingly, Hfq is required in sRNAs regulations, which are

involved in the growth, the sensitivity to various environmental

stresses, and the virulence of several gram-negative strains.

Moreover, Hfq or Hfq-like proteins are absent in several ‘‘low

GC’’ gram-positive strains such as Streptococcus pneumoniae and

Lactococcus lactis. In S. aureus, the function of Hfq remains unclear.

Inactivation of the hfq gene in three S.aureus strains (RN6390,

COL, and NEWMAN) did not affect the phenotypes of these

strains [51]. In S. aureus, Hfq was not involved in more than 2,000

phenotypes tested, including sensitivity to different stress condi-

tions, antibiotic sensibility, and virulence [51]. In agreement with

the Hfq dispensability in the riboregulation, the protein has no

effect on the stability/turnover of several trans-acting sRNAs

[12,27,43,45,52,53]. The S. aureus Hfq does not enhance the

binding of RNAIII to spa mRNA or SA1000 mRNA, whereas an

Hfq-RNAIII complex from RN6390 cells co-immunoprecipitates

with an antibody against Hfq [43,52]. However, Hfq seems to

be functional in S. aureus, since the overexpression of Hfq in an

agr2 strain leads to the stimulation of the c-haemolysin

translation. This discrepancy between the ability of Hfq to tightly

bind RNA in vitro and its inability to affect the riboregulation in

vivo could be explained by the very low expression levels of Hfq

in the laboratory-adapted strains RN6390 and COL. Indeed,

inactivation of the hfq gene in the S. aureus 8325-4 strain expressing

a detectable Hfq level alters the expression profiles of 116 genes

potentially involved in the decrease of the pathogenicity of the

muted strain in a murine peritonitis infection model and in the

increase of expression of the surface carotenoid pigment [54].

The relationship between Hfq and carotenoid production was

also revealed in another S. aureus strain. Low-fluid-shear culture of

N315 cells, which promotes attachment-independent biofilm

formation, leads to a decrease of carotenoid production associated

with a down-regulation of the Hfq protein [55]. Hfq specifically

binds to 49 of the 116 genes down-regulated in the hfq mutant of

S. aureus 8325-4. In particular, some mRNA targets of sRNAs,

such as sbi, sucD, and rot for respectively SprD, RsaE, and RNAIII,

were copurified with Hfq, suggesting that Hfq could be implied

in the translational regulation of some S. aureus genes [54].

Altogether, these studies show that the modulation of virulence

and stress response could be attributed to Hfq in some strains.

However, the direct involvement of sRNAs in these Hfq-

dependent phenotypes and the mechanisms of actions of potential

‘‘sRNA/Hfq’’ complexes remain unknown. As S. aureus does not

express RNase E, Hfq could recruit another endoribonuclease to

affect the turnover of mRNA targets. Hfq proteins from different

bacteria contain an evolutionarily conserved core of 65 amino

acids and a divergent positively charged C-terminal end. The C-

terminus extensions are short in gram-positive bacteria (like S.

aureus, B. subtilis, and L. monocytogenes) and longer in gram-negative

bacteria (102 amino acids in E. coli and Salmonella). Recently the C-

terminal extension of E. coli Hfq protein was shown to be required

for a non-canonical sRNA pathway, a translational regulation

involving the binding of sRNA outside the canonical ribosome

entry site, probably by recruiting additional RNAs or proteins on

the mRNA target [56]. Thus, the short C-tail extension mainly

present in S. aureus could be involved in the recruitment of specific

ligands during the Hfq-dependent riboregulation by non-canonical

sRNAs. In S. aureus strains that do not express the protein, the role

of Hfq might be superseded by other RNA-binding molecules.

RNAse III: The major RNase involved in the sRNA-
dependent mRNA turnover

Staphylococcus aureus RNase III belongs to the family of Mg2+-

dependent endoribonucleases which cleave double-stranded RNA

to generate short RNA duplexes with a 59 phosphate group

and two nucleotides 39-overhang. The enzyme contains a catalytic

and a dsRNA-binding domain and functions as a homodimer to

recognize and cleave a variety of structures including imperfect

duplexes, loop–loop interaction, and stacked helices [57]. Histor-

ically described as an endoribonuclease involved in rRNA

processing and maturation in E. coli and B. subtilis, the enzyme

also participates in the regulation of single and polycistronic

mRNA as well as in the processing of some housekeeping RNAs in

B. subtilis [58,59]. In S. aureus, the RNase III-processing alone

enhances mRNA stability and translation of the major cold-shock

CspA protein through a cleavage within the 59 leader and

autoregulates its synthesis by initiating the degradation of its own

mRNA [60]. In contrast with the essential involvement of the

endoribonuclease RNase III in the viability of E.coli and B. subtilis,

the enzyme does not influence the growth of S. aureus, but plays

an important role in the pathogenicity of S. aureus in murine

models [61]. RNase III is involved in the mRNA turnover of some

trans-acting sRNA targets. In S. aureus the enzyme acts as an

essential co-factor of the quorum-sensing regulatory RNA III for

the irreversible translational repression of the mRNAs coding

for the protein A (spa), the staphylocoagulase (coa) [44] and the

transcriptional regulator Rot [45]. The enzyme interacts with

RNAIII without promoting the repressor activity of RNAIII by
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improving the stability of RNAIII–mRNA duplexes. RNAse III

only cleaves RNAIII when the sRNA is bound to its mRNA

targets [52,62]. RNAIII binds to the ribosome binding site of coa

and rot mRNAs and recruits RNase III, which cleaves the mRNA

target at an equivalent position of the loop–loop pairing. The

RNase III cleavage site is independent of the sequence of the base

pairs. The loop–loop interaction forms a unique hairpin motif

creating a single binding site for the RNase III, which leads to a

specific cleavage at single positions of the kissing interactions and

irreversible repression of mRNA translation [62]. Several RNase

III-binding sRNAs were identified by deep sequencing of RNA

coimunoprecipitated with a wild-type RNase III and/or cleavage-

defective mutants in vivo. Among the 58 sRNAs detected, many

have been previously identified, such as the pathogenicity island-

encoded small RNAs SprA, SprA3, SprB, SprC, SprF3/G3 [15],

and RsaA, RsaE, RsaH, RsaI, RsaJ [11,12], as well as RNAIII.

Some of these sRNAs were copurified with the cleavage-defective

mutant and display hairpin motifs recognizable by the enzyme,

suggesting that there are substrates of RNase III [60,62]. Thus,

it appears that most of these known and unknown sRNAs are

potential trans-acting factors which regulate gene expression by

antisense mechanisms and recruit RNAse III to direct the mRNA

decay. Also, RNase III could mediate specific cleavage of type I

toxin/antitoxin pairs (SprA1/SprA1AS, SprG/SprF) to prevent

toxic peptide expression. RNase III is associated with a large

number of antisense transcripts, covering 44% of the annotated

genes [60,63]. These antisense (as) RNAs are issued from a

genome-wide process of overlapping transcription and are

perfectly complementary to the 59 ends, 39 ends, middle, or entire

genes or operons [5,60,64]. RNase III-associated cis-asRNAs are

usually expressed at lower levels than their complementary

mRNAs, and they direct the degradation of residual mRNAs.

The RNase III-mediated digestion of sense/antisense transcripts

generates a large collection of short, 22 nucleotide-long, double-

stranded RNAs that could also have functions [64]. Pervasive

transcriptions lead to the expression of RNase III-associated

mRNAs, which overlap at their 59 or 39 UTRs. RNase III-induced

cleavages of the 59 overlapping regions of divergent mRNAs allow

the fine regulation of the expression of genes which have to be

expressed in a coordinated manner as the tagG/tagH teichoic

acid biosynthetic genes encoding the TagGH ABC transporter

complex [60,63]. These cleavages generate mRNAs with shorter

59ends which could be more sensitive to degradations and/or

influence their translations. In some cases, the 59 UTRs of mRNAs

extend into the coding sequence of their neighbouring genes [64].

Similar large asRNAs are encoded at particular genomic loci

called the ‘‘excludons’’ in the gram-positive Listeria monocytogenes

[65]. These long asRNAs span divergent genes or operons with

related or opposing functions, and allow meticulous regulatory

switches in bacteria [66], probably also occurring in S. aureus. In

S. aureus, the activity of RNase III, in association with large

asRNAs, could be considered a general mechanism to regulate

and coordinate the expression of neighbouring genes.

Other RNases: RNase J1-J2 and RNase Y
In E. coli, sRNA-mediated mRNA decay mainly involves the

recruitment of RNase E on the mRNA target. The RNase E is

the central component of the degradosome that is composed of a

39-exoribonuclease polynucleotide phosphorylase (PNPase), a

RNA helicase (RhlB) and a glycolytic enzyme (enolase). RNase

E catalyzes the initial endoribonucleolytic cleavage of mRNA

targets which is followed by a directional, 39 to 59, degradation by

the PNPase with the help of RhlB [67]. Most gram-positive

bacteria do not contain an RNase E and use RNase E functional

orthologs and other degradosome components to direct mRNA

decay. Both S. aureus and B. subtilis contain a similar multicom-

ponent ribonucleolytic degradosome complex formed around

RNase Y, a functional homologue of RNase E [4,68]. The S.

aureus degradosome includes both RNases J1/J2 originally

proposed to act also as functional orthologs of RNase E [69],

the PNPase, the enolase, the RNA helicase CshA, and RNase P

[4]. The CshA Dead-box RNA helicase plays an essential role in

the regulation of quorum sensing by controlling the agrBDCA

mRNA turnover [70,71]. Both RNases Y and J1, which exhibit

RNase-E–like 59 end-dependent endonucleolytic activity, play a

central role in the degradation of mRNAs in B. subtilis. The

endonucleolytic cleavage by the RNase Y initiates the mRNA

decay, and the resulting RNA fragments are likely to be degraded

by the 59-39 exoribonuclease activity of RNase J1 and by the 39–59

activity of PNPase [72,73]. In contrast to B. subtilis, the membrane-

associated RNase Y of S. aureus is not essential for growth but

is required for virulence [74,75]. The enzyme is involved in the

processing of the global virulence regulator sae and in the

expression of various virulence genes by an indirect mechanism

[75]. The RNase Y controls the stability of specific mRNAs and

sRNAs. Interestingly, inactivation of the rnc gene encoding for

RNase Y in S. aureus results in an increase of the half-life of two

sRNAs, RsaA and Sau63 [8,12], whereas the RNAIII steady-state

level is unaffected. The specific activity of RNase Y represents a

way to control both the expression of sRNAs and their mRNA

targets in S. aureus. A similar regulation was detected in E.coli,

where RNase E specifically affects the steady-state level of several

sRNAs [59]. In contrast with the activity of RNase E in E. coli, an

implication of RNase Y in the coupled degradation of sRNAs and

their mRNA targets has not been revealed.

sRNAs Involved in Stress Response, Metabolisms,
and Regulatory Networks

Sigma B-inducible small RNA encoding genes
The pathogenicity of S. aureus depends on its ability to respond

quickly and specifically to a variety of environmental stresses and

to control virulence genes expression. The S. aureus genome allows

expression of the alternative sigma B transcriptional factor (sB)

that is an essential part of the complex regulatory network

controlling the expression of around 200 genes involved in

virulence, cell wall metabolism, and membrane transport processes

[76–78]. sB is involved in stress responses and contributes to

pathogenesis in animal models of infections [79]. The S. aureus

sigma B operon resembles that of the homologous B. subtilis

operon. It contains sB, an anti-sB factor RsbW, an anti-anti-sB

factor RsbV, and RsbU, a Mn2+-dependent phosphatase that

positively controls sB activity by dephosphorylating RsbV [80,81].

The sigma B regulon includes genes directly up-regulated by sB

and genes indirectly regulated via sB-dependent expression of

regulatory factors such as the SarA transcription factor [76,77]. In

particular, the inactivation of sB has an indirect impact on the agr

quorum-sensing system by enhancing RNAIII expression [82]. By

computational approaches based on the search for sB consensus

binding sites (GWWT_N14–17GGGWWW) and transcriptional

terminator sequence within the intergenic regions of S. aureus strain

N315, three sB-regulated genes coding for new sRNAs were

identified and validated [53]. Two of these sRNAs, SbrA and

SbrB, are highly conserved among Staphylococci (for sB-dependent

small RNAs A and B) and encode putative basic peptides of 26 and

38 amino acids, which are potential virulence factors. In contrast

to sbrA, the peptide from sbrB gene is translated only in some S.

aureus, whereas SbrB is expressed in all strains, which suggests a
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potential dual function of SbrB: a peptide-coding sRNA and

activity as an sRNA regulator [53]. The third sRNA, SbrC, is a

potential cis-acting antisense targeting the 39 end of the mntABC

operon encoding for an ABC transporter dedicated in the uptake

of manganese. The manganese acquisition is crucial for defence

systems against oxidative stress and contributes to the virulence of

S. aureus [83]. In S. aureus, sB-dependent transcription is induced

by the presence of MnCl2, probably via the stimulation of the

Mn2+-dependent phosphatase activity of RsbU [77]. The sB-

dependent induction of SbrC could be a way for sB to

autoregulate its own activity and to modulate manganese uptake

in function of Mn availability. The transcription of other sRNAs

like RsaA, RsaD, and RsaF is induced in S. aureus strains

expressing an active sB factor [12]. These sRNAs are differently

transcribed in response to environmental stresses such as oxidative

stress, heat stress, cold stress, osmotic stress, and acidic pH. A

conserved sB promoter sequence was found upstream rsaA,

suggesting its direct regulation by the sB. As RsaA is a trans-

acting regulator that potentially targets three mRNAs repressed by

sB [12,76,77], it could be an intermediate in the regulatory

network controlled by sB.

Metabolisms regulations
In S. aureus, all macromolecules are synthetized from 13

biosynthetic intermediates produced by glycolytic, pentose

phosphate, and tricarboxylic acid cycle (TCA cycle) pathways.

These three central metabolic pathways are closely linked to

the expression of several virulence factors. The alteration

of pentose phosphate and glycolytic pathways affects the

quorum-sensing–dependent regulation of RNAIII [84,85], and

TCA cycle inactivation induces a reduction in the production of

several secreted virulence factors and cell-associated adhesion

factors [86,87], thus, slowing down central metabolism reduces

bacterial virulence. Recently, RsaE, a sRNA conserved in all S.

aureus strains, and also in firmicutes, has been shown to regulate

several metabolic pathways [11,12] (Figure 2). The overexpression

of RsaE induces a growth defect that is partially alleviated by the

addition of acetate, arguing for a role of RsaE in both catabolisms

and anabolisms. Indeed, RsaE down-regulates the synthesis of

enzymes from the TCA cycle (succinyl-Coa synthetase sucC

and sucD, aconitase (citB), citrate synthase (citZ), and isocitrate

dehydrogenase (citC)), and from the folate-dependent one-carbone

metabolism (bi-functional protein fold and the formate-tetrahy-

drofolate ligase (Fhs)), which is involved in the purine biosynthesis

pathway. RsaE also affects the amino acid pool in S. aureus. It up-

regulates the expression of valine, leucine, and isoleucine operons

and potentially alters aspartate biosynthesis by inducing the

expression of pyruvate carboxylase. Moreover, RsaE down-

regulates the opp-3 operon coding for an oligopeptide transporter

involved in the uptake of specific peptides and in the regulation

of extracellular protease production [88,89]. As the transcription

of genes encoding for some enzymes of the TCA cycle is regulated

by the availability of amino acids [90], RsaE could indirectly

modulate the TCA cycle via the regulation of the pool of free

intracellular amino acids. The distinction between metabolic

pathways directly and/or indirectly regulated by RsaE is difficult

to apprehend because these pathways are highly interconnected.

RsaE can directly regulate the TCA cycle and amino acid uptake

Figure 2. RsaE controls central metabolic pathways. RsaE regulates, directly or indirectly, the expression of several genes involved in amino
acid synthesis, peptides transport, carbohydrate metabolism, and the TCA cycle. RsaE directly regulates the TCA cycle by inhibiting sucD mRNA
translation coding for one of the subunits of the succinyl-Coa synthase. It alters the purine biosynthetic pathway via the down-regulation of some
enzymes involved in the folate-dependent, one-carbon metabolism. RsaE uses multiple binding sites for the regulation of the opp3BCDFA mRNA
expressing an oligopeptide transporter involved in nutrient transport. RsaE pairs directly with sites overlapping the ribosome binding site of the
upstream (opp3B) and distal (opp3A) genes from the operon to inhibit their translations. RsaE modulates the intracellular pool of amino acid by down-
regulating the expression of an oligopeptide transporter and by up-regulating genes that produce amino acid synthesis enzymes. In some S. aureus
strains, RsaE expression is controlled by the agr quorum-sensing system in response to autoinducing peptide (AIP), and it depends on the sB regulon.
The plain and dashed lines indicate the direct and indirect gene regulations, respectively (red bars: inhibitions, black arrows: stimulations).
doi:10.1371/journal.ppat.1003767.g002
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by inhibiting the formation of ribosomal initiation complex on

sucD and opp3A/opp3B mRNAs, respectively [11,12]. The TCA

cycle is involved in the energetic transition which uses the acetate

accumulated in the extracellular medium during the glycolysis

and amino acids as an alternative carbon source. Although the

expression profile of RsaE is a subject of controversy [11,12], in

some S. aureus strains, RsaE is expressed at late exponential phase

and repressed at stationary phase, and it could facilitate the

transition of energy metabolisms, the purine biosynthesis, and

amino acid transport in response to the nutrients’ availability.

Moreover, the RsaE expression seems to be dependent on the agr

quorum-sensing system and sB activity, suggesting that it could

modulate the metabolism profile in function of stress responses

and/or virulence [12].

sRNAs involved in global regulatory networks
S. aureus expresses a large array of extracellular and cell-wall–

associated virulence factors at different stages of the infectious

process. The exoproteins and cell-wall–associated adhesins,

respectively involved in host immune evasion and host cell

adhesion, are expressed early during the initial colonization, while

the production of toxins that facilitate S. aureus growth and spread

in the host tissues occurs late during infection. Their temporal

expressions are controlled by two component regulatory systems

(e.g. saeRS, arlRS, lytSR, srrAB) and global transcriptional

regulatory factors (e.g. the sarA protein family, spX). The

overlapping regulation between two component systems and

global transcriptional factors constitutes a fine-tuning system for an

efficient transcriptional control of virulence genes expression [91].

These factors affect the expression of virulence genes by directly

binding to the promoters of target genes and/or indirectly through

the regulation of the expression of global regulatory elements

targeting the same set of virulence genes. RNAIII has character-

istics similar to global regulatory factors that regulate directly and

indirectly the expression of virulence genes, such as spa and hla

genes [14]. The expression of spa encoding an adhesin acting as

an host immune evasion protein is directly controlled, at the

translational level, by an ‘‘RNAIII-mRNA’’ direct pairing

mechanism [14], as well as at the transcriptional level by three

members (SarA, SarS, and Rot) of the SarA family of transcrip-

tional regulators (Figure 3) [92]. spa is positively regulated by the

transcriptional factors Rot (Repressor of toxins) and SarS and

negatively regulated by SarA. RNAIII affects the mRNA level of

spa by inhibiting rot translation by a base pairing mechanism [45].

As Rot activates SarS transcription, RNAIII-mediated inhibition

of Rot expression down-regulates the two transcriptional activators

of spa. These transcriptional and translational controls avoid

putative leakages in spa mRNA expression. RNAIII uses similar

double controls to up-regulate the expression of hla encoding the

a-hemolysin [93]. RNAIII enhances a-hemolysin translation by

a pairing interaction at hla mRNA 59UTR [40] and up-regulates

hla mRNA expression by down-regulating Rot, which acts as a

repressor of hla transcription in SaeRS- and SarS-dependent ways

[93,94]. In accordance with the antagonism between Rot and

RNAIII, cellular amounts of Rot are inversely correlated to

the RNAIII level in most S. aureus strains [95]. However, the

transcriptomes of S. aureus strains deleted in RNAIII or in Rot only

partially overlap, suggesting that RNAIII affects the expression

levels of additional transcription factors [96]. One potential target

of RNAIII could be the transcriptional factor SarT, which is

down-regulated by agr at the post-exponential phase of growth

[97] and contains a putative pairing interaction with RNAIII at

its 59UTR [43]. RNAIII-mediated down-regulation of SarT,

which acts as a positive and negative transcriptional regulator of

sarS and hla, respectively, could be another way to control spa and

hla expression. The involvement of S. aureus sRNAs in the global

gene regulatory network is not restricted to RNAIII. Recently, a

new sRNA named ArtR (AgrA-repressed, toxin-regulating sRNA)

was reported to activate a-hemolysin expression by binding to the

sarT mRNA, promoting its degradation [98]. Although RNAIII

and ArtR both similarly regulate hla expression, they display

different expression patterns. In contrast to RNAIII, ArtR

transcription is repressed by agrA, suggesting that ArtR-mediated

hla up-regulation could be enhanced in agr-deficient strains.

Multiple sRNAs controlling the expression of a similar compo-

nent from a regulatory network allows the sharp regulation of

virulence genes. Given the importance of multiple components

from regulatory networks to express virulence genes and the

elevated variability of their expression levels among the S. aureus

strains, it is most likely that S. aureus expresses many other sRNAs

that deeply interact with this network to influence bacterial

virulence.

Figure 3. Schematic overview of the multiple interactions
between sRNAs and transcriptional regulators involved in spa
(protein A) and hla (a-hemolysin) expression in S. aureus strain
8325-4. The arrows indicate the stimulations and the bars, the
repressions. The direct effects of two sRNAs on gene expression are
indicated in red. RNAIII represses rot and spa translation by direct pairing
interactions [14,45]. Rot requires SarT to stimulate SarS in the presence of
SarA [92,120]. In contrast to SarA, Rot and SarS are direct activators of spa
expression [92,121]. In the exponential phase of growth, spa transcrip-
tion is stimulated by Rot and by SarS. In the post-exponential phase, spa
transcription and translation are repressed by SarA and RNAIII,
respectively, and the direct inactivation of Rot by RNAIII leads to the
repression of the Rot and the SarS-dependent transcription activations
of spa. hla is up-regulated by SarA and down-regulated by SarS [93]. Rot
and SarT repress hla transcription by a sae-dependent way [94]. In the
post-exponential phase of growth, RNAIII enhances hla translation by
direct pairings at the hla mRNA 59UTR and stimulates hla transcription by
down-regulating the expression of SarT and Rot. AgrA, the master
transcriptional regulator of quorum sensing, stimulates RNAIII expres-
sion [122] but also represses ArtR expression. ArtR indirectly activates hla
transcription by repressing sarT translation [98]. SarA stimulates the
AgrA-dependent expression of RNAIII [122]. SarT directly represses SarU
which activates agr (RNAIII) transcription [123].
doi:10.1371/journal.ppat.1003767.g003
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sRNAs and Virulence Gene Regulations

The dual-function SCCmec-encoded psm-mec RNA
suppresses agrA translation and attenuates MRSA
virulence

SCCmec is a mobile genetic element that confers methicillin

resistance to the methicillin-resistant S. aureus (MRSA) strains.

SCCmec contains several genes, including the cytolysin psm-mec

gene, whose transcription product suppresses colony spreading

and the expression of phenol-soluble modulin a, a cytolytic toxin

[99]. The psm-mec RNA binds the agrA mRNA, encoding a

virulence regulatory factor and inhibits its translation [100].

Deletion of psm-mec in MRSA clinical isolates increases virulence

on mice skin infection models (Figure 4). The psm-mec RNA

suppresses MRSA virulence by agrA translation inhibition, and

the absence of psm-mec in community-acquired (CA) MRSA strains

is responsible for their elevated virulence.

SprD, a pathogenicity island-encoded RNA regulating an
immune-evasion molecule from the core genome

Small pathogenicity island rNA D9 (SprD) is among the few S.

aureus RNAs with an identified function. SprD is expressed from

the genome of a converting phage [15], a horizontally-acquired

pathogenicity island (PI) being the repository of toxins, adherence,

invasion factors, superantigens, and secretion systems [101]. SprD

down-regulates, at the translational level, the expression of the

Sbi immune evasion molecule located on the core genome [102].

One of its four hairpins binds the 59 UTR of the sbi mRNA by

an antisense pairing mechanism. The initial binding involves the

hairpin loop, and the interaction extends farther upstream and

downstream from that initial binding site. The ‘‘SprD-sbi mRNA’’

interaction sequesters the sbi mRNA TIS and, consequently,

prevents translation initiation of the Sbi protein. Sbi is an

immunoglobulin-binding protein expressed by S. aureus [103] that

impairs the host immune response. Sbi acts as a complement

inhibitor and forms a tripartite complex with host complement

factors H and C3b [104]. SprD contains four hairpins, one of

which interacts with the ribosome binding site of sbi mRNA to

form a long imperfect duplex that prevents translation initiation in

vivo. SprD contributes to causing disease in a mouse model of

infection, although this effect is not only linked to the deregulation

of Sbi production. It suggests that SprD regulates the expression of

other targets playing important roles during host infection.

The implication of the 891 nucleotides-long small stable
RNA42 in S. aureus virulence

Small stable RNAs (SSRs) are RNAs specifically produced and/

or stabilized in response to various environmental conditions

[104]. Among the SSRs, SSR42 is involved in host erythrocyte

lysis, resistance to human polymorphonuclear leukocyte killing,

and pathogenesis in a murine model of bacterial infection [3].

SSR42 is primarily expressed during the stationary phase of S.

aureus growth, is a stable RNA with a ,30 minute half-life, and

appears to control the expression of a large set of target genes

(,80) including virulence factors, which is the rationale of its

involvement in S. aureus pathogenesis and virulence.

sRNAs Expressions during Infections

Staphylococcus aureus is a common resident of human skin and

nasopharynx. It is also a cause of life-threatening illness, producing

virulence factors that enable survival and spreading in various

hosts. Its switch from commensalism to an infectious pathogen is

poorly understood, whereas nasal carriage and clinical isolates

belong to the same genetic clusters [105]. The few S. aureus sRNAs

with known targets regulate major biochemical pathways, some

ultimately implicated in virulence [6]. The S. aureus sRNAs were

detected and studied in various strains and their specific expression

profiles during infection in humans are, for the vast majority of the

,250 sRNAs expressed by this bacterium, unknown. However,

RNAIII expression in clinical samples, such as nasal secretions or

cystic fibrosis sputa, has been monitored [106–108]. The majority

of clinical isolates isolated from acute infections has functional agr

and produces RNAIII in vivo [109]. These data suggests that

RNAIII influences the virulence phenotype. Agr-defective mu-

tants, however, were detected in infected patients, and a mixture of

agr positive and defective strains were detected in healthy humans

[110]. Thus, agr is involved during acute infection, while agr

mutants can be selected during chronic infections and dormant

states. A recent study reported the expression profiles of the five

sRNAs (RNAIII, RsaA, RsaE, RsaG, and RsaH) in strains isolated

from patients with acute cutaneous infection, chronic cystic

fibrosis, or nasal colonization [111]. The expression profiles of

these five sRNAs are strain-specific and do not correlate to the

type of infections or colonization, but the authors noticed that

sRNA expression was more uniform among the strains from

colonization compared to those responsible for infections. This

observation might reflect the fact that S. aureus was primarily

a commensal and then became an opportunistic pathogen

[112,113]. Deep RNA sequencing technologies now allow global

analyses of the S. aureus RNome in various clinical isolates to detect

putative differences of expression of all sRNAs, with possible

applications in the early diagnostic of strains that are susceptible to

cause life-threatening infections.

Phenotypes Associated with sRNAs Expressions

sRNAs can be differentially expressed in ‘‘normal’’ versus ‘‘small-

colony variant’’ (SCV) phenotypes, as identified in a S. aureus clinical

strain recovered from a patient with osteomyelitis [8]. SCVs grow

slowly, lose their pigmentations, have reduced hemolytic activity,

have decreased susceptibility to aminoglycosides, have lower toxins

production, and have improved intracellular persistence [112,114–

117]. The ‘‘normal’’ phenotype corresponds to the ‘‘virulent’’

strain, whereas the SCVs are persister cells. In SCVs, the expression

of RNAIII is phenotype-specific, detected in the normal phenotype

but switched off in the SCVs [8]. The absence of RNAIII in

the SCVs may account for their decreased output of toxins and

their lower virulence [115]. Moreover, the expression of several

pathogenicity islands (PIs)-encoded sRNAs, sprA-G, is turned off in

the SCVs at late growth phases with at least one of these RNAs,

SprD, that possesses a major role in virulence [102]. The lower

expression levels of the Sprs in the SCVs could also account for

their reduced pathogenicity compared to the normal phenotype.

Expression of another sRNA, Sau-13, is up in the normal

phenotype but down in the SCVs [8]. SCVs have electron transport

deficiencies [115,118]. Sau-13 could regulate ions’ transport and

metabolism by its antisense action against the alkaline phosphatase

precursor phoB. An sRNA, Sau-66, is only expressed in the SCVs

but absent in the normal phenotype [8]. Sau-66 has antisense

potential on a nearby gene coding for a protein involved in folate

biosyntheses. Since folate is a carbon donor during purine

biosynthesis, Sau-66 may influence the formation of thymidin-

auxotrophs SCVs [119]. Altogether, these data show that the

expression of a subset of S. aureus sRNAs is associated with preferred

phenotypes. The identification of their molecular targets, however,

will be required to assess their roles in phenotypes-associated

lifestyles and their putative implications in virulence.
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Conclusion

Recent advances in the characterization of the plethora of

regulatory RNAs expressed by S. aureus have provided novel

insights about how they monitor various cellular activities. Most of

the few sRNAs whose physiological roles have been determined

control the expression of genes involved in central metabolisms, in

response to quorum sensing, and on virulence by pairing to target

Figure 4. sRNAs from the S. aureus RNome implicated in bacterial virulence. Multitasking RNAIII is the effector of quorum sensing to
perceive bacterial population density and regulates multiple targets involved in peptidoglycan metabolism, adhesion, exotoxins production, and
virulence. RNAIII internally encodes hemolysin d (blue). RNAIII contains at least three repressor domains (red) containing accessible UCCC motifs that
interact, by antisense pairings, with the ribosome binding sites of numerous target mRNAs for translational repression (Tr.R), some triggering
endoribonuclease III (RNase III) cleavages to induce target mRNA degradations and irreversible gene expression decay. Translation of at least two
exotoxins is activated by RNAIII, one encoded (hld), and another (hla) by translation activation (Tr.A). SprD is expressed from the genome of a
converting phage and interacts, by antisense pairings, with the 59 part of the sbi mRNA encoding an immune evasion molecule. SprD possesses an
important role in S. aureus virulence, but the mechanism of its control is yet to be elucidated, with Sbi being only one player among others. The 891-
nucleotide long SSR42 affects extracellular virulence expression, hemolysis, neutrophil virulence, and pathogenesis and contains a putative internal
ORF. The mechanisms of target regulation remain to be elucidated. The SCCmec-encoded psm-mec RNA suppresses agrA translation and attenuates
MRSA virulence, acting as a dual-function RNA regulator.
doi:10.1371/journal.ppat.1003767.g004
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mRNAs to modulate their translational activities and stabilities.

Several sRNAs encode and express small peptides that may play

important roles in virulence or in bacterial growth control. As is

the case for some sRNAs expressed in other bacteria, it is likely

that other mechanisms of action are used by S. aureus sRNA such

as molecular mimicry (e.g. the 6S RNA) or binding to regulatory

proteins. The number of sRNAs identified in S. aureus has

considerably increased in the past decade, up to 250 members, but

the biological functions of most of them remain unknown. Some

sRNAs that are expressed from mobile genetic elements can

regulate target genes located on the core genome, as for SprD with

Sbi, implying an efficient functional integration of the accessory

genetic elements into the overall regulatory networks from the S.

aureus genome required for virulence. The sRNAs expressed from

the core genome probably are involved in wider biological

functions. Most of the well characterized sRNAs act as fine-tuning

regulators by repressing the translational level of only one gene

(Table 1), but it is likely that they target other genes and that one

gene is regulated by different sRNAs. The identification of their

molecular targets becomes a critical step to further understand

their roles in bacterial homeostasis and pathogenesis. Bioinfor-

matics approaches based on the prediction of sRNA base pairing

within the TIS of mRNAs allowed identifying antisense targets of

some sRNAs. However, these approaches often lead to false

positive predictions and do not highlight the interactions outside

the TIS that are not uncommon in S. aureus [44] and also in other

bacterial species. In rare cases, quantitative proteomics and

microarray analyses of sRNA mutant strains have allowed the

identification of target genes, but these genetic approaches are

not well suited to detect the primary targets of the sRNAs involved

in broad regulatory networks, such as RNAIII, which regulates

the expression of the Rot transcription factor. Until now, few

global regulatory sRNAs were identified. The identification of new

sRNAs that have an impact on the regulatory network control and

the characterization of mechanisms that allow them to connect

environmental responses to other cellular processes are future

challenges. In S. aureus, the characterization of sRNA functions

is complicated by the elevated genetic variability between the

strains. Such a high variance in the expression of virulence and

transcription factors among the S. aureus strains makes it difficult to

generalize the functional impacts of a given sRNA to all the S.

aureus strains. The characterization of the input of these sRNAs in

global gene expression will provide a better understanding of the

processes allowing the extraordinary adaptation of S. aureus in its

various environments and its elevated pathogenicity in humans

and animals. It should provide fundamental insights for potential

therapeutic applications in using some of these sRNAs as early

diagnostic markers and putative drug targets. Other future

challenges will be to comprehend the contribution of S. aureus

sRNAs during the various steps of the infectious process, host–

pathogen interactions, colonization, spread, and antibiotic resis-

tance. To tackle these ambitious goals, it will require developing

elegant technologies in living animals to analyze the implications

of the S. aureus RNome during infection.
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