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Abstract: This work aims to implement a forecast model that, combined with the use of active
instrumentation for a rather limited time, and with the knowledge of a set of data referring to the
environmental parameters of the place to be monitored, can estimate the concentration of indoor
radon activity for longer time periods. This model has been built through the MATLAB program,
exploiting the theories of time series and, in particular, ARMAX models, to reproduce the variation
in the concentration of radon activity. The model validation has been carried out by comparing real
vs. simulated values. In addition, analytic treatment of input data, such as temperature, pressure,
and relative humidity, can reduce the influence of sudden transients allowing for better stability of
the model. The final goal is to estimate the annual radon activity concentration on the basis of spot
measurements carried out by active instrumentation, such to avoid the need to measure for an entire
calendar year by the use of passive detectors. The first experimental results obtained in conjunction
with active radon measurement demonstrates the applicability of the method not only for forecasting
future average concentrations, but also for optimizing remedial actions.

Keywords: indoor radon activity concentration; radon detection; forecast models; continuous radon
monitor; MATLAB; ARMAX series; historical series

1. Introduction

Recently, European national laws on radiation protection have focused their attention
on existing exposure situations [1], in particular with regard to radon gas. Exposure due
to the inhalation of radon gas and its progeny has been recognized as the second cause
of lung cancer from the World Health Organization (WHO) [2]. This is a consequence
of the estimation of Lifetime excess of absolute risk (LEAR) of lung cancer associated with
concentrations of radon and its progeny updated by ICRP 115 [3]. This value has been
doubled on the basis of new cohort studies on miners in ICRP 103 [1], and on the basis of
new predictive models proposed by BEIR VI [4], that can project the relative risk obtained
by a certain follow-up time, to an entire lifetime period. Thanks to these models, to the
larger time extension of the Life Span Study (LSS) [5], and to the revision of detriment
values [1], the internal exposure conversion factors have been updated on this basis. In
particular, ICRP 137 [6] proposes the conversion factors (CF) of 20 mSv/WLM for workers
and 10 mSv/WLM for miners by using epidemiological studies and new biokinetic and
dosimetric models. The new concept of risk associated with the inhalation of radon and its
progeny has caused the introduction of a so-called Reference Level (RL) that has substituted
the old Action Level (AL) [7]. The RL is a value above which it is necessary to implement
remedial actions and under which it is necessary to lower the radon activity concentration
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As Low As Reasonably Achievable (i.e., the ALARA concept derived from the Optimization
Principle of Radiation Protection) [1].

The European Union’s international landscape regarding exposure to natural radioac-
tivity is placing increasing attention on the radon problem [8]. Such increased sensitivity,
derived from the previously described current view on the matter, caused substantial
modifications of the national laws of individual EU member states. Thanks to the improved
knowledge of the health risks related to indoor exposure to radon gas, and in particular to
its progeny [9], the European reference levels have suffered a sharp drop down in the last
10 years. Further, the frequency of measuring indoor radon activity concentration has also
increased significantly by international directive and national laws [10,11].

New issues have to be faced up to now, for example, when selling or purchasing a
dwelling. In such a situation, it will be necessary to implement the documentation of the
property with a radon technical report. Obviously, in such situations, there is no time to
wait one year to determine the annual radon concentration.

Many measuring devices are currently available, and these instruments are suitable
for different purposes. Passive instrumentation is the only one currently able to provide
averaged results throughout the year.

This causes a certain difficulty in carrying out extended surveys on medium-high
geographical scales and in the timeliness with which it is possible to identify critical
areas and implement prevention actions, or remedial actions, where necessary [12]. As a
consequence, there is a need to develop forecasting models for estimating the concentration
of this gas in residential and working environments [10,13].

2. Materials and Methods

Passive instrumentation, commonly based of Solid-State Nuclear Track Detectors [13],
is currently the only one allowing the determination of the average annual activity con-
centration [14,15]. These devices provide very reliable results, but at the expense of the
measurement time needed, which covers precisely the entire calendar year [15–17].

It would be interesting to think of combining active instrumentation, which provides
real-time data, with predictive models to correlate the variability of the concentration to
environmental parameters, such as temperature, pressure, and relative humidity (derived
from historical data on the analyzed area).

In this way, it would be possible to estimate the annual average concentration by using
models such as the one proposed hereafter, and by committing active instrumentation for a
period of time limited to a few weeks.

The present work is based on the assumption that the indoor variability of radon
activity concentration can be thought of as a sequence of random variables (i.e., a random
vector of infinite size).

In other words, the method is based on the collection of a sample of data which is
sufficiently representative of the dynamics envisaged, and on the identification of the best
theory to extrapolate a forecast model. Such a model will have enough “memory” of itself,
and will therefore reproduce the real phenomenon, to predict its evolution over time.

2.1. Mathematical Model

The mathematical model belongs to the Black Box family, a mathematical tool unsensi-
tive to the physics of the process to be analyzed [18,19].

Even if the physics of the production of radon from 226Ra is known, as well as its
penetration into the indoor environment, there is no universal physical law that can be
used to assess the correct and punctual concentration of radon activity inside a room: it can
only be measured [15].

The mathematical model is a bridge between signals and systems.
The Black Box model receives ui input variables and gives as output yi = f(ui) [19].
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If the model is dynamic, the output will depend on the past history of inputs and
outputs. In other words, the knowledge of the past allows to obtain an estimate of the
current situation.

ynow = f
(

yold, uold

)
(1)

By using the ARMAX model theory [20–22], the time evolution of variable y can be
expressed as follows:

y(t) =
B(q)
A(q)

u(t) +
C(q)
A(q)

e(t) (2)

where:

• y(t) is the variable we want to know: future indoor radon concentration;
• u(t) is the input variable (input data) and is measurable;
• e(t) is the error (or disorder) and it is not observable. It represents the difference be-

tween the reality and the simulation proposed by the system. It can only be estimated
retrospectively, reversing Equation (2);

• The fraction B(q)/A(q) is a rational function (relationship of polynomials) in the
variable q (that is the adaptive regression parameter) and represents the so-called
transfer function of the deterministic part of the system, between exogenous input
and output;

• The fraction C(q)/A(q) represents the transfer function of the disruptive part of the
system, between exogenous input and output.

The Equation (2) allows to see the variable y(t) as a transformation of the variables
u(t) and e(t).

Its structure can be seen in the flow chart, presented in Figure 1.

Int. J. Environ. Res. Public Health 2022, 19, 5229 3 of 13 
 

 

If the model is dynamic, the output will depend on the past history of inputs and 
outputs. In other words, the knowledge of the past allows to obtain an estimate of the 
current situation. y = f y ,u  (1)

By using the ARMAX model theory [20–22], the time evolution of variable y can be 
expressed as follows: y(t) = B(q)A(q) u(t) + C(q)A(q) e(t) (2)

where: 
• y(t) is the variable we want to know: future indoor radon concentration; 
• u(t) is the input variable (input data) and is measurable; 
• e(t) is the error (or disorder) and it is not observable. It represents the difference 

between the reality and the simulation proposed by the system. It can only be 
estimated retrospectively, reversing Equation (2); 

• The fraction B(q)/A(q) is a rational function (relationship of polynomials) in the 
variable q (that is the adaptive regression parameter) and represents the so-called 
transfer function of the deterministic part of the system, between exogenous input 
and output; 

• The fraction C(q)/A(q) represents the transfer function of the disruptive part of the 
system, between exogenous input and output. 
The Equation (2) allows to see the variable y(t) as a transformation of the variables u(t) and e(t). 
Its structure can be seen in the flow chart, presented in Figure 1. 

 
Figure 1. Flow chart of the ARMAX models. 

This model is linear in input, output, and error variables, but not linear in regression 
parameters. The outputs are calculated as the scalar product of the regression vector for 
that of the parameters: y(t) =  q ×  φ(t, q) (3)
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This model is linear in input, output, and error variables, but not linear in regression
parameters. The outputs are calculated as the scalar product of the regression vector for
that of the parameters:

y(t) = q × ϕ(t, q) (3)
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The error term is able to take into account the non-linearity of the process, the non-
measured noise, and noise in the measurements.

The determination of parameters q requires a procedure of non-linear minimization
(for example, at least squares), which is the one that determines the most time of calculation
and also the presence of the error, and requires the measurement in the field of the output
variables (of which e represents precisely the deviation of the model).

Implementation of the model can be summarized in the following steps:

• The number of input and output variables and the range of variability of the same
are determined;

• The sampling time is defined;
• The length of the regression vector, the order of the model vs. each variable, the

linearity, or non-linearity of the model vs. the regressors are defined;
• The algorithm for the determination of the parameters is chosen by a deterministic

procedure (minimization of the error committed);
• The predictive ability is tested through a set of unused data (cross-validation set)

carefully selected and distinguished from the training set (learning set).

In general, the sampling time ts is 5–20% of the typical system time. If this is too long,
the dynamics of the process may not be identified; on the contrary, if it is too short, there is
a risk of increasing noise sampling, excessive manipulation of data, and interference with
the identification algorithm [23].

The input data, before being used, can be pre-treated, for example, through mathe-
matical operators that break down the excessive oscillations (moving average), or through
filters high-cut or low-cut, to delete sudden oscillations [23].

The parameters q of the model are determined by a regression procedure, which in
the case of deterministic signals, is equivalent to solving:

min
q

{ ny

∑
i=1

ns

∑
t=1

[
yreal

i (t)− fi(ϕ(t), q)]2
}

(4)

where ny is the number of output variables and ns is the number of samples.

2.2. Model Applied to Radon Case

The ARMAX model, notwithstanding being developed for financial applications, can
be applied to the radon case because it is characterized by the following features:

• Trend: Monotonous, long-term tendential movement that highlights a structural
evolution of the phenomenon. This is due to causes that act in a systematic way;
for instance, the degree of fracturing of the subsoil, its geological origin, the missed
sealing of cracks, the emanation from certain building materials, and so on [8].

• Cycle: Movement, or cyclical fluctuation, originating from more or less favorable
conditions of expansion and contraction of the phenomenon; for example, the daily
cycle caused mainly by the opening of the windows in the morning, or the activation
of the heating or ventilation systems [9].

• Seasonality: Fluctuations caused by climatic factors. As it is well known, the higher
concentration of activity is expected in winter, rather than in summer. However,
it is always necessary to keep in mind the particular cases of inverse seasonality,
deliberately excluded from this study [24,25].

The input data of the system are the variables that influence the indoor concentration
of radon gas: pressure, temperature, humidity, and wind speed [26].

Figure 2 shows the design of the model implemented.
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Figure 2. Structure of the ARMAX model to be used with MATLAB software (The Mathworks, Inc.,
Natick, MA, USA) [27].

On the left of Figure 3, it is possible to see the variables of interest, (CRn, P, T, U, W)
and the relative structural parameters of regression, i.e., regressors (na, nb, nc). On the
right, there is the ARMAX process used for the creation and also for the validation of
the model itself in two different time windows, (t0 < t < h) and (t > h). If you take, for
example, a measuring period of 500 h, during the first 200, the degrees of the parameters
are estimated, and during the subsequent, the model is verified. It means that two different
sets of data, about CRn measured and environmental parameters, are used to create and
validate the model. The best order of the regressors is chosen by the NET criterion (NET box
in Figure 3) that impose the mean value of CRn simulated to be as close as possible to the
mean value of CRn measured. The area between the curve of the simulated concentration
and that of the measured concentration has to be the minimum possible (criterion of least
squares, as mentioned above). This is equivalent to calculating the second moment of
the difference between the values obtained from the simulation and the values actually
measured (4). For clarity, the environmental parameters are represented by P = pressure,
T = temperature, U = humidity, W = wind. At the start of the process, a maximum degree
is set for each variable and the program will perform for as many cycles as there are possible
combinations of degrees and will record the results obtained in a matrix in which each
dimension represents a degree of freedom of the model. Through the realization of a special
function, the value that satisfies the chosen criterion is extracted, and the program shows
the exact position of the element in the matrix. This position corresponds to 6 indices which
represent the values to be assigned to each independent variable of the model. At the
end of the process, in addition to the simulation graph, which provides a purely statistical
indication of the evolution of the phenomenon, the program shows another type of graph,
relative to the goodness of the model (FITTING) providing information on the accuracy of
the model itself according to the number of experimental points. It is important to compare
all the results to verify its robustness.
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3. Experimental Results

The active device used to measure the radon activity concentration is an AlphaGUARD
PQ-2000 pro [28], both for collecting the learning set and the validation set. It was used for
a limited period of time (five weeks) to obtain the set of data to be inserted into the model.
Obviously, every active detector can be used for this purpose, but it is important that the
device can store all the records, for all of the time needed. The monitored environment
was the Radiation Protection Laboratory, situated in the Department of Basic and Applied
Sciences, in “Sapienza”—University of Rome. The data about the environmental parameters
were collected from the Integrated Agrometeorological Service of Lazio [29] and measured
in a station situated near the monitored room. The data were collected from March to April
of 2021.

In Figures 4–6 some results are presented.
In Figure 3a, we have a simulation blue line, and a green line of real data. The

simulation has been created by a measuring time of 400 h. In Figure 3b, we have the
simulation created with a measuring time of 600 h. It can be noted that after an initial
transient, the model tends to align with reality, and this is more evident with the increase
in monitoring time. Figure 3c,d show the same results as the 3a and 3b figures but in the
details (zoomed). This is the first simulation carried out and just a fraction of the collected
data was used (just sixteen days of monitoring). For this reason, a poor convergence of the
simulation with the reality was expected. Notwithstanding, the simulated results show
a satisfactory convergence with the real ones after about 400 h. For this reason, it was
decided to add a wider data set.

The sampling time was increased, assuming 800 and 1000 h of monitoring, as shown
in Figure 4. Figure 4a,c were obtained using data collected in 800 h of monitoring, while
Figure 4b,d concerned 1000 h. The same trend, previously identified in Figure 3, was also
obtained in this case, but with a better agreement.
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After a natural period of oscillation, which is a characteristic of the dynamic sys-
tems [20], the simulation follows the real course quite well, notwithstanding a certain bias.
In this case, the bias is smaller than in the previous simulation because of the increase
of available data. In the Figure 3 simulations, relative bias, quantified by the percentage
deviation between the average values, was about +67% at 400 h, and +56% at 600 h. Instead,
in the Figure 4 simulations, relative bias was about −25% at 800 h, and −12% at 1000 h.

Figure 5 shows how the simulated data fit the experimental ones.
This figure shows the fittings of the model for all the proposed simulations (with a

different number of creation points). The black line is the measured variation of activity
radon concentration and the pink line is the simulation.

Figure 5a, relative to h = 400, is the only one that does not exhibit good results, probably
due to some noise on the input data. In all of the other cases, the fitting is, in general,
very good. Making the hypothesis that noise could be caused by abrupt variations of
environmental data, it was decided to implement noise correction, as discussed below.

The Figure 6 shows the trend of the measured environmental parameters (pressure,
relative humidity, temperature, and wind speed) collected by the meteorological station,
and refers to the same period of radon data collection.

It was decided to operate a “flattening” of the input data by eliminating the time
intervals showing abrupt variations that are particularly evident where relative humidity
and temperature are concerned. As shown hereafter, in this way, noise was reduced
but, unavoidably, the experimental data on radon concentration were reduced, so it was
necessary to increase the monitoring time.

Figures 7 and 8 show the simulation and measurement trends before and after the
environmental data treatment.

The improvement of the simulation is evident by observing the graphs on the right
in the previous figures. The bias is reduced and the model estimates in a better way the
variation of indoor radon concentration. In the best simulation (Figure 8b), the bias is
about +11%.

For testing the chance that the environmental data flattening could worsen the agree-
ment of the simulation with reality, new fittings have been performed, as reported in
Figure 9.



Int. J. Environ. Res. Public Health 2022, 19, 5229 9 of 12

Int. J. Environ. Res. Public Health 2022, 19, 5229 9 of 13 
 

 

It was decided to operate a “flattening” of the input data by eliminating the time 
intervals showing abrupt variations that are particularly evident where relative humidity 
and temperature are concerned. As shown hereafter, in this way, noise was reduced but, 
unavoidably, the experimental data on radon concentration were reduced, so it was nec-
essary to increase the monitoring time. 

Figures 7 and 8 show the simulation and measurement trends before and after the 
environmental data treatment. 

 
Figure 7. Influence of noise on input data. (a,c) before, and (b,d) after data treatment. (a,b) for 100 
h, and (c,d) for 168 h. 

 
Figure 8. Influence of noise on input data for h = 200. (a) before, and (b) after data treatment. 

The improvement of the simulation is evident by observing the graphs on the right 
in the previous figures. The bias is reduced and the model estimates in a better way the 
variation of indoor radon concentration. In the best simulation (Figure 8b), the bias is 
about +11%. 

Figure 7. Influence of noise on input data. (a,c) before, and (b,d) after data treatment. (a,b) for 100 h,
and (c,d) for 168 h.

Int. J. Environ. Res. Public Health 2022, 19, 5229 9 of 13 
 

 

It was decided to operate a “flattening” of the input data by eliminating the time 
intervals showing abrupt variations that are particularly evident where relative humidity 
and temperature are concerned. As shown hereafter, in this way, noise was reduced but, 
unavoidably, the experimental data on radon concentration were reduced, so it was nec-
essary to increase the monitoring time. 

Figures 7 and 8 show the simulation and measurement trends before and after the 
environmental data treatment. 

 
Figure 7. Influence of noise on input data. (a,c) before, and (b,d) after data treatment. (a,b) for 100 
h, and (c,d) for 168 h. 

 
Figure 8. Influence of noise on input data for h = 200. (a) before, and (b) after data treatment. 

The improvement of the simulation is evident by observing the graphs on the right 
in the previous figures. The bias is reduced and the model estimates in a better way the 
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about +11%. 

Figure 8. Influence of noise on input data for h = 200. (a) before, and (b) after data treatment.

The goal of this test was to verify the influence of some noise from the environmental
data on the simulation, and the goodness of the model. It is clear that the operation of
flattening of input data improves the simulation and, at the same time, it does not influence
the goodness of the model: the fitting is the same before and after the treatment, and it
obviously improves with the number of model creation points (the hours of monitoring).
These results have demonstrated that it is possible to forecast the variation of indoor radon
concentration because this phenomenon has a certain memory of itself, i.e., its own history,
and follows such evolution over time, but it is necessary to exclude some abrupt variations
in the parameters that affect the phenomenon itself.
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4. Discussion

The results are rather encouraging, and inaccuracies are mainly due to the quantity
and quality of the data. In order to estimate the parameters contained in the model, it is
necessary to have available series of measurements of all the input and output variables for
a sufficiently long time period. However, the initial target of estimating radon concentration
by spot measurements with active instrumentation seems to be achieved. For ameliorating
performances of the model, some improvements could be tested. In particular, it could
be possible to consider ambient parameters, in addition to environmental ones, which are
susceptible to influence the phenomenon, such as the degree of burial of the room, the air
exchange rate, and the contribution of building materials. An important improvement
could be achieved by also considering the pressure difference between the indoor and
outdoor environments. Anyway, the basis has been laid for estimating the average annual
concentration of radon gas through active instrumentation by the development of a fore-
casting model. In such a way, it will be possible to reduce the monitoring time for assessing
radon concentration: this is the main goal of the study, and it would be very helpful in
many practical situations. This could be a method of interest when it is necessary to quickly
estimate the average annual concentration, for example, when radon certifications are
needed when selling or purchasing dwellings. Typical SSNTD must remain in place at least
some months, and then they have to be sent to the laboratory for analyses. This implies
longer times to obtain an average value of radon concentration in a dwelling. Instead, by
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using spot time measurements and the forecasting model implemented on a computer, the
technician asked to assess the radon situation could produce technical reports in acceptable
times. The model could also be very helpful when designing remedial actions. In effect, the
results of passive detectors do not allow to appreciate the time evolution of radon concen-
trations. Instead, this is fundamental when installing devices such as depressurization well
systems. When designing such remedial actions, it is useful to measure the time evolution
of the indoor radon concentration by active detectors for some days. This is important to
estimate the deepness of the underground layers that mainly contribute to radon emission,
in relation to the speed of increasement of the indoor concentration. Further, it is funda-
mental to appreciate the variation of the concentration vs. some factors, such as heating
or ventilation systems, habits of tenants, etc. By using active detectors for the same time
(some days) and by implementing these measures with the model proposed in this study,
it would be possible to have more available data, to appreciate in the best way the radon
situation, and to design the best remedial actions. Further, when testing the effectiveness
after having carried out these remedial actions, it is currently necessary to follow the radon
concentration for some months. Instead, by using the model in conjunction with active
detectors used for some weeks, the monitoring time could be significantly reduced.

5. Conclusions

By using the historical series theory, and in particular the ARMAX model implemented
in MATLAB, the model has been able to foresee future concentrations. Such a capability has
been verified by fitting real data obtained by active instrumentation. The input data were
radon measures collected by an AlphaGUARD and environmental parameters given by
meteorological stations regarding the place to be monitored, such as pressure, temperature,
relative humidity, and wind speed. Further, better results on forecast capabilities were
reached by eliminating transitories of environmental data.

This work demonstrated that it is possible to build a forecasting model that, used with
active measurement devices, can provide an estimation of the variation of indoor radon
activity concentration. Even if other forecasting models are available in the literature [30]
the novelty of this study is to be used in conjunction with active instrumentation. Once
implemented on a computer, this model can be used “in-field” to give immediate results
that allows to estimate average radon concentrations in dwellings, to design remedial
actions, and to evaluate their effectiveness. In this way, observation times could be reduced,
intervention procedures could be simplified, and, in addition, Reference Levels could be
more effectively prevented from being exceeded [17].
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