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Abstract: The ZnO waveguide layer for the Love wave humidity sensor was fabricated by radio
frequency (RF) magnetron sputtering technique using ZnO as the target material. To investigate the
effect of RF magnetron sputtering temperature on the ZnO waveguide layer and Love wave device,
a series of Love wave devices with ZnO waveguide layer were fabricated at different sputtering
temperatures. The crystal orientation and microstructure of ZnO waveguide was characterized
and analyzed, and the response characteristics of the Love wave device were analyzed by network
analyzer. Furthermore, a humidity measurement system is designed, and the performance of the
Love wave humidity sensor was measured and analyzed. The research results illustrate that the
performance of the ZnO waveguide layer is improved when the sputtering temperature changes
from 25 ◦C to 150 ◦C. However, when the sputtering temperature increases from 150 ◦C to 200 ◦C,
the performance of the ZnO waveguide layer is degraded. Compared with the other sputtering
temperatures, the ZnO waveguide layer fabricated at 150 ◦C has the best c-axis orientation and the
largest average grain size (53.36 nm). The Love wave device has the lowest insertion loss at 150 ◦C.
In addition, when the temperature of the measurement chamber is 25 ◦C and the relative humidity is
in the range of 10% to 80%, the fabricated Love wave humidity sensor with ZnO waveguide layer
has good reproducibility and long-term stability. Moreover, the Love wave humidity sensor has high
sensitivity of 6.43 kHz/RH and the largest hysteresis error of the sensor is 6%.
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1. Introduction

Love wave, which is one of the shear horizontal waves, can be excited by the inter-digital
transducer (IDT) deposited on a semi-infinite piezoelectric substrate and propagates in the waveguide
layer [1,2]. In the Love wave device, the direction of the particle vibration of the Love wave is parallel to
the surface of the substrate, and the energy is mainly concentrated in the waveguide layer. Because the
coupling effect between the substrate surface and the waveguide layer load is very poor [3,4], the Love
wave device can not only be used as a gas material sensor, but also can measure the humidity in the
presence of liquid or gas-liquid coexistence, which other humidity sensors cannot do [5–7]. In addition,
the Love wave humidity sensor has the advantages of fast response and small size. Therefore, it has
been widely used in biosensor and analytical chip [8–10].

The Love wave humidity sensor requires that the shear velocities and densities of the waveguide
layer materials are smaller than those of the piezoelectric substrate materials, and the waveguide
layer materials were required to have good elastic properties and weak acoustic wave absorption
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performance [11–13]. At present, some materials can be used as a waveguide layer of the Love
wave device, such as polyimide (PI), poly methyl methacrylate (PMMA), silicon dioxide (SiO2)
and zinc oxide (ZnO) [14–17]. In these materials, ZnO is a kind of piezoelectric material with
positive temperature coefficient, which can improve the electromechanical coupling performance,
the conversion efficiency, and the temperature characteristics of the Love wave humidity sensor.
Furthermore, the ZnO waveguide layer possesses advantages of high surface free energy, the strong
adsorption capacity, the good biocompatibility and the good hydrophilic [18]. It can provide a good
biological activity surface for biomolecules as a waveguide layer. Therefore, the Love wave device
with ZnO waveguide have been applied to humidity sensors and biosensors [19,20].

The ZnO waveguide layer can be fabricated by various techniques, such as chemical vapor
deposition [21], Sol-Gel process [22], and magnetron sputtering technique [23,24]. Although the
chemical vapor deposition and Sol-Gel process have the advantages of the low cost and easy fabrication,
the poor quality of film and the poor reproducibility are also presented. Thus, these two methods
are not suitable for the fabrication of high quality and the large number of devices. Although the
fabrication of ZnO waveguide layer by magnetron sputtering technique is complicated and expensive,
the ZnO waveguide layer fabricated by this method has the advantages of high quality and good c-axis
orientation [25]. Moreover, this method is a planar fabrication technique with low material cost and
good adhesion ability of the substrate, so it can satisfy the requirements of large scale and industrial
production of devices.

Based on these advantages of ZnO as the waveguide layer in the Love wave device and the
characteristics of ZnO waveguide layer, a fabricated scheme of ZnO waveguide layer for the Love wave
device based on magnetron sputtering technique is presented. The influence of sputtering temperature
on ZnO waveguide layer and the Love wave device are analyzed by experiments. Furthermore, a
humidity measurement system was designed to study some important characteristics of the Love
wave device used as humidity sensor.

2. Schematic Diagram of Love Wave Humidity Sensor

Figure 1 shows the schematic diagram of the Love wave humidity sensor. Where S is a piezoelectric
substrate and P is a ZnO waveguide layer. The IDTi and IDTo are the input and output transducer
respectively, which are located on the piezoelectric substrate S and are covered in the ZnO waveguide
layer P. The µs and ρs are the shear modulus and density of the piezoelectric substrate material, and
the µp and ρp are the shear modulus and density of the ZnO waveguide material. The h is the thickness
of the waveguide layer. The X, Y and Z are the three-dimensional coordinate parameters. The MSC
is a multistrip coupler which consists of a set of parallel metal strips fabricated on the piezoelectric
substrate. In the actual Love wave device, owing to inverse piezoelectric effects of piezoelectric
crystals, the IDTi excites not only the Love wave propagating along crystals surface, but also bulk
acoustic wave (BAW) that has higher frequency than that of the Love wave signal. The BAW affects
the performance of the sensor, such as producing some ripples and spurious components in response
curve. According to the Reference [26], the Love wave excited by the IDTi can be transferred to the
lower half of the MSC under certain conditions while does not affect the propagation path of the BAW
and output from the top half of the MSC. Therefore, we use MSC to separate the Love wave and BAW
into two sound paths, which reduces the parasitic response of BAW and improves the performance of
the Love wave device.

When the excitation signal is applied to the input transducer IDTi, a Love wave propagating in
the ZnO waveguide layer P along the X-axis is generated by the inverse piezoelectric effect of the
piezoelectric substrate S. Because the Love wave is a shear horizontal wave, when the semi-infinite
substrate occupies the space of Z < 0 and the waveguide layer occupies the (0, h) area, the change in
particle displacement only exists in the area of the (0, h), without any displacement components in the
normal direction of the substrate. In this case, the energy loss is low.
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Figure 1. Schematic diagram of the Love wave humidity sensor. 

When the Love wave humidity sensor is operating, the propagation velocity of the Love wave 

is affected by the mass of the material loading on the device, the applied electrical signal, the 

mechanical properties of the substrate material and the external environment factors. The intrinsic 

relationship as shown in following equation [27]: 

1
=

     
       

    
mass elec stru env

mass elec stru env

v v v v v

v v
 (1) 

where v  is the propagation velocity of the acoustic wave in the device and v  is the variation of 

acoustic propagation velocity. mass  is the mass change of substance loading on the acoustic wave 

propagation path. elec  is the variation of electrical signal applied to the device.  stru  is the 

variation of structural parameters of piezoelectric materials which include resistance and dielectric 

constants and so on. env  is the variation of the environmental parameters of the device. In the Love 

wave device, the relationship between the acoustic wave propagation velocity and the center 

frequency of device is given by Equation (2): 

0

f v

f v

 
  (2) 

where f0 is the center frequency of device, and Δf is the frequency shift of the center frequency. 

According to Equations (1) and (2), when the ZnO waveguide layer in the Love wave humidity 

sensor has an adsorption effect on the water vapor, the mass and structural parameters of the ZnO 

waveguide layer will change due to adsorbing the measured materials. The change will cause the 

change of acoustic wave propagation velocity in the Love wave device, and further leads to the 

change of the center frequency of the Love wave device. While the frequency shift is determined by 

humidity, thus the change in humidity can be measured indirectly by measuring the frequency shift. 

3. Experiments 

3.1. Fabrication of ZnO Waveguide Layer 

The most commonly used piezoelectric crystal materials in Love wave devices are quartz, 

LiNbO3 and LiTaO3. Compared with quartz and LiTaO3, LiNbO3 has higher piezoelectric coefficient, 

electromechanical coupling coefficient and lower sound attenuation. Moreover, it is reported that the 

parasitic level of the Love wave is the lowest when the substrate is 128° YX-LiNbO3, so the Love wave 

device based on 128° YX-LiNbO3 has the lower insertion loss and better performance. Therefore, the 

128° YX-LiNbO3 crystal with k2 = 5.5% is used as the piezoelectric substrate material of the device. 

To suppress the effect of secondary load caused by the electrode quality, the aluminum (Al) with 

low mass and resistivity is chosen as the IDT electrode material. The Al films were fabricated by 

direct current sputtering technique and a pair of IDTs was fabricated on the 128° YX-LiNbO3 by the 

ultraviolet (UV) exposure method. The design parameters of the Love device are shown in Table 1. 

Figure 1. Schematic diagram of the Love wave humidity sensor.

When the Love wave humidity sensor is operating, the propagation velocity of the Love wave is
affected by the mass of the material loading on the device, the applied electrical signal, the mechanical
properties of the substrate material and the external environment factors. The intrinsic relationship as
shown in following equation [27]:
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where v is the propagation velocity of the acoustic wave in the device and ∆v is the variation of
acoustic propagation velocity. ∆mass is the mass change of substance loading on the acoustic wave
propagation path. ∆elec is the variation of electrical signal applied to the device. ∆stru is the variation of
structural parameters of piezoelectric materials which include resistance and dielectric constants and
so on. ∆env is the variation of the environmental parameters of the device. In the Love wave device,
the relationship between the acoustic wave propagation velocity and the center frequency of device is
given by Equation (2):

∆ f
f0

=
∆v
v

(2)

where f 0 is the center frequency of device, and ∆f is the frequency shift of the center frequency.
According to Equations (1) and (2), when the ZnO waveguide layer in the Love wave humidity

sensor has an adsorption effect on the water vapor, the mass and structural parameters of the ZnO
waveguide layer will change due to adsorbing the measured materials. The change will cause the
change of acoustic wave propagation velocity in the Love wave device, and further leads to the change
of the center frequency of the Love wave device. While the frequency shift is determined by humidity,
thus the change in humidity can be measured indirectly by measuring the frequency shift.

3. Experiments

3.1. Fabrication of ZnO Waveguide Layer

The most commonly used piezoelectric crystal materials in Love wave devices are quartz,
LiNbO3 and LiTaO3. Compared with quartz and LiTaO3, LiNbO3 has higher piezoelectric coefficient,
electromechanical coupling coefficient and lower sound attenuation. Moreover, it is reported that the
parasitic level of the Love wave is the lowest when the substrate is 128◦ YX-LiNbO3, so the Love wave
device based on 128◦ YX-LiNbO3 has the lower insertion loss and better performance. Therefore, the
128◦ YX-LiNbO3 crystal with k2 = 5.5% is used as the piezoelectric substrate material of the device.

To suppress the effect of secondary load caused by the electrode quality, the aluminum (Al) with
low mass and resistivity is chosen as the IDT electrode material. The Al films were fabricated by
direct current sputtering technique and a pair of IDTs was fabricated on the 128◦ YX-LiNbO3 by the
ultraviolet (UV) exposure method. The design parameters of the Love device are shown in Table 1.
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The thickness of the ZnO waveguide layer affects the sensitivity and the insertion loss of the Love
wave device [28,29]. To obtain higher sensitivity and lower insertion loss, the thickness of the device is
designed to be 3 µm.

The ZnO waveguide layer was fabricated by the JGP450 magnetron sputtering system. The JGP450
magnetron sputtering system is manufactured by Shenyang scientific instrument Co., Ltd. Chinese
Academy of Sciences, and it consists of a sputtering vacuum chamber, magnetron sputtering target,
substrate water cooling heating table, working gas path, pumping system, installation machine,
vacuum measurement, film thickness monitoring system, and electronic control system. Its limiting
vacuum degree is not greater than 6.67 × 10−5 Pa. The target material is the ZnO with a purity of
99.99%. The sputtering parameters are listed in Table 2.

Table 1. Design parameters of the Love device.

IDTi

Electrode width/µm 4.888
Electrode gap/µm 4.888

Number of electrode pairs 128
Maximum acoustic aperture/mm 1.5212

Multistrip coupler (MSC)
Electrode width/µm 7.16
Electrode gap/µm 7.16

Number of electrode pairs 103

IDTo

Electrode width/µm 4.888
Electrode gap/µm 4.888

Number of electrode pairs 128
Maximum acoustic aperture /mm 1.5212

Table 2. Sputtering parameters.

Sputtering Parameter Value

Power 120 W
Time 200 min

Pressure 1.2 Pa
Temperature 150 ◦C

The fabrication process of the ZnO waveguide layer mainly includes four steps. Firstly, place the
substrate and target. Secondly, pumping the vacuum of the sputtering chamber to 4.0 × 10−4 Pa by
rough pumping and fine pumping. Thirdly, sputtering of the ZnO waveguide layer. The sputtering
pressure is 1.2 Pa, the sputtering power is 120 W, and the sputtering time is about 200 min.
Finally, complete the sputtering of the ZnO waveguide layer and take out the device. Figure 2 shows
the Love wave device with ZnO waveguide layer fabricated at the sputtering temperature of 150 ◦C.
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The ZnO waveguide layer fabricated by magnetron sputtering technique can be regarded as
the process of gas atoms or atomic groups from the sputtering target agglomerate into solid on the
substrate surface. Whether the growth process of the ZnO waveguide layer can be sustained or not,
the nucleation rate is a key problem.

According to the Boltzmann equation, the nucleation rate of the ZnO waveguide layer can be
written as:

vn = Zn12πr sin αja0 exp[(Ed − ED − ∆G)/k0Ts] (3)

where Z is the Zeldovich correction factor and its value is about 10−2. n1 is the number of atoms
adsorbed by the per unit area and r is the critical nuclear radius. α is the contact angle between the
atomic groups and the substrate and a0 is the distance between the adsorption sites. j is the intensity
of the vaporized gas atoms which incident on the surface of the substrate. Ed, ED and ∆G are the
adsorption energy, surface diffusion energy and highest free energy, respectively. k0 is the Boltzmann
constant and Ts is the sputtering temperature.

From Equation (5), in the process of the ZnO waveguide layer fabricated by magnetron sputtering
method, the sputtering temperature has an important effect on the nucleation rate of the ZnO
waveguide layer and it determines the crystal orientation and crystal size of the ZnO waveguide layer.
The nucleation rate will fast if the sputtering temperature too high. In this case, the atoms would not
accomplish orderly lattice arrangement, which will affect the crystalline quality of the waveguide
layer and the performance of the Love wave device. Therefore, how to control or select an appropriate
sputtering temperature is the key to fabricating the high-performance Love wave device.

To research the effect of RF magnetron sputtering temperature on the crystal orientation,
microstructure and stress of the ZnO waveguide and the influence in the performance of the Love
wave device. A series of Love wave devices with the ZnO waveguide layer were fabricated under the
sputtering temperatures of 25 ◦C, 50 ◦C, 100 ◦C, 150 ◦C and 200 ◦C, respectively. The others sputtering
parameters as shown in Table 2. Then the crystal orientation and microstructure of the ZnO waveguide
layer were analyzed by the X-ray diffraction instrument. The response characteristics of the Love wave
device with ZnO waveguide layer were analyzed by network analyzer.

3.2. Design of the Humidity Measurement System

Figure 3 shows the structure diagram of the humidity measurement system. It mainly consists
of the closed air chamber, the sensor module, the temperature control module, the humidity control
module, the network analyzer, the data processing module, the power module and the display module.
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As observed from Figure 3, the sensor module, the temperature control module and the humidity
control module are in the closed air chamber. The sensor module is a Love wave humidity sensor
with the ZnO waveguide layer fabricated at 150 ◦C. A 50-ohm matching is required at both ports
of the device for proper connection which has low-reflection loss. The temperature control module
is a semiconductor refrigerator and its control circuits. The humidity control module includes a
humidification unit and a dehumidifying unit. The other components of the humidity measurement
system are located outside the closed air chamber. In these modules, the power module mainly
provides power for the display module, the temperature control module and the humidity control
module. The display module is composed of the microprocessor and the DHT11 sensor which can
measure the temperature and humidity simultaneously. The DHT11 sensor is a digital temperature
and humidity sensor, and it is manufactured by waveshare electronics Co., Ltd. Shenzhen, China.
When measuring temperature, the resolution is 1 ◦C, the accuracy is ±2 ◦C, and the detection range
is 0 ◦C ~50 ◦C. When measuring humidity, the resolution is 1%RH, the accuracy is ±5 %RH, and
the detection range is 10 %RH ~90 %RH. So we can simultaneously measure the temperature and
humidity in the closed air chamber by the display module. The spectral characteristics of the sensor
were measured by the Agilent E5062A ENA-L RF network analyzer which made in Malaysia and its
measurement range is from 300 kHz to 3 GHz. The data processing module mainly accomplishes the
storage and process of the relevant data. Part of the real measurement system is shown in Figure 4.
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4. Experimental Results and Analysis

4.1. Crystal Orientation Analysis of the ZnO Waveguide Layer

The c-axis orientation of ZnO waveguide layer has an important effect in the performance of
the Love wave device. The magnetron sputtering technique can be used to fabricate the ZnO films
with good c-axis orientation, high surface evenness and few defects. However, the crystal orientation
of the ZnO waveguide layer would be different because of the different process parameters, such as
the sputtering temperature and power. The X-ray diffraction instrument is used to analyze the ZnO
waveguide layers which are fabricated at five different sputtering temperatures. The X-ray diffraction
(XRD) spectrum of the ZnO waveguide layer is shown in Figure 5.
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It can be seen from Figure 5 that the ZnO waveguide layers have the highest diffraction peaks
near 34.4◦ at the five sputtering temperatures, and the peaks correspond to the non-stress powder (002)
plane diffraction peak of ZnO. The results reveal that the ZnO waveguides growing on the LiNbO3

substrate have (002) preferred orientation at the five sputtering temperatures. That is, the growth of
the c-axis is perpendicular to the surface of the substrate.

Furthermore, in the range from 25 ◦C to 150 ◦C, the (002) diffraction angles of the ZnO waveguide
layers gradually approach 34.4◦ and the value of the peaks also gradually increase with the temperature
rising. When the sputtering temperature goes up to 200 ◦C, the (002) diffraction angles are deviate
from 34.4◦ and the peaks value are decreasing. This is because the critical nucleus radius of the film
is very small and new nuclei will continue to be produced during the deposition process at a lower
sputtering temperature. Moreover, the surface diffusion energy of the atoms or the groups adsorbed
on the LiNbO3 is very low, and they cannot migrate to the positions of the lattice where energy are
lowest, which leads to the structure of the waveguide layer become loose and emerge some holes of the
nanometer scale. This waveguide layer has many disadvantages including many defects, poor c-axis
orientation and weak relative intensity of the diffraction peak. These disadvantages eventually lead to
the poor acoustic performance. With the increasing of the sputtering temperature, the diffusion of the
adsorbed atoms is gradually become the main factor which is affecting the structure and morphology
of the films. Atomic diffusion will reduce the number of holes caused by some factors, which will
transform the film structure into a good columnar shape and the c-axis becomes better. When the
sputtering temperature is too high, the adsorption lifetime of external particles is shortening, and
the decomposition rate is increasing, which leads to the reduce of the crystal quality and the c-axis
orientation, and eventually the relative intensity of the diffraction peaks become weaker.

4.2. Microstructure Analysis of the ZnO Waveguide Layer

From the theory of nucleation thermodynamics under the condition of non-spontaneous
nucleation, the grain size is closely related to the sputtering temperature. To quantitatively analyze the
crystallinity of the waveguide layer, the grain size D is estimated based on the Scherrer equation [30].
That is:

D =
Kλ

η cos θ
(4)

where K = 0.94 is the Scherrer constant and λ = 0.1540598 nm is the wavelength of X-ray. θ is the
diffraction angle and η is the full-width at half maximum of the diffraction peak. According to the
full-width at half maximum of the diffraction peaks in the XRD spectra, the relationship between the
different sputtering temperatures and the grain size can be calculated. The results are shown in Table 3.
The sputtering time of the five experiments in Table 3 is 400 min. In the process of calculating grain
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size, because the broadening caused by the lattice distortion and instruments cannot be separated
effectively, the calculated grain size may be smaller than the real size.

Table 3. Microstructure parameters of the ZnO waveguide layers at the different sputtering temperatures.

Ts/◦C η/rad D/nm

25 0.00401 37.76
50 0.00370 40.93

100 0.00334 45.35
150 0.00284 53.36
200 0.00313 48.41

As depicted in Table 3, when the sputtering temperature increases from 25 ◦C to 150 ◦C, the grain
size also increases and reaches the maximum at 150 ◦C. If the sputtering temperature continuously
increases to 200 ◦C, the grain size would reduce. In the growth process of the ZnO waveguide layer, it
is difficult to form the crystal with large scale and regular morphology due to the influence of various
factors. Thus, the waveguide layer is formed by the gather together of the ZnO particles. The energy
of the internal crystal boundary and the performance of the film depend on the grain size. If the grain
size is larger, the crystal boundary will be less, and the defects are fewer. In this case, the film quality
is better. The ZnO waveguide layer is fabricated at 150 ◦C has the largest grain size, which indicates
that the fabricated ZnO waveguide layer at 150 ◦C has highest crystallinity and best film quality.

During the growth process of the ZnO waveguide, the stress may change the growth mode of the
ZnO, which would affect the surface morphology and c-axis orientation of the ZnO waveguide layer.
The stress would cause the micro-strain, which lead to an increase of the full-width at half maximum.
We can assume that the increasing full-width at half maximum is FW(s) caused by micro-strain.
To investigate the micro-strain of the ZnO waveguide layer fabricated at the different sputtering
temperatures, the micro-strain curves at each sputtering temperature were analyzed. The result is
shown in Figure 6.
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Figure 6. Microscopic strain graphic of the ZnO waveguide layer.

As can be seen from Figure 6, although the five curves all pass through the origin, the slopes
are different because the microscopic strain is different. At a lower sputtering temperature, the
c-axis orientation of grains is not completely parallel caused by many holes in the ZnO waveguide
layer. The growth of the columnar crystal is not strictly perpendicular to the substrate and the grains
are squeezing with each other, which leads to the increase of the micro-strain. With the sputtering
temperature increasing, the c-axis orientation of grains becomes better. Meanwhile, the stress along
the c-axis direction and the micros-strain would reduce. These results show that the internal defects
in the films are greatly reducing. The reason is that the adsorbent atoms have high diffusion energy
and the atoms can diffuse a sufficient distance at a high temperature, thus the atoms can diffuse to the
favorable lattice positions eventually.



Sensors 2018, 18, 3384 9 of 15

Furthermore, the bulk diffusion also exists in the crystal and the waveguide layer would generate
the process of recrystallization, which would reduce the density of the defects and improve the c-axis
preferred orientation. When the sputtering temperature at 200 ◦C, the probability of atomic desorption
is very high because the adsorption life of the external particles is short. The result leads to part of
the waveguide layer surface being rich zinc and a large number of oxygen vacancies existing in the
waveguide layer. Finally, the internal defects of the waveguide layer would increase, and the c-axis
orientation become poor, while the stress would also increase accordingly. The defects are fewest and
internal stress is smallest of the ZnO waveguide layer fabricated at 150 ◦C confirmed by the slope of
the line at 150 ◦C is smaller than that of the other lines. Therefore, the film quality is better relatively.

4.3. The Response Characteristics of the Love Wave Device

The response characteristics of the Love wave device with ZnO waveguide layer fabricated at
different sputtering temperatures are measured by network analyzer. The result is shown in Figure 7.
The horizontal and longitudinal axes in Figure 7 are the frequency and insertion loss of the Love wave
device, respectively.
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The Figure 7 reveals that the Love wave device fabricated at a lower sputtering temperature has a
large fluctuation near the center frequency. With the sputtering temperature increasing, the fluctuation
in the band is decreasing but it again increases at 200 ◦C. Thus, the Love device fabricated at 150 ◦C
has a better ripple suppression effect in the band.

The insertion loss of the Love wave device is one of the indexes that reflect the performance of the
device. Figure 8 shows the effect of the sputtering temperature on the insertion loss.
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It can be seen from Figure 8 that the Love wave device has the lowest insertion loss of −17.7 dB at
150 ◦C, and the insertion loss of the devices is less than −20 dB at the other sputtering temperatures.
The results caused by the absorption effect of the ZnO waveguide layer material to the acoustic wave
is enhancing. According to the analysis of the ZnO waveguide layer above, the ZnO waveguide layer
fabricated at 150 ◦C has good c-axis preferential orientation, few internal defects and small stress.
The delay would exist between the surface and the bottom part of the ZnO waveguide layer when the
acoustic wave propagating, which leads to the strain of the longitudinal direction (thickness direction)
in the waveguide layer. If the ZnO waveguide itself has a relatively high strain, the insertion loss
of the device would increase. Therefore, the device has the lowest insertion loss at the sputtering
temperature is 150 ◦C.

4.4. Characteristic Analysis of the Humidity Sensor

The center frequency of the Love wave humidity sensor is 102.561 MHz under the normal
temperature and humidity. After adjusting the humidity of the closed air chamber to a relative value,
the difference between the center frequency of the sensor under this humidity and that under the
normal temperature and humidity is regarded as the output signal of the sensor.

The specific measurement process of humidity as follows.

(1) The semiconductor temperature regulator is started to control the temperature of the air chamber
at 25 ◦C, and the temperature of the closed air chamber should be kept at 25 ◦C throughout
the experiment.

(2) The relative humidity of the closed air chamber is reduced to 10% by the silica gel desiccant and
then keeps for 300 s. The system completes the measurement of the relative humidity when the
output signal of the system reaches a stable value.

(3) Each relative humidity was measured by the same method.

Repeatability is an important characteristic of the sensor. To study the repeatability of the Love
wave humidity sensor with the ZnO waveguide layer, the relative humidity of 60% was measured
three times by the Love wave humidity sensor. The test result is shown in Figure 9. In Figure 9, the
positive frequency shift represents the increase of the center frequency, and the negative frequency shift
represents the decrease of the center frequency. Since the frequency shift is defined as the difference
between the center frequency of the sensor under a certain humidity and the center frequency under
normal humidity at same temperature. The decrease of the center frequency is due to the humidity
in the closed air chamber is lower than normal humidity and the influence of humidity on the ZnO
waveguide layer is weakened. On the contrary, when the humidity is higher than the normal humidity,
the central frequency of the device will increase.
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Figure 9. Repeatability of the Love wave humidity sensor at 60 %RH.
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From Figure 9, it can be concluded that the frequency shift of the sensor is changing as the
time pass. The trends of the five curves show that the response of the sensor to relative humidity
is slowly changing. With the time increasing, the frequency shift of the sensor is increase gradually.
Then it tends to be steady at 200 s and reaches a steady value at 300 s. According to the experimental
results, the trends of the three curves are same basically, especially when the time is 0–90 s and
180–420 s. The results illustrate that the sensor with ZnO waveguide layer has a good repeatability.
If the fabrication process of the ZnO waveguide layer is improved under the same film thickness, the
repeatability of the sensor can be further improved.

To study the relationship between the relative humidity and the frequency shift of the sensor, the
humidity of the closed air chamber is increased from 10% to 80% stepped with the relative humidity
interval of 5%. The frequency shift of the sensor is measured five times at each relative humidity, and
then the average value is considered to be the frequency shift at that humidity. The steady value of the
system output is recorded and saved at each relative humidity. The result is shown in Figure 10.Sensors 2018, 18, x FOR PEER REVIEW  11 of 14 
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Figure 10. Frequency shift of the sensor change with the relative humidity.

The result of Figure 10 shows that the frequency of the sensor has a one-to-one relationship with
the relative humidity of the measuring chamber. In general, the frequency shift of the Love wave
humidity sensor is increasing with the relative humidity increasing. The frequency shift is small and
has a linear relationship nearly with the relative humidity when the relative humidity is less than 30%.
The change in the frequency shift becomes quickly when the relative humidity increases from 40% to
60%. After the relative humidity goes over 60%, the change of the frequency shift becomes increasingly
quick, so the slight relative humidity change would lead to very large frequency shift.

The sensitivity of the sensor is about 6.43 kHz/RH when the relative humidity is in the range of
10% to 80%. In addition, the frequency resolution of the network analyzer is 1 Hz, so the Love wave
humidity sensor can detect a change of 0.00015% of the relative humidity theoretically. That is, the
test limitation of the sensor is 0.00015 RH/Hz. Therefore, the sensor has high sensitivity and good
application prospect.

The moisture absorption and desorption of the Love wave humidity sensor need time; thus,
the frequency shift of the sensor will be different in the process of the moisture absorption and
desorption when the relative humidity is different, and the other conditions are the same. The hysteresis
characteristics were measured at 25 ◦C and the results are shown in Figure 11.
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Figure 11. Hysteresis characteristics of the Love wave humidity sensor.

According to Figure 11, the trends of the frequency shift in the process of desorption and moisture
absorption is almost the same. The change in the frequency shift is largest and the largest hysteresis
error is 6 %RH when the relative humidity is 60%. The result shows that the hysteresis of the sensor
is good.

The humidity response characteristics of the Love wave humidity sensor were measured at 25 ◦C
and the result is shown in Figure 12. It can be seen from Figure 12 that the frequency shifts of the sensor
were −6 kHz, 19 kHz, 40 kHz, 73 kHz, 135 kHz and 244 kHz when the relative humidity increased
from 10% to 20%, 30%, 40%, 50%, 60% and 70%, respectively. The 80% response time is less than 3 min
and all the recovery time is less than 30 s, which indicates that the Love wave humidity sensor has
good response characteristics.
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Figure 12. Humidity response characteristics of the Love wave humidity sensor.

To investigate the long-term stability of the Love wave humidity sensor, the sensor was placed in
circumstances with relative humidity at 20%, 40%, 50%, 60%, 70% and 80% for 40 days, respectively.
The result is shown in Figure 13. As show in Figure 13, the frequency fluctuation of the sensor is
less than 5% in 40 days under different relative humidity, which indicated that the sensor had good
long-term stability.
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Figure 13. Stability of the Love wave humidity sensor.

5. Conclusions

In this paper, a fabrication scheme of the ZnO waveguide layer in the Love wave device by the
magnetron sputtering technique is presented. The influence of the different sputtering temperatures
in the performance of ZnO waveguide layer and the Love wave device is discussed. Then the
crystal orientation, grain size and stress of the ZnO waveguide layer were measured and analyzed.
Furthermore, a humidity measurement system is designed and the characteristics of the Love wave
device with ZnO waveguide layer as humidity sensor are analyzed. The results show that the
performance of the Love wave device is improved firstly and then is degraded when the sputtering
temperature increases from 25 ◦C to 200 ◦C. Meanwhile, the c-axis orientation is highest, and the
internal defects are least of the ZnO waveguide layer fabricated at 150 ◦C. In addition, the Love
wave humidity sensor with ZnO waveguide layer fabricated at 150 ◦C has good reproducibility, fine
long-term stability and high sensitivity.
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