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Abstract

Evolutionary innovations can be driven by spatial and temporal changes in gene expression. Several such differences have
been documented in the embryos of lower and higher Diptera. One example is the reduction of the ancient extraembryonic
envelope composed of amnion and serosa as seen in mosquitoes to the single amnioserosa of fruit flies. We used
transcriptional datasets collected during the embryonic development of the fruit fly, Drosophila melanogaster, and the
malaria mosquito, Anopheles gambiae, to search for whole-genome changes in gene expression underlying differences in
their respective embryonic morphologies. We found that many orthologous gene pairs could be clustered based on the
presence of coincident discordances in their temporal expression profiles. One such cluster contained genes expressed
specifically in the mosquito serosa. As shown previously, this cluster is redeployed later in development at the time of
cuticle synthesis. In addition, there is a striking difference in the temporal expression of a subset of maternal genes.
Specifically, maternal transcripts that exhibit a sharp reduction at the time of the maternal-zygotic transition in Drosophila
display sustained expression in the Anopheles embryo. We propose that gene clustering by local temporal discordance can
be used for the de novo identification of the gene batteries underlying morphological diversity.
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Introduction

During the 1980s and 1990s methods of molecular genetics

were used to determine the contributions of individual genes to

different developmental processes, such as the segmentation of the

Drosophila embryo [1]. However, during the past decade post-

genome technologies have opened the door to identifying all of the

genes engaged in such processes. In particular, collections of

microarray data accumulated in public databases now cover a

variety of different conditions and sometimes even the full life

cycles for a range of evolutionarily distant species. These data

provide new opportunities to identify complete ensembles of genes

engaged in the specification of body plans and morphological

diversification. Recently a number of such studies in different

model systems have been conducted [2–9]. The initial reports as

exemplified by [7], where the comparative analysis was extended

across different phyla, provide evidence for the existence of deeply

conserved co-regulated gene sets (kernels [10]) responsible for

fundamental cellular functions. More recent studies focused on a

set of fairly proximal yeast species have revealed that the

regulation of even the most essential processes such as the cell

cycle may not be conserved [2–4]. It was found instead that

temporarily similar engagement of multi-component biological

machines could be achieved by the species-specific regulation of

different subunits within these complexes [11,12]. Also, the

regulation of genes, which are differentially regulated between

species, was shown to be primarily driven by TATA-box

containing promoters [5].

The aforementioned studies were done by ‘‘co-expression meta-

analysis’’ extensively reviewed in [13] and in [14]. This method

employs gene lists independently precompiled by condition-

dependent clustering in individual species. The benefit of this

approach is its ability to compare gene expression independently

of species-specific experimental conditions. In contrast, ‘‘expres-

sion meta-analysis’’ [13] employs direct comparisons of the

expression profiles of orthologue pairs. This approach can

specifically pick up a condition or a time point when orthologous

genes are differentially regulated between species. However, its use

is restricted to a set of similar conditions, such as a time-series.

This method requires data preprocessing, or in the case of

temporal data, matching the corresponding time points, which due

to differences in metabolism may not relate directly between the

species. The computational frameworks as well as data sources for

direct cross-species gene expression studies have only recently

become available.

In a recent study we used datasets spanning several cell cycles of

synchronized culture of fission and baker’s yeast as a comparative

training data source to develop a computational platform for

expression meta-analysis [15]. Using so-called ‘‘time warping’’

[16–20] enhanced by noise suppression [15], we created alignment
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paths and successfully predicted the comparative duration of the

cell cycle phases in baker’s and fission yeast. In the present study

we have employed the time warping method to compare mosquito

and fruitfly embryos.

Thus far, the phylogenetic comparisons of gene expression have

identified differential expression of orthologous genes implicated in

similar processes. However, most such comparisons have been

restricted to unicellular organisms [2–4] or to closely related

multicellular species that manifest relatively few phenotypic

differences. Moreover, such studies have examined excessively

divergent species (yeast versus humans) [7], thereby complicating

the association of discordant gene expression profiles with

phenotypic variation.

We have selected divergent species that are nonetheless

members of a common order of insects, the Diptera. We reasoned

that mosquitoes and fruitflies possess a number of distinctive

phenotypic traits, but are sufficiently similar to link such

differences with orthologous clusters of discordantly expressed

genes. These two flies belong to separate suborders (Nematocera

and Brachycera) of Diptera and are thought to be separated by an

evolutionary distance of ,200 million years [21]. Mosquito and

fruitfly larvae possess a number of striking differences, such as the

representation of larval head, which is involuted in Drosophila but

fully extended in mosquitoes. Another prominent feature, which

was recently examined at the level of gene expression by our group

[22,23], is the presence in the mosquito embryo of a double-

layered extraembryonic envelope (amnion and serosa), which is

substituted by single amnioserosa in fruitflies (reviewed in [24]).

We were interested in whether these and additional features could

be detected by the comparative analysis of gene expression

datasets.

The duration of embryogenesis in flies and mosquitoes differs

significantly. At 25uC it takes ,22 h for the fruit fly embryo and

,50 h for the mosquito embryo to fully develop. For this reason,

the temporal gene expression datasets for fly [25] and mosquito

embryogenesis [22] were first aligned using time warping [15] and

then analyzed for discordant gene expression. Since all the distinct

developmental events taking place in the course of embryogenesis

are expected to have specific timing and duration, the aim of the

analysis was to cluster the orthologous gene pairs based on timing

and duration of local discordances in their temporal expression

profiles.

These studies reveal that a major gene cluster matches those

known to be involved in the function of the mosquito serosa. This

cluster is shown to be re-engaged later in development during

cuticle synthesis. Significant discordances were also observed for a

number of maternally expressed genes in flies and mosquitoes,

consistent with the evolution of a sharp maternal-to-zygotic

transition in gene expression higher Diptera. These studies

provide a framework for the identification of the genetic circuits

underlying embryonic diversity.

Results

Correspondence of Mosquito and Fruitfly Embryogenesis
Previous time-lapse microscopy [22] suggests that there is a

simple linear correspondence in the embryonic development of

fruitflies and mosquitoes, despite a ,2-fold difference in duration

(,50 h at 25uC for Anopheles versus 24 h for the fruitfly). We used

the time warping algorithm [15] to compare the Anopheles

temporal microarray datasets and the available Drosophila dataset

[25]. The term ‘‘time warping’’ is generally used to describe a set

of computational procedures that allow matching the similar

regions of numerical data, corresponding to the processes

occurring at different time scales. Anopheles and Drosophila genomes

are represented in genome databases by accordingly 12,604 and

13,781 annotated genes, most of which are represented on the

corresponding microarray platforms (10,873 Anopheles genes and

13,056 Drosophila genes). Ortholog mapping (8,126 Drosophila genes

matched to 8,047 Anopheles genes resulting in 10,708 orthologue

pairs in ENSEMBL database) and ANOVA filtering (removing the

genes showing no change in gene expression across the

developmental time course) limited the total amount of data

available for the time-warping and comparative gene expression

analysis to 4,839 profile pairs, nearly 40% of all protein coding

genes in the Drosophila genome (see Methods).

Alignments of the Drosophila and Anopheles datasets suggest a

near linear correspondence in embryonic development, despite the

different rates of development (see Figure 1A,B and UCB web

resource). There is a high level of concordance in the gene

expression profiles: 1,172 of 4,839 profiles (24%) display a strong

correlation (r.0.9), another 1,757 profiles (36%) exhibit a good

correlation (0.9.r.0.6), and 744 pairs (15%) show a moderate

correlation (0.6.r.0.3). Thus, ,75% of the orthologous gene

pairs exhibit very similar temporal profiles of expression in the

divergent fly and mosquito embryos. Clustering the 1,538 most

concordant expression profiles (based on Drosophila melanogaster

expression data) reveal a striking correspondence during develop-

ment (see Figure 1C and UC Berkeley web resource). The large,

almost rectangular, regions of similarity in the beginning and in

the end of the time courses but not in the middle (see the heatmap

on Figure 1A,B) suggest that both organisms use related gene

repertoires during late stages of embryogenesis that are consider-

ably different from those used at earlier stages.

Discovery of Discordant Gene Batteries
We expected that the developmental events, which differ

between the two species, would correlate with the discordant

expression of numerous genes rather than just one or two.

Moreover, we did not expect the individual members of such gene

batteries to have similar expression profiles even within the same

organism (Figure 2C), in contrast with previous models that

assume similar expression of related genes [25]. To maximize the

chance of identifying genes manifesting local as opposed to global

differences in gene regulation, a scoring scheme was used that

maximized discordance inside and the similarity outside the sliding

Author Summary

Linking genotype to phenotype is a major undertaking in
modern biological research. A variety of strategies are used
but have generally failed to explain the maintenance and
acquisition of new phenotypic traits in changing popula-
tions. We propose that whole-genome cross-species
comparisons can be used to identify gene clusters
underlying phenotypic variation. In the present study we
used gene expression datasets collected during fruit fly
and mosquito embryogenesis to identify temporal chang-
es in gene expression. We found that differentially
represented tissue types (such as extraembryonic serosa)
were clearly manifested by clusters of local discordances in
gene expression. Discordances were also observed for a
suite of maternally expressed genes, consistent with the
notion that the abrupt maternal-zygotic transition seen in
Drosophila is an evolutionary innovation of higher Diptera.
We propose that gene clustering by expression discor-
dance can be used to determine the genetic basis of
phenotypic variation.

Heatmap of Discordance and Developmental Diversity
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window across the temporal axis of the comparative gene

expression dataset (for details see Methods). The major parameters

of this function are time (window position), duration of

developmental event (window size), and the score (reflecting the

amplitude of discordance). These parameters are sufficient to

explicitly describe the pattern of discordance (Figure 2A).

For each relative time point and window length a list of genes

was obtained with discordance scores above a chosen threshold. In

this way, a comparison of the overall gene expression profiles

between the two organisms could be represented as a two-

dimensional heatmap, whereby the x-axis shows the relative

developmental time and the y-axis indicates the window length

and the color corresponds to the number of the genes with a

similar discordance pattern (Figure 2B). The map patterns reveal

territories (gene clusters) corresponding to groups of discordant

genes, which exhibit variability at a specific time-point in

development. This map could be constructed for any arbitrarily

chosen discordance cutoff. We therefore went further to check

whether these clusters might represent evolutionary innovations

(e.g., distinct morphological structures) involving the coincident

deployment of a large set of genes in one of the organisms.

Detection of Serosa Gene Batteries
We used the dissimilarity in the structure of extraembryonic

membranes of Anopheles and Drosophila, investigated in our prior

study [22], namely the absence of the serosa in the fruitfly embryo,

as a model of differentially represented trait/organ/tissue type. To

determine whether any of the major hot spots (gene clusters) on

the discordance heatmap corresponds to serosa, we built the maps

selectively for the serosal genes (249 genes expressed higher in

serosa than in the embryo proper with Log2Fold .0.7; see [22])

(Figure 3C) as well as for the whole dataset with (Figure 3A) or

without the serosal genes (Figure 3B). Taken separately, the serosal

genes manifest a prominent cluster at the position corresponding

approximately to 12 h of mosquito development and 6 h of fruitfly

development. While the general discordance map pattern

remained the same, the depletion of the serosal genes from the

dataset resulted in the disappearance of this cluster (cluster 15, see

the UCB web resource) from the map (Figure 3B). On the example

of the serosal cluster, we therefore conclude that the hotspots on

the discordance heatmap may correspond to conspicuous or

cryptic differences in anatomy or regulatory programs employed

during development.

We further used the serosal cluster to define the best

discordance cutoff that would be applicable for a wide range of

morphological differences. Specifically, we composed a training set

of positives (serosal genes) and negatives (non-serosal genes) from

the discordant genes that could be extracted from the cluster 15

region at discordance cutoff = 0 and built the Receiver Operator

Characteristic (ROC; see Figure 3E), which describes the True

Positive Rate (TPR) and False Positive Rate (FPR) of this training

set within the gene sets extracted from the cluster 15 at different

discordance cutoffs (0 to 4). Using the classic analysis of the ROC

curve we identified the best discordance cutoff value, as the one,

which corresponds to the point when the number of true positives

Figure 1. Linear correspondence between the fruitfly and the mosquito development. (A) Isometric view of the Pearson similarity matrix
for normalized, log2- and z-transformed datasets, resampled to 100 points and Gaussian-smoothed in the window of 20 points (see Methods). x- and
y-axis correspond to series of individual time points examined by gene expression screens in both species. Heatmap colors (blue, similar; red,
dissimilar) correspond to numerical distance between the corresponding stretches of the datasets calculated by Time-warp. (B) 2D view of Pearson
similarity matrix. White path indicates the automatic alignment (correspondence between the individual time-points in orthologous datasets)
generated by time warping. Black path shows the correspondence between the sampling times in both organisms established on the assumption of
linear correlation of developmental time. (C) Clusters of best correlating genes in both organisms after the transformation of datasets by global
alignment. Under the cluster map is the diagram of the relative duration of Drosophila developmental stages [36].
doi:10.1371/journal.pbio.1000584.g001

Heatmap of Discordance and Developmental Diversity
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among the genes that would augment the list, if the cutoff was

further increased, is higher than the number of false negatives.

Practically it is the point on the ROC curve when the first

derivative of True Positive Rate as a function of False Positive

Rate rises above 1 (TPR,0.4, FPR,0.2 matching the discor-

dance cutoff 1.7; Figure 3E). The 1.7 cutoff represents a

compromise between the sensitivity and the specificity of

detection, resulting in 30% of serosal within the 102 genes of

the cluster. Yet at higher cutoffs (2.9) further increase in specificity

(8 serosal out of 12 total genes) despite a significant loss in

sensitivity could be achieved (Figure 3D). The clusters extracted

from the discordance heatmaps can be further processed by

standard genomics tools, such as GO enrichment analysis (see

below).

Maternal Transcripts
The successful identification of the serosal genes led us to

analyze additional discordant gene clusters. There are about 23

discordant hotspots (Figure 2B). Functional assignment of the

newly identified clusters was investigated using FlyBase GO terms

and controlled vocabulary annotations from the BDGP in situ

database (see UCB web resource for annotations).

One of the discordant clusters (clusters 12–13, see Figure 2B

and UCB web resource) corresponds to a set of maternal genes in

both flies and mosquitoes. In flies, these genes exhibit a sharp

reduction in expression during the maternal to zygotic transition

but display continuous expression in mosquito embryos

(Figure 4A). RNA in situ hybridization assays (Figure 4E,F, and

G,H) show that these genes are ubiquitously expressed. In

Drosophila these transcripts are rapidly lost at the onset of

gastrulation, while in Anopheles they persist throughout the periods

of gastrulation and germband elongation without significant

changes in levels (Figure 4E,F, and G,H top versus bottom

panels). Removing the maternal gene battery from the compar-

ative datasets revealed that it indeed corresponds to clusters 12 and

13 on the discordance heatmap (Figure 4C,D).

Another unique cluster (cluster 8, see Figure 2B) was enriched

for genes expressed in yolk in Drosophila. Among the genes

expressed in the yolk we noticed another example of coordinate

difference in gene expression. A number of metabolic genes such

as CG9232 (galactose metabolic process) and others expressed in

Drosophila yolk at mid-embryogenesis show maternal expression in

mosquito, suggesting that the dynamics of yolk metabolism differs

dramatically between the two branches of Diptera represented by

these insects (Figure 5A–H).

Discussion

This study provides a conceptual and computational framework

for cross-organismal temporal alignments and comparisons of

species-specific transcriptional datasets. The resulting heatmaps of

discordant gene clusters identified distinctive patterning properties

in Dipteran embryos, including the organization of extra-

embryonic tissues and the maternal-zygotic transition (see

Figure 2B and UCB web resource). There is surprising

concordance in the development of Drosophila and Anopheles

embryos, despite different rates of growth and distinctive

patterning features. The heatmaps and alignments of gene

expression datasets (representing more than 4,000 orthologous

gene pairs) obtained with the time warping algorithm suggest a

near linear relationship in their embryonic development. Interest-

ingly the alignment path manifested a subtle deviation from

Figure 2. Representation of phylogenetic difference between the developmental gene expression datasets by two-dimensional
heatmaps. (A) Schematic diagram of the strategy used for the evaluation of discordance in aligned temporal profiles of orthologous genes. The
discordance was evaluated in a window of duration l at a time point i. The scoring function was designed to produce best scores when the amplitude
of discordance was maximal inside and minimal outside the evaluated window. (B) Discordance heatmaps reflect the number of genes (shown by
color intensity), which have a significant discordance (above cutoff) in expression profiles within a temporal window of a specific width (indicated by
vertical axis) at specific relative developmental time point (shown by horizontal axis). The upper map contains the genes upregulated in the fruitfly
embryo as compared to the mosquito. The lower map shows the genes upregulated in mosquito embryo compared to the fly. The heatmaps are set
to account only for the discordances with the scores above the cutoff = 1.7, which is the optimal cutoff for serosa detection. Distinct clusters of
discordances with specific duration (window length) and the time of incidence are enumerated. The extracted gene lists are available for further
analysis at UCB web resource. (C) Temporal expression profiles of orthologous gene pairs (blue, mosquito; red, fruitfly) with the highest discordance
scores isolated from the cluster 18 on the heatmap in (B). Note the temporal co-incidence of the discordances on the expression profiles of these
gene pairs.
doi:10.1371/journal.pbio.1000584.g002

Heatmap of Discordance and Developmental Diversity
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linearity at stage 9, presumably shortly after serosa completion in

Anopheles (Figure 1B). The removal of serosal genes from the

datasets did not result in change in the automatic alignment path,

suggesting that this time point may indeed represent temporarily

local slow down of gene expression programs in Anopheles embryo

proper compared to Drosophila.

The heatmaps obtained with the discordance mining algorithms

implemented in Peak-mapper and Glob-mapper identify clusters of

discordant genes that represent either unique tissue types (such as

serosa) or changes in regulatory pathways such as that governing

the turnover of maternal transcripts. The percentage of false

positive genes (as judged by the analysis of the serosa gene cluster)

was expected to be relatively high. One approach to this problem

is the application of annotation methods such as GO-term

enrichment or controlled vocabulary annotations (see UCB web

resource).

‘‘Gene sharing’’ or ‘‘co-option’’ manifested in redeployment of

gene batteries in a diverse set of tissues is a recurrent theme in the

evolution of animal embryos [26]. One of the mechanisms for

gene co-option, specifically when it happens in the absence of gene

duplication, is the diversification of regulatory regions resulting in

acquisition of new territories of expression. For example, the

skeletogenic mesoderm of the sea urchin embryo employs a

conserved gene battery that is used for the secretion of the adult

exoskeleton [27,28]. Previous studies showed that the serosa gene

battery is reengaged later in development, during the time of

embryonic cuticle production [22]. The fact that an identical gene

set is used twice during development at different time points or in

different tissues suggests that the genes don’t fall within this set due

to random co-occurrence. In fact this reengagement is observed

due to similarities of the cuticle secreted by the serosa at early

stages [29–32] and the embryonic cuticle produced at the end of

embryogenesis. We propose that the incidence of gene battery

reengagement might be used as a further indicator of functional

relevance of the gene within the battery or otherwise a filter that

could remove the false positives from the genes extracted from the

discordance cluster. Indeed, serosa genes can be identified by their

biphasic expression in the mosquito as compared with the single

late peak of expression in the fruitfly embryo (Figure 4B). Perhaps

the low threshold discordance clustering in combination with

verification of the reengagement patterns can be used as an

alternative strategy for the extraction of functional gene sets from

comparative datasets.

Previous whole-genome comparisons focused on ancestral gene

networks based on phylogenetic conservation of gene expression

patterns. Here, evidence was presented that discordant clusters

provide a means for identifying gene batteries involved in

evolutionary diversification and novelty. This approach was used

to identify de novo the changes in the turnover of maternal

transcripts in the Drosophila and Anopheles embryos and in temporal

Figure 3. Clusters on the discordance map reflect the presence of new cell types in one of the organisms. (A) Discordance heatmaps for
mosquito versus fruitfly development (discordance cutoff = 1.7). Horizontal and vertical axis correspond to relative temporal position and length of
the window used for discordance analysis. The color corresponds to the number of orthologous gene pairs within this window with discordance
values above the cutoff. (B) Discordance heatmaps for the datasets without the mosquito serosal genes (as defined in [22]) and their fruitfly
orthologues. Note the disappearance of the cluster 15 (marked by transparent black rectangle around the cluster) on the map of the genes
upregulated in mosquito. (C) Discordance heatmaps constructed for the datasets made exclusively from the mosquito serosal genes (taken from [22])
and their fruitfly orthologues. (D) Enrichment of the serosal genes in the ranked gene list extracted from cluster 15 at different discordance cutoffs
(from 0 to 3). Small cutoffs (,1) produced large gene lists (.100 genes) with small enrichments (,20%), and large cutoffs (.1.7) produced small
gene clusters (,25 genes) with good enrichment (.30%). (E) Receiver Operating Characteristic (ROC) curve for ranked gene lists extracted from
cluster 15 at a range of discordance cutoffs (from 0 to 3).
doi:10.1371/journal.pbio.1000584.g003

Heatmap of Discordance and Developmental Diversity
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Figure 4. Functionally related and co-regulated genes are revealed by the temporal re-engagement pattern. (A) Clustered expression
profiles of genes extracted from clusters 12 and 13 at low discordance cutoff = 1 with Glob-mapper program. A battery of maternal genes (marked
with black rectangle), which is expressed persistently in mosquito, is inhibited at gastrulation in Drosophila and re-expressed again later. The area of
the heatmap (duration = [5–28], position = [15–25] ) used for extraction is also marked with black rectangle on (C). (B) Clustered expression profiles
of genes extracted at discordance cutoff = 1 from area covering cluster 15. The area (duration = [2–28], position = [34–39]) used for extraction is
marked with magenta rectangle on (C). The double-engaged gene set marked by black contains significant number of serosal genes. (C) Discordance
heatmaps for the full dataset representing the mosquito versus fruitfly development (discordance cutoff = 1.9) Horizontal and vertical axis
correspond to relative temporal position and length of the window used for discordance analysis. The color corresponds to the number of
orthologous gene pairs within this window with discordance values above the cutoff. (D) Discordance heatmaps for the datasets without the battery
genes selected with black rectangle in (A). Note the disappearance of clusters 12 and 13 (marked by black rectangular contour around the territory
meant to be occupied by the clusters). (E,F and G,H) The mosquito and corresponding fruitfly examples of the ortholog gene pairs (AGAP006766-
CG8759 and AGAP004238-CG5374) from the battery of double engaged maternal genes marked with green rectangle in (A). Upper panels
correspond to early nuclear divisions reflecting maternal distribution of the transcript; lower panels show the distribution of the transcript at
developmental stage close to gastrulation in both organisms.
doi:10.1371/journal.pbio.1000584.g004

Heatmap of Discordance and Developmental Diversity
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expression of a subset of yolk genes. The rapid turnover of

maternal genes correlates with increased rates of embryogenesis in

higher Dipterans.

Materials and Methods

Mosquito Stocks and Egg Collection
Anopheles gambiae population was reared at 27uC, 75% humidity,

with a 12-h light/dark cycle. Adults were maintained on a 10%

sucrose solution and females were blood-fed on anesthetized

hamsters. For synchronized embryo collection the females were

placed in the dark at 27uC for 1 h inside a 15 cm petri dish lined

up with circles of wet Whatman paper. The developmental time

was counted starting from the moment the Whatman paper was

moisturized with water. Mosquito embryo fertilization happens at

the moment of egg laying. Due to constraints in the experimental

setup, after 2 h following the start of collection, the eggs were

shifted from 27uC and constantly kept at 25uC.

Cross-Species Microarray Data Analysis
Drosophila-Anopheles ortholog pairs were downloaded using

BIOMART interface of ENSEMBL website. Drosophila develop-

mental microarray data-course was obtained from [25]. Mosquito

developmental data-course (http://www.ncbi.nlm.nih.gov/geo/,

accession number GSE15001) was taken from our prior studies

[22]. Low level microarray data treatment involved standard

quantile normalization of microarray data in log2 space [33] and

Z-score normalization of time points (Gene_expr_value-mean

(across development))/stdev(across development)) [33]. Both

Drosophila and Anopheles datasets were filtered based on variation

between biological triplicate’s points using standard ANOVA

analysis with very mild thresholds (p,0.05). In cases when several

Figure 5. A set of Drosophila genes expressed in the yolk is maternal in mosquito. (A) Temporal expression patterns of a set of genes,
which are co-expressed at mid-embryogenesis in Drosophila and are coincidently maternal in mosquito. (B,C) Example of an ortholog pair
(AGAP005948-CG1555) from (A) analyzed by RNA situ hybridization. Top panels correspond to freshly laid eggs; bottom panel corresponds to mid-
embryogenesis. (D,E) Another example of an ortholog pair from (A) (AGAP004451-CG9232). Top panels correspond to freshly laid eggs; bottom panel
corresponds to mid-embryogenesis. (F and G) Line graph representation of genes analyzed in (B,C) and (D,E) (expression profiles of mosquito genes
are in blue; the fruitfly genes are in red). (H) Other examples of genes from (A), only the fruit fly RNA in situ hybridizations are shown.
doi:10.1371/journal.pbio.1000584.g005

Heatmap of Discordance and Developmental Diversity
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probesets were corresponding to a single gene, a probeset with a

better (smaller) ANOVA p value (i.e., more consistent change

within replicates and higher change across the time points) was

chosen. In addition, the Drosophila expression array data [25] was

filtered based on correlation with the Drosophila tiling array data

[34] with mild thresholds as well (r.0.25). Finally, the expression

profiles were superimposed based on the table of orthologs taken

from ENSEMBL. Profiles corresponding to genes with multiple

orthologs (paralogues) were multiplied, where necessary. These

procedures produced 4,839 profile pairs, corresponding to 4,072

unique Drosophila genes.

Construction of Global Alignment
Global alignment was constructed based on Kruskal-Liberman

time warping algorithm [16,35] as described in our previous study

[15]. In brief, using the RZ-smooth filter from our software package

(see web resource), the microarray data were resampled to 100

points in each dataset and smoothened using Gaussian function

with a standard deviation corresponding to ,2 original time

points (15 relative points in resampled datasets). To compensate

for the impact of terminal regions, after the resampling both

datasets were truncated for less than 1 original time point at the

beginning and the end. Similarity matrices and the corresponding

global alignment path based on resampled and truncated datasets

were constructed using time-warping algorithm. Specifically, local

uncentered Pearson correlation between two sliding windows of

l (l can be any natural number, we used l = 20) points each was

calculated. This method, which was introduced in [15], is less

sensitive to the interspecific noise in the data and better captures

the subtle similarities between the datasets. Following the

alignment, datasets were smoothened once more (using half of

the original smoothing window) to compensate for step-like

patterns in alignment curve.

Identification of Concordant and Discordant Gene Pairs
Concordant genes were identified in the aligned datasets based

on the global uncentered Pearson correlation. For the identifica-

tion of the discordant genes, for each orthologous pair of

resampled and aligned expression profiles the sums of square

differences F (between the matching points on profiles) were

calculated for the time point i and window length l—inside (Fwin)

and outside of the window (Fext). Conditional probabilities p were

computed based on distribution of the F values in the datasets A

and B (for all genes). a is a pseudocount, limiting the probability

values (a= 0.01 was used in this study).

S i,lð Þ~log
p Fext

i,l jA,B
� �

za

p Fwin
i,l jA,B

� �
za

ð1Þ

For every orthologous gene pair the discordance score S(i, l) was

calculated as a function of i (window position) and window length

(duration) l.

For any single comparison two heatmaps representing upregu-

lated and downregulated genes (with reference to expression in

Drosophila) were built. Batteries of discordant genes were identified

as ‘‘hot spots’’ in the (i, l) parameter space, showing high numbers

of genes with scores exceeding a threshold (S.1.5) for a given set

of parameters i, l. For the further analysis, such as evaluation of

annotation enrichment in the local discordance clusters (hotspots),

we extracted the genes from an arbitrarily defined region (i1–i2,

l1–l2) on the map, corresponding to the hotspot.

Software
Different stages of dataset processing as well as the detailed help

for the programs can be downloaded from http://flydev.berkeley.

edu/cgi-bin/GTEM/dmap_dm-ag/index_dmap.htm. In short,

initial dataset parsing, specifically the resampling and smoothing,

were accomplished by RZ-smooth. The similarity matrices and

alignment paths were built by Time-warp. At the next step the

datasets were matched by M-align and a database of discordances

was built by Peak-mapper. Finally the threshold-dependent heat-

maps were constructed by Glob-mapper, which as part of its

interface also allowed extracting the content of the discordance

clusters (hotspots).

Whole-Mount In Situ Hybridization
The images of whole-mount in situ hybridizations of Drosophila

embryos were taken from BDGP in situ database (http://www.

fruitfly.org/cgi-bin/ex/insitu.pl). Mosquito embryos were col-

lected and fixed as described previously [23]. The hybridization

dig-labeled anti-sense RNA probes against specific A. gambiae genes

were generated by RT-PCR amplification from embryonic RNA

and reverse transcription. A 26 bp tail encoding the T7 RNA

polymerase promoter (TAATACGACTCACTATAGGGAGA)

was included on the 59 side of the reverse primer.
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