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ABSTRACT
BACKGROUND: The habenula is involved in the pathophysiology of depression. However, its small structure limits
the accuracy of segmentation methods, and the findings regarding its volume have been inconsistent. This study
aimed to create a highly accurate habenula segmentation model using deep learning, test its generalizability to clinical
magnetic resonance imaging, and examine differences between healthy participants and patients with depression.
METHODS: This multicenter study included 382 participants (patients with depression: N = 234, women 47.0%;
healthy participants: N = 148, women 37.8%). A 3-dimensional residual U-Net was used to create a habenula
segmentation model on 3T magnetic resonance images. The reproducibility and generalizability of the predictive
model were tested on various validation cohorts. Thereafter, differences between the habenula volume of healthy
participants and that of patients with depression were examined.
RESULTS: A Dice coefficient of 86.6% was achieved in the derivation cohort. The test-retest dataset showed a mean
absolute percentage error of 6.66, indicating sufficiently high reproducibility. A Dice coefficient of .80% was
achieved for datasets with different imaging conditions, such as magnetic field strengths, spatial resolutions, and
imaging sequences, by adjusting the threshold. A significant negative correlation with age was observed in the
general population, and this correlation was more pronounced in patients with depression (p , 1027, r = 20.59).
Habenula volume decreased with depression severity in women even when the effects of age and scanner were
excluded (p = .019, h2 = 0.099).
CONCLUSIONS: Habenula volume could be a pathophysiologically relevant factor and diagnostic and therapeutic
marker for depression, particularly in women.

https://doi.org/10.1016/j.bpsgos.2024.100314
The morphology of the habenula, a small cerebral structure depression. However, the relatively small size of the habenula

comprising the epithalamus and pineal gland, is conserved
across species (1). With extensive input from the frontal lobe
and the limbic system as well as output to the monoaminergic
nuclei in the brainstem, the habenula is involved in regulating
aversion, reward, motor output, cognitive functions, sleep,
circadian rhythm, and pain functions through the regulation of
the dopaminergic and serotonergic nervous systems (2). The
habenula has been hypothesized to play an essential role in the
pathophysiology of major depression owing to its roles in
cognitive, emotional, and autonomic functions. Several
studies, mainly studies using animal disease models, have
suggested the involvement of the habenula in the pathophys-
iology of major depression (3–5).

A postmortem study of the human brain reported that
habenula volume was reduced in patients with depression (6).
Because this structure is visible on magnetic resonance (MR)
images of the living human brain, habenula volume can
potentially be used as a diagnostic or predictive marker of
ª 2024 THE AUTHORS. Published by Elsevie
open access article under the CC BY-NC-

N: 2667-1743 Biological Psy
poses a challenge when investigating its structure in the living
human brain. Previous studies of the habenula have reported
inconsistent findings. For example, a recent meta-analysis
reported a discrepancy in the left-right differences in habe-
nula volume found in previous studies (7).

Earlier MR imaging (MRI) studies were primarily based on
manual segmentation (8–10). However, manual segmentation
is a laborious task, and it is associated with disadvantages in
terms of validity and reliability owing to inevitable inter- and
intrarater biases. Thus, automated or semiautomated seg-
mentation methods have been used in recent studies (11–15).
Nevertheless, these automated methods have the limitation of
time-consuming or potential missegmentation, especially in
images with enlarged ventricular systems because of
registration-based algorithms (16). Recently, a deep learning–
based method has emerged that can instantly segment the
habenula in native space. The application using 7T MR images
accomplished highly accurate habenula segmentation (17).
r Inc on behalf of the Society of Biological Psychiatry. This is an
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Table 1. Demographic and Clinical Characteristics of the
Participants

Participants With
Depression,
N = 234

Healthy
Participants,
N = 148

p
Value

Age, Years 45.3 (16.3) 42.2 (12.9) .051a

Female Sex 110 (47.0%) 56 (37.8%) .078b

HDRS Score 16.5 (6.8) 0.44 (1.08) ,.001

Mild Depression 134 (57.3%) – –

Moderate Depression 63 (26.9%) – –

Severe Depression 37 (15.8%) – –

Scanner 1 68 (29.1%) 51 (34.5%) .19b

Scanner 2 12 (5.13%) 6 (4.05%) –

Scanner 3 74 (31.6%) 35 (23.6%) –

Scanner 4 51 (21.8%) 43 (29.1%) –

Scanner 5 29 (12.4%) 13 (8.78%) –

TIV, cm3 1486.8 (142.8) 1481.2 (143.5) .71a

The values in the cell are mean (SD) or n (%).
HDRS, Hamilton Depression Rating Scale; TIV, total intracranial volume.
at test.
bc2 test.
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The application using clinically available 3T MR images is ex-
pected to be developed.

Previous findings of habenula volumetry in patients with
depression have been inconsistent, with MRI studies in
humans reporting decreased (8,18), unchanged (11,19), or
increased (20) volume of the habenula compared with that of
healthy participants. These discrepancies may be attributed to
small sample sizes or differences in segmentation methods or
study populations. Thus, to obtain more conclusive findings
regarding habenula volume in patients with depression, a
reliable segmentation model should be applied to an MRI
sample of a sufficiently large size, and the whole sample, as
well as the sample stratified according to major confounding
variables, should be evaluated.

This multicenter, collaborative study aimed to develop a new
segmentation model of the habenula in T1-weighted 3T MR
images using deep learning to achieve the highest reliability and
validity compared with previous studies. Generalization per-
formance along with reproducibility was verified using images
with different spatial resolutions, magnetic field strengths (both
3T and 7T), and imaging parameters as an external validation
dataset obtained in various MR scanners. The habenula vol-
umes of patients with depression and healthy participants were
calculated. Group comparisons and associations with symp-
toms were examined subsequently. Sex difference was
considered important among the variables and was investi-
gated extensively because many studies suggest substantial
sex differences in terms of neurobiology, epidemiology, and
therapeutic response in patients with depression (21,22).

METHODS AND MATERIALS

Participants and Clinical Assessments

A total of 382 participants (234 patients with depression and
148 healthy participants) were recruited from the Kyoto Uni-
versity Hospital, Keio University Hospital, and the National
Center Hospital, National Center of Neurology and Psychiatry.
The Mini-International Neuropsychiatric Interview was con-
ducted during the initial visit to confirm the diagnosis of a
depressive episode (23). Psychological evaluation was per-
formed using the 17-item Hamilton Depression Rating Scale
(HDRS) to assess the severity of the depressive symptoms
(24). The severity of depression was categorized based on
HDRS scores according to the following criteria: mild depres-
sion was a score between 8 and 16; moderate depression
was between 17 and 23; severe depression was more than 24
(25). See details in Supplemental Methods.

This study was approved by the Committee on Medical
Ethics of the Kyoto University, Keio University, and National
Center Hospital, National Center of Neurology and Psychiatry.
The study adhered to the principles of the Declaration of Hel-
sinki. All participants provided written informed consent.

MRI Acquisition

Patients with depression and healthy participants underwent
structural MRI on the same day as the psychological evalua-
tion. MR images were acquired using five 3T and one 7T
scanner, labeled as scanners 1, 2, 3, 4, 5, and 7T, respectively.
Scanners 1, 2, and 3 acquired images using 3-dimensional (3D)
2 Biological Psychiatry: Global Open Science July 2024; 4:-–- www.s
magnetization-prepared rapid acquisition gradient-echo
(MPRAGE) with a spatial resolution of 0.8 3 0.8 3 0.8 mm.
Scanners 4 and 5 acquired images using MPRAGE with a
spatial resolution of 0.9 3 0.9 3 1 mm. The 7T scanner ac-
quired images using MP2RAGE (research prototype sequence)
(26) with a spatial resolution of 0.7 3 0.7 3 0.7 mm. For the
test-retest dataset, 46 healthy participants who underwent
imaging with scanner 1 underwent a second MRI with the
same scanner (6 or 16 weeks after the first imaging). Further-
more, 40 healthy participants who underwent imaging with
scanners 1 and 2 underwent scanning with the 7T scanner with
different sequences and spatial resolution from the traveling
subject dataset. See details in Supplemental Methods.

Overview of the Analysis

An overview of this analysis is presented in Figure 1. A precise
predictive model of the habenula structure was constructed
using the data acquired from healthy participants using scan-
ner 1. The habenula volume of healthy individuals and patients
with depression were evaluated using the model, and the
generalization of the model was verified. See details in
Supplemental Methods.

Constructing the Habenula Prediction Model

A predictive model constructed using deep learning was
trained using the annotated habenula of the healthy partici-
pants as supervisory data. The model was constructed using
TensorFlow (version 2.4.0), with a 3D U-Net as the basic
structure (27) modified by the architecture that we reported
(28). A schema of the architecture of the model is provided in
Figure 2A, and its details are provided in Figure S1. General-
ization of the model was evaluated using 5-fold cross-
validation in the healthy participants included in the deriva-
tion cohort. Prediction models were created with the same
epoch and learning rate decay using all training data, and
obp.org/GOS
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automatic habenula segmentation of the test dataset was
performed. See details of annotation of the habenula and
constructing the segmentation model in Supplemental
Methods.

Volume Assessment With the Validation Cohort

The reliability of the prediction model was verified using various
validation datasets. The position of the habenula predicted on
the images acquired using scanners 1, 2, 3, 4, and 5 was
validated using the intersection over union and Dice coefficient
on small samples of annotations. The predictive accuracy for
the same sequence but different acquisition parameters,
including voxel size images acquired using scanners 4 and 5
(Figure 1), was validated at several thresholds. For the test-
Figure 1. Overview of data acquisition and analysis. Structural images of the b
facilities. Using magnetic resonance images from healthy control participants (HC
using deep learning, and the habenula was predicted on other images from a
generalizability of the model was verified using the predicted habenula volume. 3D
with depression; MPRAGE, magnetization-prepared rapid acquisition gradient-ec
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retest dataset, the habenula volumes calculated from the im-
ages obtained during the 2 imaging sessions (Figure 1) were
validated for agreement and error. Correlation coefficients and
mean absolute percentage errors were calculated, and the
distribution of the error was evaluated using Bland-Altman
analysis to examine these consistencies. In addition, the con-
sistency of the left-right difference in volume was evaluated
using each dataset (see Supplemental Methods).

Habenula Volume in Healthy Individuals

Habenula volume differences between the left-right side and
sex were assessed in healthy participants. Only images ac-
quired using scanners 1, 2, and 3 (n = 92), which had identical
imaging parameters and spatial resolution (0.8 mm), were used
rain were obtained using five 3T magnetic resonance imaging scanners at 3
) acquired using scanner 1 as derivation cohort, a prediction model was built
validation cohort. A habenula volume analysis was conducted, and the
Res U-Net, 3-dimensional residual U-Net; CV, cross-validation; Dep, patient
ho; SANLM, spatial-adaptive nonlocal means; T1WI, T1-weighted image.
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Figure 2. Habenula segmentation using deep learning. (A) Three-dimensional (3D) residual U-Net model architecture, (B) training and testing Dice coefficient
curves of the model, (C) example of prediction in 1 participant. T1WI, T1-weighted image.
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to minimize the effects of voxel size and partial volume (see
Supplemental Methods).
Habenula Analysis in Patients With Depression

Habenula volume in the patients with depression was calcu-
lated with images acquired using scanners 1, 2, and 3 (n =
154). The habenula volumes of patients with depression were
compared with those of healthy participants of the same sex. A
correlation analysis was performed between volume and age in
both groups to examine the correlation with age. Partial cor-
relation coefficients between habenula volume and age were
calculated separately for the groups and sex with the scanner
and total intracranial volume (TIV) as covariates. Volume
change was compared in the patients with mild, moderate, and
severe depression. A partial correlation coefficient between
HDRS scores and volume was calculated using age, sex,
scanner, and TIV as covariates for each severity level to
investigate the association between depressive symptoms and
habenula volume. Additionally, habenula volume differences
4 Biological Psychiatry: Global Open Science July 2024; 4:-–- www.s
were examined according to severity and sex. See details in
Supplemental Methods.

The same tests were performed as described above for
patients with depression, with the habenula volume divided by
TIV as a correction for intracranial volume.

Statistical Analysis

Clinical and neuropsychological data were analyzed. Statistical
significance was set at a p value ,.05. All tests were 2-sided.
See details in Supplemental Methods.

RESULTS

Clinical and Neuropsychological Data

The behavioral data are presented in Table 1. Age and the
female sex ratio were higher in the depression group, although
not significantly (p = .051 and 0.078, respectively). More than
one-half of the patients had mild depression (mild, 57.3%;
moderate, 26.9%; severe, 15.8%), and the mean HDRS score
obp.org/GOS
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was 16.5 in the depressed group, which was significantly
higher than that in the control group (p , .001). No significant
differences were observed between healthy participants and
the depression group in the proportion of scanner (p = .19) and
the average of TIV (p = .71). The data of 1 patient with severe
depression were not used because the HDRS could not be
administered owing to catatonia (Table S5).

Precision of the Prediction Model

Figure 2B presents the learning curve of the 5-fold cross-
validation in the derivation cohort. The reduction in loss of
function reached a plateau early in the learning phase, and no
under- or overlearning was observed during the learning pro-
cess. The average Dice coefficient and standard deviation
were 87.5 6 0.19% and 86.6 6 0.63% in the training and test
phases, respectively. The location and shape of the habenula
in the predicted images were confirmed to be visually appro-
priate, and regions other than the habenula were not predicted.
Figure 2C presents a representative predicted image indicating
that the segmentation of the habenula is similar to human
evaluation.

Volume Assessment With the Validation Cohort

Table 2 presents the validation results of the accuracy of the
predictions using images with the same spatial resolution as
the data used to create the prediction model. The accuracy of
each scanner was almost identical to that of the model. The
average Dice coefficient was 86.14 6 3.52%, and the inter-
section of union was 75.9 6 5.35% across scanners (see
Supplemental Results).

The threshold for maximum agreement with the supervised
data differed from that of the derivation cohort for datasets
with different voxel sizes. The accuracy of predictions using
datasets with different voxel sizes was slightly lower than that
for datasets with the same spatial resolution, indicating that
the accuracy was maximum at a threshold of 0.9999 (Dice
coefficient: scanner 4, 82.4%; scanner 5, 82.2%) (Table S1).

Figure 3A presents the results for the prediction accuracy in
the test-retest dataset. Table S2 presents the predicted vol-
ume and accuracy. The correlation coefficient between each
volume in the test-retest dataset was relatively high (r = 0.788,
p , 10210) and was higher for the volume with TIV correction
(r = 0.856, p , 10213). The mean absolute percentage error
was 6.47% and 6.66% for the volume with and without TIV
correction, respectively. No obvious systematic error was
observed in the Bland-Altman analysis.
Table 2. Validation Score of the Prediction Model

Group Intersection

Scanner 1 (0.8 mm) Depression, n = 10

Scanner 2 (0.8 mm) Depression, n = 10

Healthy, n = 6

Scanner 3 (0.8 mm) Depression, n = 10

Healthy, n = 10

T1-weighted images obtained using scanner 1 were used to construct a prediction m
magnetic resonance imaging sequence obtained using scanner 1 (derivation cohort).

Biological Psychiatr
The validation results of the prediction accuracy of the
traveling subject dataset are presented in Figure 3B. The de-
tails of the prediction accuracy with and without TIV correction,
respectively, are presented in Tables S3 and S4. The mean
absolute percentage error was lowest for the volume without
TIV correction at a threshold of 0.999 and the volume with TIV
correction at a threshold of 0.9999 (8.42% and 8.06%,
respectively). The correlation coefficient between the volume
without TIV correction at these thresholds was significantly
positive (r = 0.651, p , .0001) and was higher for the volume
with TIV correction (r = 0.734, p , .0001). The error distribution
exhibited no specific trends.

The left-right differences in habenula volume were consis-
tent in each dataset (see Figure S2 and Supplemental Results).

Habenula Volume in Healthy Individuals

Figure 4A presents the results of the habenula volume analysis
in the healthy participants. The habenula volume on the left
side was significantly higher than that on the right side (left,
36.89 6 5.42 mm3; right, 34.83 6 5.24 mm3; p = .00022,
t91 = 23.9, Cohen’s d = 0.39). No significant difference in
volume was observed between men and women (men, 70.94
6 10.44 mm3; women, 72.17 6 8.71 mm3, p = .54, t90 = 0.60,
d = 0.13). Comparison of the left and right sides according to
sex revealed that the habenula volume on the left side was
significantly larger than that on the right side in women (left,
37.28 6 4.93 mm3; right, 34.89 6 5.16 mm3; p = .00075,
t57 = 23.6, d = 0.47); however, no difference was observed
between the 2 sides in men (left, 36.22 6 6.18 mm3; right,
34.73 6 5.45 mm3; p = .10, t33 = 21.7, d = 0.26).

Figure 4B presents the analysis of the TIV-corrected habe-
nula volume in healthy participants. The left-right (p = .00019,
t91 = 23.9, d = 0.34) and sex (p , 1025, t90 = 4.9, d = 1.05)
differences were significant, and the ipsilateral sex difference
was more pronounced when comparing the left and right sides
and sex (left: p = .00016, t90 = 23.9, d = 0.85; right: p , 1025,
t90 = 24.7, d = 1.02). The left-right differences within the same
sex were similar to those without TIV correction (men: p = .11,
t33 = 21.6, d = 0.24; women: p = .00069, t57 = 23.6, d = 0.45).

Habenula Volume in Patients With Depression

Figure 5A shows that no significant differences were observed
between the groups of the same sex (men: p = .62, t104 = 0.50,
d = 0.10; women: p = .10, t138 = 1.6, d = 0.28). Analysis of
covariance revealed no significant difference in the main effect
between groups (p = .20, F1,240 = 1.6, h2 = 0.0068). Figure 5B
shows the negative correlation between habenula volume and
Over Union, Mean (SD) % Dice Coefficient, Mean (SD) %

81.2% (3.94%) 89.6% (2.39%)

73.3% (7.28%) 84.4% (4.96%)

76.7% (4.53%) 86.8% (2.93%)

73.6% (5.32%) 84.7% (3.53%)

74.5% (5.70%) 85.2% (3.79%)

odel. The images obtained using scanners 2 and 3 had the same parameters as the
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Figure 4. Habenula volume in the healthy control group. (A) Habenula volume according to the side (left), sex (middle), and left-right and sex (right). (B)
Habenula volume divided by the total intracranial volume (TIV) according to the side (left), sex (middle), and left-right and sex (right). n.s., not significant.
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age in the combined group of healthy individuals and patients
with depression (r = 20.45, p , 10212). Figure 5C shows that
the regression line between age and volume had a different
slope in the groups for women and that age and volume were
more strongly correlated in patients with depression than in
healthy participants in the partial correlation analysis, espe-
cially for women (healthy men: p = .011, false discovery rate
[FDR]–corrected p [pFDR] = .014, partial r = 20.44; healthy
women: p = .071, pFDR = .071, partial r = 20.24; men with
depression: p = .0015, pFDR = .0029, partial r = 20.37; women
with depression: p , 1028, pFDR , 1027, partial r = 20.59).

The left panel of Figure 5D shows a significant difference in
volume, with the volume decreasing by severity in analysis of
variance (p = .029, F2,150 = 3.6, h2 = 0.046). Post hoc analysis
revealed a significant difference between mild and severe
depression (mild to severe: p = .021, t120 = 2.3, d = 0.50; mild to
moderate: p = .099, t123 = 1.66, d = 0.34; moderate to severe: p =
.42, t57 = 0.80, d = 0.21). Analysis of covariance showed no
significant difference in the main effect in terms of severity
=

Figure 3. Volume assessment with validation dataset. (A) The test-retest data
calculated from the first and second scans in the same healthy participants. The
volumes were used in the upper figure, and those corrected by total intracranial v
the left show the correlation with the habenula volume calculated from the images
figures on the right show the Bland-Altman plots. The predicted habenula volumes
MAPE, mean absolute percentage error.

Biological Psychiatr
(p = .32, F2,145 = 1.2, h2 = 0.016). Partial correlation analysis
between HDRS scores and the habenula volume in each group
revealed a correlation, which was not statistically significant after
correction for multiple comparisons in patients with severe
depression (mild: p = .17, pFDR = .25, partial r =20.15; moderate:
p = .62, pFDR = .62, partial r = 0.10; severe: p = .021, pFDR = .064,
partial r = 20.48) (Figure 5D, right panel).

Figure 5E presents the volume according to the severity of
illness by sex. A significant difference according to severity
was observed in women in an analysis of variance (men:
p = .62, F2,69 = 0.48, h2 = 0.014; women: p = .011, F2,78 = 4.8,
h2 = 0.11). Post hoc analysis revealed significant differences
between women with mild and moderate depression and be-
tween women with mild and severe depression (mild-severe:
p = .019, t65 = 2.4, d = 0.67; mild-moderate: p = .019, t62 = 2.4,
d = 0.73; moderate-severe: p = .96, t29 = 20.049, d = 0.018).
Analysis of covariance with age and scanner as covariates also
revealed significant differences between the severity groups in
women (p = .019, F2,75 = 4.1, h2 = 0.099).
set. The figures on the left show the correlation with the habenula volume
figures on the right show the Bland-Altman plots. The predicted habenula
olume (TIV) in the lower figure. (B) Traveling subject dataset. The figures on
acquired using the 3T and 7T scanners in the same healthy participants. The
were used in the upper figure, and those corrected by TIV in the lower figure.
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An additional analysis performed wherein the habenula
volume was divided by TIV yielded similar results (Figure S3).
Partial correlation analysis between HDRS scores and the
habenula volume divided by TIV revealed a significant corre-
lation with severe depression (mild: p = .21, pFDR = .31, partial
r = 20.13; moderate: p = .75, pFDR = .75, partial r = 0.064;
severe: p = .0094, pFDR = .028, partial r = 20.52).
DISCUSSION

A segmentation methodology for the habenula with sufficiently
high accuracy was developed in this study. The deep learning
model developed in this study was generalizable to indepen-
dent datasets with different imaging parameters or magnetic
field strengths. Volume estimation of the habenula was found
to be highly reproducible across test-retest datasets. This
multicenter study revealed sex differences in the volume of the
habenula in both healthy participants and patients with
depression using a large number of images. Habenula volume
was found to be inversely associated with the severity of
depression in women but not in men.

A 3D residual U-Net, which is an advanced form of deep
learning, was used in this study. U-Net, which is based on a
convolutional neural network and has an encoder-decoder
structure, is a highly accurate model for segmentation tasks
(29). Only one study has applied U-Net to human habenula
segmentation and achieved satisfactory accuracy, with a Dice
coefficient of 85.2% (17). The current study achieved a similar
accuracy with a Dice coefficient of 86.6% using 3T MR images.
This may be attributed to the differences in the applied U-Net
architecture. A previous study used a 2D attention U-Net with
the 4 deepest layers, whereas the method proposed in the
current study was based on 3D residual U-Net, as reported
previously (28). Compared with 2D U-Net, 3D U-Net can learn
more complex parameters and improve the continuity between
slices with proper training, thereby improving the segmentation
accuracy (27). Moreover, the current study also addressed the
problem of gradient vanishing by introducing a residual block
into the model (30) and constructing a complex model with the
5 deepest layers. These architectural features may have
contributed to the satisfactory accuracy of the results.

Another strength of this study is that validation of the model
was performed by applying it to multiple external datasets.
Differences in MRI scanners can affect the volumes calculated
from brain images (31). The model was satisfactorily applicable
to 2 external datasets acquired using a different MRI scanner
but with the same parameters (3T MRI, 0.8 3 0.8 3 0.8 mm)
(Table 2). The application of the original model to images ac-
quired using different parameters, i.e. the dataset with T1-
weighted images with different voxel sizes (3T MRI, 0.9 3

0.9 3 1 mm), as well as those with different magnetic field
strengths and different voxel sizes (7T MRI, MP2RAGE, 0.7 3

0.7 3 0.7 mm), resulted in smaller volume calculations and
=

Figure 5. Habenula volume change in patients with depression (Dep) compare
group and sex, (B) correlation with age in both groups, (C) correlation according
(left). Association of habenula volume with the 17-item Hamilton Depression Rati
according to the severity of depression by sex. Considering the brain size effect,
covariance was conducted. n.s., not significant.

Biological Psychiatr
lower accuracy. However, with a minor adjustment to the
output threshold, the proposed model was found to be appli-
cable to these datasets (Tables S1, S3, S4).

Several methodologies of semiautomated or automated
segmentation of the habenula using machine learning have
been developed. The method of voting procedure using mul-
tiple atlases was proposed to estimate the volume robustly
and reliably (15). Recently, the method using deep learning
made the habenula automatically segmented in T1 map in 7T
MR images with high accuracy even in the native space (17). It
may be favorable to compare these prominent methods with
our method in the future. Furthermore, the microstructure of
the habenula could be visualized using quantitative suscepti-
bility mapping sequences (32). The model that was created in
this study could have better performance, potentially by
including these additional parameters as the feature vectors of
the model.

The mean habenula volume in healthy individuals was 36.89
mm3 (left) and 34.83 mm3 (right) in the current study, which
were largely equivalent to the result of a postmortem brain
study (n = 38 [22 men and 16 women]; age mean 6 SD = 49.97
6 18.54; men: left 35.55 6 11.5 mm3, right 33.08 6 10.7 mm3;
women: left 39.4 6 12.6 mm3, right 35.65 6 11.4 mm3) (33). In
contrast, previous MRI studies have reported estimates that
vary from 10 to 30 mm3 (8,9,12,17). The stria medullaris and
fasciculus retroflexus, which were visualized with high signal
intensity on T1-weighted images, were carefully excluded
during manual annotation of the habenula in the current study,
and the habenula was segmented by assessing its morphology
in 3 directions. Potential manual tracing bias was avoided
across a large number of datasets via the use of fully auto-
mated segmentation in this study. These procedures may have
led to the estimation being closer to that of the postmortem
study. However, because the habenula was defined using the
T1-contrast of MRI in the current study, underestimation of the
medial portion of the habenula (12,34), partial volume effects,
and spillover effects may have been involved. This issue
should be addressed by applying the proposed model to the
ex vivo imaging of postmortem brains.

The mean habenula volume of patients with depression was
smaller than that in healthy individuals. However, this is not a
statistically significant difference. This may be due to the ex-
pected possible volume difference, if any. The postmortem
study showed small average group differences (left, 4.14 mm3;
right, 7.74 mm3) (6), which is difficult to address by MRI with a
spatial resolution of 0.8 mm3. Another possibility to explain
nonsignificant statistical differences is a substantial diversity of
habenula volume in healthy participants, which may be asso-
ciated with the psychological and neurobiological heteroge-
neity of healthy participants.

A novel finding of the current study is the age-associated
decline in habenula volume in patients with depression,
which was found to be more prominent in women. Habenula
d with healthy control participants (HC). Habenula volume (A) according to
to group and sex, and (D) difference according to the severity of depression
ng Scale (HDRS) scores (D, right), and (E) the difference in habenula volume
total intracranial volume (TIV) was covaried in the model in which analysis of
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volume was shown to decrease with increasing symptom
severity, especially in women. The habenula may play a role in
the pathophysiology of depression, especially severe depres-
sion, as is suggested by a case report that deep brain stimu-
lation of this region dramatically improved severe treatment-
resistant depression in a female patient (35). The regions of the
brain involved in mood regulation (such as the limbic system
and prefrontal cortex), which may be important in the patho-
physiology of depression, are thought to develop under the
influence of sex hormones, mainly during puberty (36,37).
Moreover, the lateral habenula expresses high levels of es-
trogen receptor-1, which suggests that its activity is regulated
by sex hormones (38,39). A recent study reported that excit-
atory input from the lateral hypothalamic area to the lateral
habenula by neurons expressing estrogen receptor-1 caused
aversion (40). These findings suggest that the lateral habenula
may be an important region in the neural basis of sex differ-
ences in the stress response. The incidence of mood disor-
ders, including depression, begins to vary according to sex
after puberty and is significantly higher in women (41). Thus,
the finding that the habenula is smaller in older female patients
with more severe depression may be attributed to the stress-
associated accumulation of microdamage to this small brain
structure across development and aging. Future longitudinal
studies should address this issue.

This study has some limitations. First, because this was a
cross-sectional study, it is unclear whether the findings were
associated with the risk of developing depression or any
changes that occurred at the onset of depression. Longitudinal
studies must be conducted to clarify these associations.
Second, although not statistically significant, the distributions
of the clinical characteristic variables, including differences in
age and sex between the healthy and depressed groups, and
variations in the severity of depression was unbalanced. This
may have affected the detection power. Third, the sample size
became slightly smaller when the participants were classified
into subtypes, such as disease severity or sex. In the future, it
will be desirable to validate the results of the current study
using a larger dataset. Fourth, it should be noted that our
training data showed left-right habenula volume differences
(Supplemental Results). This might have affected our findings
of habenula volume asymmetry, although the data augmen-
tation of the flip was processed. Thus, our results of habenula
volume asymmetry should be further reconfirmed in indepen-
dent samples in future studies.
Conclusions

In conclusion, this study developed a deep learning–based
habenula segmentation model and confirmed its generaliz-
ability and reproducibility. Habenula volume was calculated
with higher prediction accuracy by applying the proposed
model to a dataset obtained via a multicenter collaborative
study. Moreover, the variations with sex in healthy and
depressed groups were clarified. The proposed model can be
applied to create regions of interest for resting-state functional
and diffusion MRI in the future, which will enable the evaluation
of connectivity patterns in many cases and further advance our
understanding of the pathophysiology of depression.
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