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Electrical transport in semiconducting and metallic particle suspensions is an enabling
feature of emerging grid-scale battery technologies. Although the physics of the trans-
port process plays a key role in these technologies, no universal framework has yet
emerged. Here, we examine the important contribution of shear flow to the electrical
transport of non-Brownian suspensions. We find that these suspensions exhibit a strong
dependence of the transport rate on the particle volume fraction and applied shear rate,
which enables the conductivity to be dynamically changed by over 107 decades based
on the applied shear rate. We combine experiments and simulations to conclude that
the transport process relies on a combination of charge and particle diffusion with a
rate that can be predicted using a quantitative physical model that incorporates the self-
diffusion of the particles.
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Next-generation electrochemical storage and water deionization technologies demand
colloidal fluids that maintain electrical percolation under flow. In these suspensions,
metallic and semiconducting nanoparticles, such as carbon black, provide a transient
and percolated electrical network, often compared to conductive polymer composites.
However, the key distinguishing feature is the potential contribution of particle motion
to the transport process. Rheo-electric measurements of such suspensions frequently
exhibit an increase in conductivity with increasing shear rate, whose origin has been
hypothesized to be shear-induced collisions (1, 2). Kinetic Monte Carlo simulations of
flowing slurry suspensions suggest that these dynamic processes account for many fea-
tures of the system performance. However, there has not yet been direct experimental
evidence that these dynamics are present or important in the properties of these suspen-
sions. Despite the extensive experimental work examining the electrical response of
carbon under flow in various solvents (3–7) and in the presence of salts (8–10), quanti-
tative accounting for these dynamics in electrical measurements is hampered by the
complex microstructural hierarchy that evolves when the suspension is subjected to
transient and steady flows (11–13).
To avoid these complexities and chart a pathway toward a quantitative microscopic

description, we formulate suspensions containing non-Brownian conducting micro-
spheres. By carefully selecting the properties of the solvent continuous phase, we
suppress the effects of Brownian motion, the sedimentation of the particles, and the
ability of the particles to aggregate on time scales commensurate with the rheo-electric
measurements. Thus, the shear rate dependence of the electrical response in the
absence of other contributions is isolated. The electrical properties in shear flow are
measured using a custom-built rheo-electric device that can perform transient and
steady shear experiments with electrical measurements simultaneously. We show that
the electrical conductivity of these suspensions increases instantaneously and reversibly
upon flow startup, and the magnitude of the conductivity scales nonlinearly with
increasing shear rate and volume fraction. Chrono-amperometry experiments and
impedance spectroscopy (IS) are utilized to probe the dynamics of the transport pro-
cess. We use this experimental insight to propose a scaling law that reveals a single
relationship between the electron diffusion and the scaling parameter, linking the vol-
ume fraction and shear rate to the conductivity. Finally, we examine the origin of this
nonlinearity with IS and show that it arises due to an increase in the dielectric
strength of the dipole associated with the short-ranged hopping process. We combine
experiments with large-scale Stokesian dynamic simulations coupled with Monte
Carlo–based charge transport calculation that provides quantitative agreement with
our experimentally determined electrical diffusivity and show that it exceeds the gradi-
ent diffusivity of the particles. This is possible because charge displacements along the
gradient direction allow transport over dynamic clusters that orient in the compres-
sional direction of shear.

Significance

This work represents a significant
advance in the scientific
understanding of electronic
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potential impact on the design of
next-generation grid-scale
electrochemical storage and water
deionization technologies due to
the identified physical
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electric transduction, strain
sensing, and neuromorphic
computing.
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Results and Discussion

The suspensions were characterized by performing rheology as
a function of shear rate ( _γ) and volume fraction (ϕ). We
observed that the suspensions were stable against aggregation
for several hours and could be reversibly homogenized. We
averaged the viscosity over the last 20 s at each shear rate and
calculated the reduced viscosity as (14,15)

ηr ¼ η _γð Þ=ηm [1]

using the solvent viscosity ηm ¼ 200mPa � s. The resulting
reduced viscosity versus shear rate is shown in Fig. 1A where ϕ
is from 0 to 0.40. The viscosity was averaged over the range of
the tested shear rates, as shown in Fig. 1B versus ϕ. The experi-
mental viscosities were overlaid with an empirical fit to a modi-
fied Krieger-Dougherty equation,

ηr ¼ 1� ϕ

ϕmax

� ��2

: [2]

From this fit, the maximum packing fraction ϕmax is deter-
mined to be 0.67, which is close to that found for repulsive-
driven glass (16). These results indicate that suspensions are
well behaved and non-Brownian.
In this work, the field-dependent measurements of the

sheared suspensions exhibit the simple Ohmic behavior, as
demonstrated in SI Appendix, Fig. S1. To acquire the electrical
response of these suspensions, we carried out rheo-electric
measurements on a ϕ = 0.35 suspension. For each shear rate
tested, the sample was first presheared at 500 1/s for 30 s,
sheared at the desired shear rate for 30 s, and then stopped for
30 s. Throughout the test, the transient current density j , vis-
cosity η, and shear rate _γ were recorded, and three representa-
tive shear rate cycles are shown in Fig. 2A. We observed j was a
strong function of applied shear rate, and the viscosity
remained Newtonian. Over repeated cycles, the current
returned instantaneously and reproducibly to the same value
for any shear rate. Further, during each 30-s period where the
shear was arrested, the current density rapidly dropped below
the resolution of our source meter, ∼100 pA. To test whether
the electrical response was sensitive to the flow direction, a
shear reversal experiment was performed on the same sample
(Fig. 2B). The measured current density was unaffected by the
shear reversal test at _γ=100 1/s, which demonstrated that both
current and viscosity are independent of the shear direction.
We repeated the protocol described in Fig. 2A for other volume

fractions (0.25, 0.30, 0.35, 0.40) and shear rates. The steady-
state current density jss that exceeded the resolution of the
source meter was averaged over the last 5 s of the acquisition
for each shear rate, (Fig. 2C). This protocol reveals a strong
dependence of jss on both the volume fraction and the shear
rate. The magnitude of jss was also nonlinear with respect to
the shear rate at the highest volume fractions. In our rheo-
electric measurements, the electrical field and velocity gradient
are parallel (Fig. 2C, Insets). Thus, it is notable that these meas-
urements were performed using a weak electric field strength,
E0 ∼ 101 � 102 V =m, which was far below that required to
induce the structuring of particles observed in electrorheological
fluids where the viscosity of the suspension can increase by
orders of magnitude for electric fields of 106 V/m. We also
observe that the viscosity was unchanged by the electric field,
indicating the structure of the suspension remains unaffected.
Estimates of the Mason number, a dimensionless balance of the
viscous to electrostatic forces, given as

Mn ¼ ηm _γ
2εmβ2E 2

0

¼ 107�11, [3]

confirms that the viscous forces were dominant in our experi-
ments (17).

In addition to the electrical response, a subtle time-
dependent current relaxation was visible for some experimental
conditions upon shear rate changes. In these cases, the transient
electrical response was correlated with a viscous relaxation.
However, there were instances when the electrical relaxation
occurred in the absence of a transient viscosity. While the ori-
gin of the viscous relaxation was likely particle migration (18)
or microstructural rearrangement that originates from the finite
Van der Waal’s force between silver particles, the same effects
would not necessarily produce an electrical relaxation. Unfortu-
nately, the protocol described in Fig. 2 did not allow us to
probe this systematically. Therefore, we performed chronoam-
perometry on the suspensions at a constant shear rate. The elec-
trical potential Φ was alternated between 1 and �1 V every 120 s
while the viscosity and the electrical current were recorded
simultaneously. A representative measurement for _γ = 100 1/s is
shown in Fig. 3A. For each step change in potential, we observed
a constant viscosity and a reproducible transient electrical relaxa-
tion. In contrast to the results in Fig. 2, this protocol demon-
strated that the transient current occurred independently from
microstructural rearrangement, as the viscosity remained cons-
tant during the step-change in potential.

These observations are a hallmark of charge carrier diffusion
(19), and in our measurements, we found that the rate of relax-
ation of the transient current was a function of the shear rate.
As shown in Fig. 3B, the absolute value of current density was
averaged for each potential pulse, excluding the first pulse
because of the unsteady viscosity. To quantify the current relax-
ation, we fit our experimental data using

h jj ji ¼ j0e�t=τ þ jss , [4]

where jss is defined as above, j0 is the magnitude of the current
density after potential reversal, and τ is the characteristic relaxa-
tion rate. Fits of the transient electrical response are shown for
ϕ¼ 0:30 and _γ ¼ 20� 100 1=s in Fig. 3B and accurately
described the experimental data. Similar measurements were
applied to other volume fractions (0.20, 0.25, 0.30, 0.35), and
for shear rates where a transient relaxation was present, the fit
parameters versus shear rates were summarized in Fig. 3C.
These measurements confirmed that in general, the relaxation

Fig. 1. (A and B) Reduced viscosity ηr versus _γ as a function of ϕ (0 to 0.40)
(A) and the averaged reduced viscosity ηr versus ϕ, solid line: fit to the modi-
fied Kreiger-Dougherty equation (B).
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time decreased with decreasing shear rate at fixed volume frac-
tion and decreased with increasing volume fraction as well.
These measured results qualitatively agreed with the change in
current densities, which increased with increasing shear rate
and volume fraction (Fig. 2C).
To further access relaxation rates outside the limitations of

the chronoamperometry measurements, IS was used. The fre-
quency dependence of IS measurements probes electrical and
dipolar relaxation processes. We carried out these measure-
ments on suspensions within a custom-built Couette dielectric
geometry that permits frequency-dependent measurements
under transient and steady shear flows (20, 21). For these meas-
urements, raw impedance data were collected under steady
shear conditions and corrected for the stray inductance and
resistance of the geometry at each frequency. The resulting
complex impedance Z � was then used to calculate the complex
admittance, whose real component is the alternating current
(AC) conductivity σ. We found that AC conductivity was repro-
ducible for each condition tested, and σ showed a large increase
in magnitude with increasing shear rate as in our direct current
(DC) electrical measurements. We also observed a low-frequency

terminal regime characterized by a frequency-independent σ that
transitioned to a high-frequency regime where σ ∼ f p, with f as
the applied frequency and p as any value between 1 and 2.

These characteristics are commonly observed in disordered
conducting systems (22–24). For shear rates and volume frac-
tions where the terminal regime was present, we determined

σ0 ¼ limω!0σ [5]

and fitted

σ ¼ σ0
i ~ω

ln 1þ i ~ωð Þ , [6]

which describes the dielectric response of time-continuous ran-
dom walk (25). In this expression, ~ω ¼ ω=ωc is an electrical
Deborah number, where ωc is the characteristic rate of a charge
as it transits over the largest barrier associated with the DC con-
ductivity. We interpret this time scale as dividing intracluster
from intercluster transport, and it is therefore related to the
transport on microscopic length scales. The observed ~σ ¼ σ=σ0
for each volume fraction and shear rate (summarized in Fig. 4A)

Fig. 2. (A and B) Transient current density j (Top), reduced viscosity ηr (Middle), and _γ (Bottom) versus time subjected to (A) a sequence of step-up and step-
down shear rate tests with a 30-s hold at 0 1/s (ϕ = 0.35) and (B) flow reversal tests where the flow is initiated in the forward direction at 100 1/s for 30 s
and then instantaneously reversed for 30 s at the same shear rate in the opposite direction before returning to the 0 1/s for 30 s. (C) The steady-state
current density jss versus shear rate for each volume fraction tested. Note measurements below the resolution of the source meter are not shown. The inset
shows that the electric field is applied along the flow gradient direction for parallel plate geometry separated by gap h.

Fig. 3. Chronoamperometry of a ϕ¼ 0:30 suspension. (A) Transient current density j (Top), viscosity η (Middle), and potential Φ (Bottom) for a _γ ¼ 100 1=s.
(B) Mean transient current averaged over six pulses as a function of shear rate (specified in the legend). (C) Results of fitting of average current relaxation
curve to [4], including the measured relaxation rate τ (Top), the initial current density (Middle), and the steady-state current density (Bottom) for each volume
fraction (0.20, 0.25, 0.30, 0.35).
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were overlaid with the model equation offset for each volume
fraction by a factor of 5. There was excellent agreement with
the model’s functional form, and the AC conductivity appeared
to obey universality that is ubiquitous in disordered systems
(22, 23, 26). There were modest deviations at higher frequencies
that arose due to a presence of a dielectric loss peak (SI Appendix,
Fig. S2). Both ωc and σ increased with increasing shear and vol-
ume fraction in Fig. 4B and C, consistent with our DC electrical
measurements. The presence of a dielectric loss feature was associ-
ated with the polarization of charge carriers over a conductive
cluster (27). While this polarization process was associated with
the DC transport, it appeared at frequencies higher than ωc , indi-
cating the polarization with a conductive cluster was fast with
respect to the delocalization of charge between conductive clusters
(SI Appendix, Figs. S4 and S8).
To comprehensively understand the rheo-electrical response,

we summarize the experimental results of DC and AC electrical
measurements in Fig. 5A–D. In general, both transient current
and IS measurement exhibited electrical relaxation that increases
in its rate with increasing shear rate and volume fraction, which
suggests that the transport process is dependent upon the particle
self-diffusion. To describe it, we adopted a semiempirical scal-
ing expression, D ∼ ϕ _γa2g ϕð Þ, where g ϕð Þ ¼ 1=SQ!0ðϕÞ and
SQ!0ðϕÞ is the zero wave-vector static structure factor for a
dense suspension in equilibrium, given by the Carnahan-
Starling approximation (28). This expression has been used by
Leshansky et al. (29) to modify the dilute limit collision fre-
quency ϕ _γ for dense suspensions and has been shown to be
accurate up to modest volume fractions ϕ ∼0.30. Using this
relatively simple scaling law, the macroscopic relaxation time τ,
measured using chronoamperometry, and the microscopic
transport rate ωc , measured using IS versus ϕ _γa2g ϕð Þ, are plot-
ted in Fig. 5A and B, respectively. We observed the collapse of
the experimental data across all volume fractions, indicating
that this form accurately captures the volume fraction scaling
of the transport rate. We did the same (Fig. 5C) for the specific
conductivity σ=ϕ for both AC and DC conductivity measure-
ments at Φ = 0.1 V, and the collapse of the experimental data
were observed again. Finally, we could compare the magnitudes
of the macroscopic and microscopic transport rates that emerged
directly from chronoamperometry and IS experiments by calcu-
lating the charge carrier diffusivity Dc . Here, Dc is given as
h2=4τ for the chronoamperometry experiments, where h=2 is the
half-gap spacing of the symmetric rheo-electric geometry; and we

used Dc ¼ a2ωc for the IS measurements, where a is the mean
particle radius. The result of this transformation is shown in Fig.
5D versus ϕ _γa2g∞ ϕð Þ. We found that the scaling law not only
collapsed both time scales at all volume fractions and shear rates,
but also quantitatively predicted the observed diffusivities using
the relationship Dc ¼ 0:5ϕ _γa2g∞ ϕð Þ, as shown by the solid line
with no adjustable parameters. These results confirmed that the
electrical response was governed by the charge transport process
that was dependent on the particle self-diffusion. It is also inter-
esting that the electrical transport process between particles
allowed for the direct interrogation of the microscopic dynamics
of the suspended particles in shear flow.

The collapse of the specific conductivity indicated that the
electrons transport via a diffusive process with a rate set by Dc , a
property that emerged from the dynamics of the particle motion
induced by the shear flow. Diffusive transport is described by
the Einstein diffusion equation σ=ϕ¼ e2

VpkT
Dchz2i, where hz2i

is the mean-squared valence of the charge on each particle. This
form is similar to the transport described by Eicke et al. to
describe migration in dilute solutions of inverse emulsions
undergoing Brownian motion (30). However, the distinction
here is that the particles themselves are not the charge carriers;
instead, the electrons delocalize on a time scale determined by
the particle self-diffusion. It should be noted that for dilute non-
Brownian suspensions, the pair-trajectories of particles are fully
reversible and produce no net particle diffusion in the shear
gradient direction (the direction along which our electrical meas-
urements are made). This symmetry could be broken when mul-
tibody interactions were considered. As Acrivos has shown, three
or more interacting spheres could lead to a lateral displacement
of particles in the shear-gradient direction (31, 32). The three-
body interactions would yield a gradient diffusivity proportional
to ϕ2 _γa2. Instead of gradient diffusion of the particles, we
hypothesize that the role of shear flow is to bring the particles
within a distance where electron hopping is likely to occur. The
exchange of electrons during these near-field interactions produ-
ces a polarization of the electron-hole pair across pairs or clusters

Fig. 4. (A) The normalized conductivity σ=σ0 plotted versus the dimension-
less frequency ω=fe as a function of shear rate and volume fraction in Cou-
ette dielectric geometry. For each volume fraction, the curves are offset by
a multiplicative factor of 5. (B) ωc and (C) σ0 versus _γ for each volume frac-
tion determined from fits to [6].

Fig. 5. (A–D) Summary of the electrical measurements versus the scaling
parameter ϕ_γa2g ϕð Þ for ϕ (0.25, 0.30, 0.35, 0.40), (A) current relaxation time
τ, (B) microscopic transport rate ωc , (C) specific conductivity σ=ϕ calculated
from the DC measurements for ϕ (0.25, 0.30, 0.35, 0.40) and AC measure-
ments for ϕ, and (D) Dc calculated using a2ωc and h2=4τ for all volume frac-
tions and shear rates. The black solid line is 0:5ϕ_γa2g ϕð Þ. The colors of the
symbols correspond with the volume fraction.

4 of 7 https://doi.org/10.1073/pnas.2203470119 pnas.org

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203470119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203470119/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2203470119/-/DCSupplemental


of particles that could become delocalized if the shear is suffi-
ciently fast. Therefore, the rate of electrical transport is depen-
dent upon the time scale of microstructure rearrangement, as
well as on the ability of charges to delocalize over distances that
exceed the particles themselves along the gradient direction. This
is distinct and distinguishable from the process where the charge
carriers remain strongly bound to the particles and transport
through the gradient diffusion of the particles alone.
To test this hypothesis, we employed large-scale Stokesian

dynamics simulations coupled with a kinetic Monte Carlo–based
approach to compute charge transport within sheared non-
Brownian suspensions. We used a recently developed Stokesian
dynamic simulation tool that accurately and rapidly computes the
microstructure under flow while including the hydrodynamic
interactions between particles (33). To validate the simulations,
suspension shear viscosities, mean-squared displacements (MSDs),
and gradient diffusivities ~D

y
p were calculated as a function of ϕ

(0.25, 0.30, 0.35), and we found that their values compared
quantitatively with our experimental results as well as to the
results of Stokesian dynamics simulations (SI Appendix, Fig. S3)
(34). To simulate the electrical transport process across the com-
puted suspension microstructures, we employed a kinetic Monte
Carlo scheme and developed a two-parameter model to estimate
gradient charge diffusivities ~D

y
c as a function of suspension con-

centration. Using this two-parameter model, we calculated the
MSD of the charges and the ~D

y
c and explored the effect of δ and

k0 on ~D
y
c (SI Appendix, Figs. S5 and S7). Note that assuming an

instant delocalization of charges within a conductive cluster
instead of a finite charge transfer rate leads to a simpler model
with one parameter δ, which predicts a Dyy that matches with
experiments for ϕ¼ 0:25 suspension when δ¼ 0:015 but over-
predicts for higher concentrations.
We found quantitative agreement with the experiments

over the entire volume fraction tested when δ=a ¼ 0:001 and

k0Δt ¼ 0:6 (Fig. 6A). To match simulations, it is necessary to
define a dimensionless gradient diffusivity according to
~D
y
c ¼ Dc=ð4 _γa2Þ, where the factor of 4 is determined empiri-

cally. The simulations provide a quantitative prediction of the
measured ~D

y
c , and the solid black line gives the prediction that

~D
y
c ¼ ϕg0 ϕð Þ=8, where the factor of 8 is determined empiri-

cally. These charge diffusivities could be compared with the
particle diffusivities based on the prediction given by Acrivos
that ~D

y
p ¼ ϕ2=2, which showed good agreement with both our

simulation results and the measurements by Leighton (31).
These results demonstrated that not only does the charge trans-
port model based on the kinetic Monte Carlo scheme described
here quantitatively match our experimental results, but also
that electrical transport cannot be explained through the gradi-
ent diffusivity of the particles alone. The gradient diffusion
induced by flow is an order of magnitude slower than the self-
diffusion expression proposed here. This distinction could be
understood when we examine the probability density functions
(PDFs) of the particle (Fig. 6B) and charge (Fig. 6C) displace-
ments Δ~y along the gradient direction extracted from our simu-
lations. The PDF plots showed that the particle displacements
were as large as Δy ¼ 0:1a. With increasing ϕ, the PDF broad-
ened, and larger Δy became more probable, resulting in the
increase of particle self-diffusivity. However, the PDFs of the
charge displacements appeared qualitative and quantitatively dif-
ferent. First, the frequencies of small displacements (Δy < 2a)
were larger and more probable for the charges than for the par-
ticles. This enhancement was associated with the exchange of
charges between pairs of particles. For large displacements
(Δy > 2a), the charges are delocalized over dynamic clusters that
orient in the compressional direction of shear. Note that the
PDF of these large charge displacements followed the same trend
as the PDF of the cluster sizes in gradient direction for Δy > 2a

Fig. 6. (A) Comparison of the measured, simulated, and predicted gradient diffusivities ~D
y
i for the particles (i = p) and the charges (i = c). (B and C) The PDF

of a displacement of magnitude Δ~y for the (B) particles and (C) charges for ϕ (0.25, 0.30, 0.35). (D) PDF of cluster size in gradient direction yc.
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(Fig. 6C and D), indicating that the large charge displacements
were due to charge delocalization across clusters. The combina-
tion of large displacements along the compressional direction,
along with more frequent hopping events, leads to higher diffu-
sivity values for the charges as compared to the particles. The
physical connection between particles and cluster formation
upon shearing is also studied by the simulation. The size of con-
ductive clusters increases with increases of both suspension con-
centration ðϕÞ and the charge hopping length scale (δ=aÞ,—as
the microstructure images show in SI Appendix, Fig. S6—and
the normalized probability distribution of cluster lengths along
the gradient direction (SI Appendix, Fig. S9).
In summary, we use both experimental and simulation meth-

ods to study electron transport in suspensions of non-Brownian
silver microspheres. We used transient DC and AC electrical
techniques to determine the electrical diffusivity and adopted a
semiempirical scaling expression that quantitatively predicts the
rate of the hopping process. We compared the measured diffu-
sivities to those determined using accurate large-scale Stokesian
dynamic simulations coupled with a Monte Carlo–based
method to represent the charge transport. Comparing the
experiments and simulations, we found quantitative agreement
and used the simulations to demonstrate that the electrical dif-
fusivity is faster than the particle gradient diffusion, confirming
that transport is mediated by the delocalization of electrons
across dynamic clusters that form in shear flow.

Materials and Methods

Materials. Hollow glass microspheres (Cospheric-HGMS-AG) were purchased
and found to have a particle diameter a = 5 to 15 μm and a reported density
ρp = 1.08 g/mL. These particles have a thin shell of silver metal, tshell = 100 nm.
The particles are suspended in silicone oil, AR200 (Aldrich), ρs = 1.05 g/mL and
ηs = 200 mPa � s. Suspensions were prepared based on the dry mass volume
fraction ϕ. For each batch of particles, we observed minor differences in the
observed current density that we believe originates from variation in batch-to-
batch coating density of the silver-coated microspheres. While the current densi-
ties were reproducible within a given batch, comparing across batches showed,
in some cases, minor inconsistencies. This results in the spread of the observed
conductivities in Fig. 5C. Within a given batch of particles, field-dependent meas-
urements show Ohmic behavior. Before measurement, the suspensions were
vortexed for 2 h, roll-mixed overnight, and degassed at room temperature. These
suspensions remain stable for several hours but show the evidence of aggrega-
tion and sedimentation overnight. Therefore, they are freshly prepared prior to
each measurement.

Experimental Methods. Rheo-electric measurements were performed using
an ARES G2 strain-controlled rheometer (TA Instruments) with a 25-mm parallel
plate accessory modified to enable electrical measurements under steady and
transient shear experiments (20, 21, 35). All measurements were performed
using 0.5-mm gap. DC conductivity measurements were performed with a Keith-
ley 2450 source meter with an applied voltage of 0.1 V unless otherwise stated.
The steady-state current was measured at each shear rate, averaged, and used to
compute the conductivity with the known cell constant of 6.4 m calibrated using
salt solutions of known conductivity. For transient testing, the samples were sub-
jected to steady shear, and the voltage varied from 1 to�1 V in 120-s intervals.
This was repeated six times, and the resulting absolute value of the current den-
sity was averaged for each pulse to produce the current relaxation. These data
were further filtered using a bandpass filter to remove high-frequency noise.
Impedance measurements were made with a Keysight 4980A LCR Meter in a

two-electrode configuration with a 50-mV voltage amplitude using a Couette
rheo-electric device with a cell constant of 6.7 m. The complex impedance was
corrected for the stray impedance and inductance of the cell using open and
short circuit measurements. At each frequency, the complex impedance was con-
verted to the admittance Y� ¼ 1=Z� ¼ σ� j 2πε0ε0ð Þ, where ε0 is the permit-
tivity of free space (36).

Simulation Methods. A recently developed Stokesian dynamics simulation tool
is used to compute the microstructure evolution of a sheared non-Brownian sus-
pension (33, 37). Long-ranged hydrodynamic interactions were modeled using
the Rotne-Prager-Yamakawa tensor (38, 39), and the lubrication interactions were
modeled using exact expressions proposed by Jeffrey and Onishi (40, 41). Our
simulations were performed with 2,197 monodisperse particles of unit radii
(a¼ 1) in a cubic simulation box of different sizes corresponding to the three par-
ticle volume fractions ϕ¼ 0:25, 0:30, and 0:35. Particles are suspended in a
solvent with viscosity η¼ 1=6π. A unit shear rate (_γ ¼ 1) is applied in the gradi-
ent (y) direction of the shear flow using Lees-Edwards boundary conditions. Peri-
odic boundary conditions are applied in the flow and vorticity (x, z) directions.
A pairwise repulsive force F ¼ F0τRe�τRh=ð1� e�τRhÞ is employed to keep par-
ticles from overlapping, where h is the minimum surface separation between the
particles, and F0 and τR are the magnitude and range of the interparticle force,
respectively. We chose F0τR ¼ 1 and τR ¼ 1000, similar to Sierou and Brady in
their simulations of sheared non-Brownian suspensions (34).

A kinetic Monte Carlo–based approach is used to compute the charge trans-
port across the computed suspension microstructures. We developed a model to
compute the charge diffusivity in gradient direction ~Dy

c as a function of suspen-
sion concentration. In this model, the charge hopping between the surfaces of
two neighboring particles in a flowing suspension occurs only when the mini-
mum surface separation between the particles is less than a critical length scale
δ, and the charge hopping occurs at a finite rate k0. The particle microstructures
at regular time intervals (Δt) are obtained from the Stokesian dynamics simula-
tions. A number of charges are seeded onto the particles randomly across the ini-
tial microstructure. The clusters for charge hopping are identified such that the
minimum surface separation between any two neighboring particles within the
cluster is less than δ=a. Charges in each cluster hop to their neighboring par-
ticles of the same cluster, and the number of hopping steps during a simulation
time step is k0Δt, where k0 is hopping rate, the second parameter of the Kinetic
Monte Carlo (KMC) model. For larger values of k0, the charges can transport to
longer distances in the cluster within the simulation time step, which results in
higher overall charge diffusivities. The final locations of the charges at the end of
the simulation time step are then transferred to the corresponding particles in
the second microstructure, and the charge transport computation is repeated.
This procedure is continued for all the microstructures within 100 strain units of
steady state, and the time evolution of charge positions is recorded, which is
used to compute the mean square displacements of charges and their gradient
diffusivities ( ~Dy

c ). The dependence of charge hopping on the applied field is
ignored in this model. The complex charge transport processes between particles
of flowing suspension are lumped into this simple coarse-grained KMC model
with two parameters whose predictions match well with the experiments.

Data Availability. All study data are included in the article and/or supporting
information.
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