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Kawasaki disease (KD) is a complex disease, leading to the damage of multisystems. The pathogen that triggers this sophisticated
disease is still unknown since it was first reported in 1967. To increase our knowledge on the effects of genes in KD, we extracted
statistically significant genes so far associated with thismysterious illness from candidate gene studies and genome-wide association
studies. These genes contributed to susceptibility to KD, coronary artery lesions, resistance to initial IVIG treatment, incomplete
KD, and so on. Gene ontology category and pathways were analyzed for relationships among these statistically significant genes.
These genes were represented in a variety of functional categories, including immune response, inflammatory response, and cellular
calcium ion homeostasis. They were mainly enriched in the pathway of immune response. We further highlighted the compelling
immunepathway ofNF-AT signal and leukocyte interactions combinedwith another transcription factorNF-𝜅B in the pathogenesis
of KD. STRING analysis, a network analysis focusing on protein interactions, validated close contact between these genes and
implied the importance of this pathway. This data will contribute to understanding pathogenesis of KD.

1. Introduction

KD is a systemic vascular disease preferentially occurring
in infants and children [1, 2]. It is characterized by the
development of coronary artery aneurysms (CAA) which
may result in fatal thrombosis and sudden cardiac failure.
Clinical manifestations of KD include prolonged fever (1-2
weeks, mean 10-11 days), conjunctival infection, oral lesions,
polymorphous skin rashes, extremity changes, and cervical
lymphadenopathy, all of which comprise diagnostic criteria
[3]. However, great majority of children failed to manifest
typical characteristics. In addition to the diagnostic criteria,
there are a broad range of nonspecific clinical features, includ-
ing irritability, uveitis, aseptic meningitis, cough, vomiting,
diarrhea, abdominal pain, gallbladder hydrops, urethritis,
arthralgia, arthritis, hypoalbuminemia [4], liver function
impairment, and heart failure [5, 6]. The peaked incidence
at 9 to 11 months of age coincides with fading of maternal
immunity, and symptoms partly similar to other infectious

disorders suggest that some microorganisms may trigger
this disease. Despite great efforts to identify the cause for
nearly a half a century, the etiology of KD still remains
unknown [7]. However, the role of genetic susceptibility to
KD has long been evident through its striking predilection
for children of Japanese ethnicity regardless of their country
of residence; compared with Caucasian children, Japanese
children have a relative risk of KD that is 10 to 15 times
higher [8–10]. Siblings of KD children have a relative risk
that is 6 to 10 times greater than that of children without a
family history, and the parents of Japanese children with KD
are twice as likely to have had KD themselves as children
than other adults in the general Japanese population [11–
14].

Candidate gene studies and genome-wide studies have
been successively applied to explore the association between
genetic effect and thismysterious disease [15, 16].Many suspi-
cious genes related to innate and acquired immune functions
or to vascular remodeling have been studied [15, 17–19].

http://dx.doi.org/10.1155/2013/989307
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Genetic studies of KD were conducted not only to clarify
the genetic background but also in the hope of providing
clues about its etiology and pathogenesis. However, none of
these studies have analyzed the internal association between
these significant association genes and explored the possible
pathogenic process in KD from overall level.

In this paper, we aim to extract statistically significant
genes associated with KD (Up to September 2012, from all
English databases) to explore their association and analyze
their function in the pathogenesis of KD. This study is a
systematic summary of previous research. Further studies on
clinical validation will be summarized in our next study.

2. Methods and Materials

2.1. Extracting Genes with Statistical Significance. We per-
formed a computerized search of Ovid, Google Scholar,
and PubMed databases up to September 2012 and reviewed
cited references to identify the relevant studies. Citations
were screened at the title/abstract level and retrieved as full
reports. Search keywordswere “Kawasaki disease,” “Kawasaki
syndrome,” “lymph node syndrome,” “mucocutaneous lymph
node syndrome” combined with “polymorphism,” “gene,”
“genetic,” “allele,” and “genotype”. The inclusion criteria of
genes were those who have significant association with KD
contributed to susceptibility, vascular lesions, resistance to
initial IVIG treatment, late diagnosis of KD, and incomplete
KD.

2.2. Data Analysis. DAVID (http://david.abcc.ncifcrf.gov/,
version: 6.7) was used to process the bioinformatics analysis
of these candidate genemarkers, including gene classification
(based on Biological Process Ontology and Molecular Func-
tionOntology, resp.), enrichment analysis for significant gene
ontology categories, KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathway mapping, and significant pathway
computing. GeneGo MetaCore (http://www.genego.com/,
version: 6.5) was used to analyze the pathways of these
significant genes. The association between these statisti-
cally significant genes were analyzed using STRING (http://
string-db.org/), a database of known and predicted protein
interactions.

3. Results

3.1. Extracting Genes with Statistical Significance. The char-
acteristics of the genes are presented in Table 1 (candidate
genetic studies) and Table 2 (genome-wide studies).

3.2. Gene Ontology Analysis. Genes with statistical signif-
icance were submitted to functional analysis using DAVID
software. Defense response, response to wounding, and
inflammatory response were identified as significantly
enriched (Enrichment Score = 15.91). Furthermore, DAVID
analysis identified clusters of genes with annotations related
to cellular calcium ion homeostasis, cell chemotaxis (enrich-
ment Score: 3.75), and positive regulation of immune sys-
tem process (Enrichment Score: 3.58) which is involved in

autoimmune thyroid disease (hsa05320), asthma (hsa05310),
type I diabetes mellitus (hsa04940), and allograft rejection
(hsa04672). The functional annotation table can be available
in supplementary material available online at http://dx.doi
.org/10.1155/2013/989307.

3.3. Enrichment Analysis. Enrichment analysis consists of
matching genes in functional ontologies by GeneGo Meta-
Core (Figure 1). The probability of a random intersection
between a set of gene list with ontology entities was estimated
with the “𝑃” value of the hypergeometric intersection. A
lower “𝑃” value means higher relevance of the entity to the
dataset, which appears in higher rating for the entity. All
maps were drawn by GeneGo. The height of the histogram
corresponded to the relative expression value for a particular
gene.

The most significant GeneGo Pathway Maps were (1)
immune response: HSP60 and HSP70/TLR signaling path-
way; (2) immune response: Inflammasome in inflammatory
response; (3) cell adhesion: plasmin signaling; (4) immune
response: NF-AT signaling and leukocyte interactions. In
addition, there are other pathways including Role of HMGB1
in dendritic cell maturation and migration; histamine sig-
naling in dendritic cells: plasmin signaling in cell adhe-
sion; cross-talk between VEGF and angiopoietin 1 signaling
pathways; regulation of epithelial-to-mesenchymal transition
(EMT); TGF-beta-dependent induction of EMT via SMADs
in Development; role of IAP-proteins in apoptosis pathway
in apoptosis and survival, and so forth. Meanwhile, immune
system process, defense response, and response to stress
were the most significantly enriched GO processes of these
genes. With the disease folders, representing over 112 human
diseases annotated by GeneGo, these 76 genes were mainly
related to autoimmune diseases and some kinds of vascular
inflammatory diseases.

The abstracted genes involved in significant pathways are
summarized in Table 3.

3.4. STRING Analysis. Now specifically, we are interested
in finding functional associations among these genes. We
broadcast our data to STRING (a database of known and
predicted protein interactions), which responds by displaying
a network of nodes (proteins) connected by colored edges
representing functional relationships.

Figure 2 summarizes the network of predicted associa-
tions between proteins encoded by these genes. The results
indicate that CASP3, IL18, BLK, FCGR2B, FCGR2A, CRP,
CCR5, CCL5, CCR3, CCL3L1, TNFRSF1A, TNF, IL4, ERAP1,
LTA, CD40, NOD1, CTLA4, NLRP1, TGFBR2, SMAD3,
TGFB2, VEGFA, KDR, andCCR2 are associated according to
experimental evidence, with involvement in many signaling
pathways; TNF was the key of nodes, linking to CRP, IL-4,
CD40, CD40LG, IL-18, IL-10, and so on.They linked tomany
immune and inflammatory responses. All of these proteins
(encoded by genes) are interrelated, forming a large network.
However, many proteins are not linked to others, indicating
that their functions are unrelated or unknown.

http://david.abcc.ncifcrf.gov/
http://www.genego.com/
http://string-db.org/
http://string-db.org/
http://dx.doi.org/10.1155/2013/989307
http://dx.doi.org/10.1155/2013/989307
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Table 1: Candidate gene studies identified genes associated with KD.

Symbol Region Phenotype Country Reference

CD40 20q12-q13.2 KD Taiwan [20]
CAL Taiwan [20]

CD209 19p13 KD Taiwan [21]

RETN 19p13.2 Incomplete KD China [22]
KD United States [23]
CAL Japan [24]

FCGR3B 1q23 IVIG nonresponse United States [23]
NOD1 7p15-p14 KD Japan [25]
NLRP1 17p13.2 KD Japan [25]

ITPKC 19q13.1
KD Taiwan; Japan; China [26–28]
CAL Japan [29]

IVIG nonresponse Japan [29]

TGFBR2 3p22

KD European descent; Korea [30, 31]
CAL European descent; Korea [30, 31]

IVIG nonresponse European descent [30]
aortic root dilatation, European descent [30]

ABO 9q34.2 CAL Japan [32]
PELI1 2p13.3 CAL Korea [33]

SMAD3 15q22.33

KD European descent; Taiwan [30, 34]
CAL European descent [30]

IVIG nonresponse European descent [30]
aortic root dilatation European descent [30]

TGFB2 1q41

KD European descent; Taiwan [30, 34]
CAL European descent [30]

IVIG nonresponse European descent [30]
aortic root dilatation, European descent [30]

CASP3 4q34 CAL Taiwan; Japan [29, 35]
IVIG nonresponse Japan [29]

ANGPT1 8q23.1 KD Netherlands [36]

VEGFA 6p12 KD Netherlands; Taiwan; The Netherlands. [36–38]
CAL Japan [39]

MICB 6p21.3 KD Taiwan [40]
CAL Taiwan [40]

MICA 6p21.33 KD Taiwan [40]
CAL Taiwan [41]

BAG6 6p21.3 KD Taiwan [40, 42]
CAA Taiwan [42]

MSH5 6p21.3 KD Taiwan [40]
VWA7 6p21.33 KD Taiwan [40]
FCGR2B 1q23 IVIG nonresponse Pacific Northwest [43]

IL10 1q31-q32 KD Taiwan [44, 45]
CAL China; Korea; Taiwan [18, 46, 47]

CCL5 17q11.2-q12 CAL India [48]
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Table 1: Continued.

Symbol Region Phenotype Country Reference
TNFRSF1A 12p13.2 KD China [49]
CTLA4 2q33 CAL (particularly in female patients) Taiwan [50]
MMP3 11q22.3 CAL Korea; US-UK, tested in Japan [51, 52]
MMP12 11q22.3 CAL US-UK, tested in Japan [52]
FGB 4q28 CAL China [53]

CCL3L1 17q21.1 KD USA; Japan [54, 55]
IVIG nonresponse Japan [55]

CCR5 3p21.31
KD USA; The Netherlands (Dutch Caucasian);

Korea [54, 56, 57]

CAL Japan [55]
IVIG nonresponse Japan [55]

PRRC2A 6p21.3 KD Taiwan [42]
CAL Taiwan [42]

ABHD16A 6p21.3 KD Taiwan [42]
CAL Taiwan [42]

ITPR3 6p21 CAL Taiwan [58]

COL11A2 6p21.3 KD Taiwan [59]
CAL Taiwan [59]

MBL2 10q11.2
KD China; Japan [60, 61]
CAL The Netherlands; The Netherlands [62, 63]

Arterial stiffness China [64]

MMP11 22q11.23 KD Korea [65]
MIF 22q11.23 CAL Italy [66]
IL1B 2q14 IVIG nonresponse Taiwan [17]

BTNL2 6p21.3 KD Taiwan [67]
CAL Taiwan [67]

TPH2 12q21.1 CAL Korea [68]
PDCD1 2q37.3 KD Korean [69]
IL18 11q22.2-q22.3 KD Taiwan [70, 71]

HLA-E 6p21.3 KD Taiwan [72]
CAL Taiwan [72]

TIMP4 3p25 CAL Korea [73]
HLA-G 6p21.3 KD Korea [74]

CRP 1q21-q23 KD China [75]
Carotid stiffness and carotid intima-media thickness China [75]

TNF 6p21.3

KD China [75]
CAL white [76]

Intima-media thickness China [75]
IVIG nonresponse China [46]

MMP13 11q22.3 CAL Japan [77]
HLA-B 6p21.3 KD Korea [78]
HLA-C 6p21.3 KD Korea [78]
CCR3 3p21.3 KD Netherlands (Dutch Caucasian) [56]
CCR2 3p21.31 KD Netherlands (Dutch Caucasian) [56]
TIMP2 17q25 CAL Japan [79]
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Table 1: Continued.

Symbol Region Phenotype Country Reference

ACE 17q23.3
KD Taiwan; Korea [80, 81]

Coronary artery stenosis Japan [82, 83]
Myocardial ischemia Japan [82]

PLA2G7 6p21.2-p12 IVIG nonresponse Japan [84]
IL1RN 2q14.2 KD Taiwan [85]
IL4 5q31.1 KD USA [86]
KDR 4q11-q12 CAL Japan [39]
CD40LG Xq26 CAL: males affected Japan [87]
AGTR1 3q24 Coronary artery stenosis and myocardial ischemia Japan [82]
CD14 5q31.1 CAL Japan [88]
SLC11A1 2q35 KD Japan [89]
LTA 6p21.3 KD white [76]
MTHFR 1p36.3 CAL Japan [90]
HP 16q22.2 late diagnosis of KD Taiwan [90]
KD: kawasakidisease;CAL: coronary artery lesions; CAA: coronary artery aneurysms.

Table 2: Susceptibility genes for KD identified with association at genome-wide significance.

Gene Locus Methods Reference
FCGR2A 1q23 GWAS [91]
BLK 8p23-p22 GWAS [92, 93]
CASP3 4q34 Genome wide Linkage analysis [94]
ITPKC 19q13.1 Genome wide Linkage analysis; linkage disequilibrium mapping [94, 95]
CD40L Xq26 Genome wide Linkage analysis [94]
CD40 20q12-q13.2 GWAS [92, 93]
HLA-DQB2 6p21 GWAS [92]
HLA-DOB 6p21.3 GWAS [92]
NFKBIL1 6p21.3 GWAS [92]
LTA 6p21.3 GWAS [92]
NAALADL2 3q26.31 GWAS [96]
ZFHX3 16q22.3 GWAS [96]
DAB1 1p32-p31 GWAS [97]
PELI1 2p13.3 GWAS [97]
COPB2 3q23 GWAS [98]
ERAP1 5q15 GWAS [98]
IGHV 14q32.33 GWAS [98]
ABCC4 13q32 Genome-wide linkage and association mapping [99]
GWAS: genome-wide association study.

4. Discussion

4.1. Immune Response in the Pathogenesis of KD. KD has long
been considered as an abnormal immune disease.The activa-
tion of immune system and the cascade release of inflamma-
tory factors are the important features in KD. A large number
of T cells (increased activated CD4 T cells, depressed CD8 T
cells andCD4+CD25+ regulatoryT cells), largemononuclear
cells, macrophages and plasma cells, with a smaller number
of neutrophils, are observed in various organ tissues of
fatal cases of acute KD [102–106]. Additionally, various
inflammatory cytokines and chemokines [107, 108], matrix

metalloproteinases, nitric oxide production [109], autoanti-
body production [110, 111], and adhesive molecule expression
[112, 113] are also overactivated in the acute stage of KDwhich
are considered to facilitate vascular endothelial inflammation
and then participate in the pathogenesis of KD and CAL
formation. Go processes and DAVID analysis revealed that
these genes are significantly enriched in immune responses
which have the parallel results with clinical and labora-
tory findings. In addition, these genes are widely involved
in other immune systemic and inflammatory diseases,
for example, autoimmune thyroid disease, asthma, type I
diabetes mellitus, allograft rejection, inflammatory bowel
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Figure 1: Enrichment analysis of the genes by GeneGoMetaCore: (a) GO Processes, (b) Go PathwayMaps, (c) Go Diseases (by Biomarkers).
MetaCore version 6.11 build 41105.

disease, vasculitis, arthritis, and rheumatic disease. Fur-
thermore, the signal pathway produced in GeneGo contains
many immune response pathways that participate in inflam-
mation, apoptosis, injury, and remodeling process, which
have been listed in Table 3.

4.2. ECM-Remodeling and Plasmin Signaling Pathway in the
Pathogenesis of KD. In addition to the signal pathway of the
immune response, ECM-remodeling and plasmin signaling
pathway associated with cell adhesion were enriched in
GeneGo MetaCore software (FDR < 0.01, 𝑃 < 0.005).
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Table 3: Pathways analyzed by GeneGo Meta core.

Pathway categories Pathways Functions Enrichment genes

Immune response

(1) HSP60 and HSP70/TLR signaling
pathway
(2) Inflammasome in inflammatory
response
(3) NF-AT signaling and leukocyte
interactions
(4) Role of HMGB1 in dendritic cell
maturation and migration
(5) Histamine signaling in dendritic
cells
(6) CD16 signaling in NK cells
(7) MIF in innate immunity response
(8) Th1 andTh2 cell differentiation
(9) HMGB1 release from the cell
(10) PGE2 signaling in immune
response
(11) Histamine H1 receptor signaling in
immune response
(12) Role of DAP12 receptors in NK
cells

Pro-inflammatory response and
anti-inflammatory response;
cellular and humoral immune
response; NO production; apoptosis
and antiapoptosis; secretion of
leukotrienes and prostaglandins;
proliferation and differentiation of
eosinophils; chemotaxis;
proliferation, differentiation,
activation of T cell; cell necrosis;
smooth muscle construction;
vascular permeability; blood
coagulation; cytoskeleton
remodeling

CD14, HSP70, IL-10, TNF-𝛼, IL-1𝛽,
CD40, MHC class I, IL-4, NOD1,
CARD7, IL-18, TNF-R1, CD40L,
IP3receptor, CCL5, HLA-E, PLA2,
MIF, CCR5, MMP13, HLA-C,
HLA-B, HLA-G, HLA-E,
Stromelysin-1

Cell adhesion Plasmin signaling
ECM remodeling Fibrinolysis; cell viability

TGF-𝛽 2,VEGF-A, TGF-𝛽 receptor
type 2, VEGFR-2, Fibrinogen,
MMP-13, TIMP2, Stromelysin-1,
MMP-13, MMP-12

Development

(1) Cross-talk between VEGF and
Angiopoietin 1 signaling pathways
(2) Regulation of
epithelial-to-mesenchymal transition
(EMT)
(3) TGF-𝛽-dependent induction of
EMT via SMADs
(4) PEDF signaling
(5) Glucocorticoid receptor signaling

Leukocyte-endothelial adhesion;
epithelial-to-mesenchymal
transition; proteasomal
degradation; inhibition of
angiogenesis; immune response

VEGF-A, VEGFR-2, Angiopoietin 1,
IP3 receptor, TGF-𝛽 2, IL-1𝛽,
TNF-𝛼, TNF-R1, TGF-𝛽 receptor
type 2, SMAD3, TGF-𝛽, HSP70,
MMP13

Apoptosis and survival
(1) Role of IAP-proteins in apoptosis
(2) Anti-apoptotic TNFs/NF-kB/Bcl-2
pathway

Caspase dependent and
independent apoptosis; apoptosis
and antiapoptosis

TNF-𝛼, TNF-R1, HSP70, caspase3,
CD40L, CD40

Transcription NF-kB signaling pathway Activate the transcription of target
genes TNF-𝛼, TGF-𝛽, TNF-R1, CD14

FDR = 0.01.

Numerous studies suggest that they participated in the
pathophysiological process of KD. Activation of the fibri-
nolytic system, vascular injury, and remodeling were the
prominent outcome in these pathways. Activated plasmin
in the plasmin signaling pathway which is a major fibri-
nolytic protease can directly degrade fibrinogen, laminin,
and fibronectin [114]. On the cell surface, plasmin can
activate a number of matrix metalloproteinases (MMPs)
MMP1, MMP13 [115]. Other MMPs (MMP-9 and so on) were
subsequently activated. Moreover, IL-1 𝛽, IL-6, TNF-𝛼,
and IFN-𝛾 can stimulate the endothelial cells to produce
more MMP-9. These MMPs degrade extracellular matrix
proteins and components of basal membranes leading to the
disruption of the internal elastic lamina and the trilaminar
structure of the vascular wall [116–118]. Many examina-
tions have showed that many MMPs were highly expressed
in the acute stage of KD. MMPs are prominent during

the remodeling process, contributing to the formation of
coronary artery lesions [119], and consequently the intima
proliferates and thickens, while in rare cases the vessel wall
becomes stenotic or occluded by either stenosis or throm-
bosis. Endogenous tissue inhibitors of metalloproteinases
(TIMPs) such as TIMP1, TIMP2, and TIMP3 can reduce
excessive proteolytic ECM degradation by MMPs. The bal-
ance between MMPs and TIMPs controls the extent of ECM
remodeling [120, 121]. One study indicated that MMPs and
TIMPs were in a state of imbalance in KD patients [122].
Therefore, ECM-remodeling and plasmin signaling pathway
may have played a certain role in the vascular damage in
KD.

4.3. NF-AT Signaling and Leukocyte Interactions. NF-AT sig-
naling and leukocyte interactions (𝑃 value = 2.28 × 10−5)
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Figure 2: STRING analysis of the relationship between genes.The network nodes represent the proteins encoded by the genes. Seven different
colored lines link a number of nodes and represent seven types of evidence used in predicting associations. Among these significant genes,
VWA7, PRRC2A, andABHD16Awere not identified.A red line indicates the presence of fusion evidence; a green line represents neighborhood
evidence; a blue line represents cooccurrence evidence; a purple line represents experimental evidence; a yellow line represents text mining
evidence; a light blue line represents database evidence [100, 101] and a black line represents coexpression evidence.

in the immune response cause our great concern. In this
pathway, the activation of NFAT proteins is induced by the
engagement of receptors that are coupled to the calcium/
calcineurin signals, such as the antigen receptors that are
expressed by T cells (TCR) and B cells (BCR), the Fc-epsilon
receptors (e.g, Fc epsilon R1) that are expressed by mast cells
and basophil cells or receptors coupled to heterotrimeric G-
proteins (e.g., CCR3 on eosinophils) [123, 124] (Figure 3).

TheNFAT signal is activated inT cell and can promote the
expression of the immune-related genes. Antigen presenting
cells present antigenic peptides to the T helper cell via
major histocompatibility complex, class (II) (MHC class II).
MHC class II can upregulate the expression of CD4+T cells
and downregulate the expression of CD8+T cells which has
been confirmed in acute phase of KD. Then, MHC class II
peptides activate the T-cell receptor (TCR alpha/beta-CD3

complex) that starts a signal leading to the increase in
cytosolic Ca(II) through both the transient release of calcium
from intracellular stores and the influx of calcium through
Ca(II) channels. That leads to activation of the calcium-
regulated phosphatase, Calcineurin A. The activated Cal-
cineurin A cleaves an inhibitory phosphate residue from
the transcription fator NF-AT (e.g., NF-AT1 and NF-AT2).
Consequently, NF-AT is transported into the nucleus, where
it cooperates with other transcription factors for promoter
binding and thereby induces the expression of cytokines
and many other T-cell-activation-induced proteins. NF-AT
in T cells is critical for the expression of a number of
immunologically important genes, including IL-2, IL-4, IL-
5, and IL-13, as well as several related membrane-bound
proteins such as CD40 Ligand (CD40L) and Fas Ligand (Fasl)
[125–127].
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Figure 3: NF-AT signaling and leukocyte interactions have been enriched by GeneGo.

IL-4 plays an important role in cell-to-cell activa-
tion to activate NFAT signal to release leukotrienes and
prostaglandins. Activated by NFAT signal in T cell, IL-4 acti-
vates nearby B cells that express corresponding receptor, IL-
4R. In conjunction with BCR, IL-4 signaling pathway leads
to the activation of several transcription factors, including
nuclear factor kappa-B(NF-𝜅B), signal transducer, and acti-
vator of transcription 6 (STAT6), that regulate immunoglob-
ulin class switching and the production of immunoglobulin
E (IgE) by some B cells [128–130]. IgE in turn activates NF-
AT1 translocation and function in mast cells and basophils
through the IgE receptor (Fc epsilon R1) leading to produc-
tion of an array of cytokines, including IL-4, IL-5, and IL-
13 [131, 132]. Fc epsilon R1 pathway also leads to activation
of the cytosolic phospholipase A2 (Cpla2) that contributes
to the secretion of leukotrienes and prostaglandins, the
main mediators of inflammatory response [133]. IL-4 and
IL-13, in turn, activate epithelial cells and/or fibroblasts to
release eosinophil-activating cytokines, such as chemokine
ligand 11 (Eotaxin).These cytokines recruit eosinophils to the
inflammatory focus in the tissue and induce intracellular sig-
naling, mainly via chemokine receptor 3 (CCR3) activation,

which leads to the leukotrienes and prostaglandins synthesis
and also can use NF-AT1 transcription complex to activate
cytokines and chemokines. IL-4 plays an important role in the
interaction between the leukocytes and induces the release of
variety of inflammatory mediators.

Additionally, CD40L activates nearby B cells that express
corresponding receptor CD40. IL-2 binds to IL-2 receptors at
the T Cells surface to drive clonal expansion of the activated
cell that induces autocrine proliferation [124]. Fasl activates
the adjacent T Cells via binding to its receptors; FasR (CD95)
[134] mediates apoptosis through the FAS signaling cascades
(apoptosis). Fas-Fas ligand system has been considered to be
involved in inducing apoptosis in KD resulting in marked
decrease of peripheral blood lymphocytes [135].

4.3.1. What Is the NFATs? NFATs are nuclear factors of
activated T cells. The NFAT family consists of five mem-
bers: NFAT1, NFAT2, NFAT3, NFAT4, NFAT4, and NFAT5.
Four (except NFAT5) of these proteins are regulated by
calcium signaling and four (except NFAT3) are expressed
in the immune system [124]. They are initially identified as
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Ca2+-sensitive transcription factors that regulate gene tran-
scription in response to intracellular Ca2+signals. NFAT fam-
ilymembers are expressed by almost every cell type, including
the immune system and nonimmune cells, contributed to the
regulation of immune response, as well as development and
differentiation. In the immune system, NFATs have pivotal
roles in the development and function of immune organs
and regulate numerous physiological processes. With the
best described effects on T cell activation and phenotype,
NFATs also regulate gene expression in other immune cells
such as B cells [136], mast cells [137, 138], eosinophils
[139], basophils [140] and NK cells [141], macrophage [142],
and dendritic cells [143]. They can regulate the release of
various cytokines in immune cells. In nonimmune cells,
they regulate development and differentiation in a variety
of organ systems [134]. It has been examined that they
control gene expression during remodeling and are acti-
vated by growth factors [144, 145] or histamine [146] in
the endothelium, contributing to cell growth, remodeling
of smooth muscle cells [147–149], and vascular develop-
ment and angiogenesis [150–152] (including the isoforms
c1 and c3) and are activated in response to inflammatory
processes [153] and high intravascular pressure [154] in
the vascular system. The isoforms NFATc3 and NFATc4
are active during pathophysiological conditions that affect
the cardiovascular system, including atrial fibrillation [155,
156] and hypertrophy [157]. Loss of specific NFAT isoforms
has been found to result in cardiovascular, skeletal muscle,
cartilage, neuronal, or immune system defects [158–162].
Therefore, we can conclude that the Ca2+/NFAT pathway
plays a wide range role in inflammatory processes, immune
responses, and the remodeling of vascular tissues. All of
these physiological processes occur in KD. It is suggested
that the Ca2+/NFAT pathway may involve in the pathological
processes of KD.

4.3.2. The Upstream Adjustment Signals of NFAT Signal.
NFATs are mainly Ca2+-sensitive transcription factors that
regulate gene transcription in response to intracellular Ca2+
signals. Four (except NFAT5) of these proteins are regulated
by calcium signaling. Activity of NFATs is regulated by
phosphorylation. Inactive NFATs are highly phosphorylated
and localized in the cytoplasm. Intracellular Ca2+ signals
activate the calmodulin-dependent serine/threonine phos-
phatase calcineurin (CaN), which dephosphorylates NFATs
and induces translocation to the nucleus.

Inositol-trisphosphate 3-kinase C (ITPKC) is a negative
regulator of the Ca2+/NFAT pathway. NF-AT signaling was
first mentioned to be associated with regulation of ITPKC in
the KD. ITPKC is a kinase of inositol 1,4,5-triphosphate (IP3)
which is a second messenger molecule that releases calcium
from the endoplasmic and sarcoplasmic reticulum. First
identified by genome-wide study and following confirmation
by candidate genetic studies in both Japanese, Taiwanese and
US children, ITPKC was considered to be associated with
KD which confers both susceptibility to KD and the risk
for CAL and IVIG resistance [26, 94, 95, 163], which has
been thought to be involved in the Ca2+-dependent NFAT

signaling pathways in T cells. It has been considered that
C allele of rs28493229 in ITPKC can reduce the splicing
efficiency of the ITPKCmRNA, inducing the hyperactivation
of Ca2+-dependent NFAT signal in T cells, leading to a
reduction in the phosphorylation of IP3 to IP4, resulting in
the increase of IP3 levels. This would result in an increase of
calcium levels and excessive activation of the NFAT signal,
thus leading to immune dysregulation.

Caspase-3 (CASP3) is a key molecule of activation-
induced cell death (AICD) [164]; it is profoundly related
to the apoptosis of immune cells. It has also been reported
to cleave the inositol 1,4,5-triphosphate receptor, type 1
(ITPR1) in apoptotic T cells (ITPR1 is a receptor for inositol
1,4,5-trisphosphate (IP3), a substrate for ITPKC in T cells
[165]). Thereby, it is a positive regulatory factor of NFAT
signal. Additionally, the mutation of CASP3 (rs113420705)
can reduce the binding of NFAT to the DNA surrounding the
SNP. Its gene variant (4q34-35, rs113420705) has been iden-
tified contributing to KD susceptibility in Euro-American
triads and Taiwanese [35, 166]. Other studies [167, 168] also
stated that CASP3 plays an important role in the execution
phase of apoptosis of immune cells in KD.

Calcineurin inhibitors (e.g., CsA, FK506) have been
extensively used as immunosuppressive agents to improve
graft survival and to treat autoimmune diseases [127]. They
act by blocking calcineurin enzymatic activity. CsA has been
an effective [169–171] therapeutic drug in the treatment of
IVIG resistance patients in KD.

4.3.3. The Downstream of Adjustment Signals of NFAT Sig-
nal: NF-𝜅B (Nuclear Factor Kappa-B). NF-𝜅B is another
transcription factor of eukaryotes, which is evolutionarily
related to the NF-AT family of transcription factors. It is
activated in response to signals that lead to cell growth,
differentiation, apoptosis, and other events. It takes part in
expression of numerous cytokines and adhesion molecules
which are critical elements involved in the regulation of
immune responses.

NF-𝜅B plays pivotal roles in the immune and inflam-
matory responses by regulating the interaction between
CD40 and CD40L in T cells and B cells. NF-𝜅B can be
activated by IL-4 signaling pathway in B cells to induce
the expression of CD40 which has been illustrated above.
CD40 plays a crucial role as a costimulatory molecule in the
cooperation between T and B cells. It is important in the
pathogenesis of autoimmune diseases in humans and animal
models such as autoimmune thyroiditis, inflammatory bowel
disease, psoriasis, systemic lupus erythematosus, allergic
encephalomyelitis, multiple sclerosis, rheumatoid arthritis,
collagen-induced arthritis, and autoimmune type of diabetes
mellitus [172–174]. CD40 signaling leads to isotype switching
and autoantibody production in B cells and in T-cell priming,
altering TCR expression through the expression and nuclear
translocation of recombinases, which increases the risk of
developing autoimmunity [173]. CD40 engagement in both T
or B cells leads to the production of cytokines, such as IL-12,
IL-2, TNF-𝛼, IFN-𝛼, and CD80, developing an environment
which is conducive to autoimmune diseases [172–174].
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Additionally, the interaction between CD40 and CD40L
regulated by NF-𝜅B can regulate the expression of numerous
biomolecules in other cells. They can enhance the expression
of cytokines (such as IL-2, IL-6, IL-10, TNF-𝛼, lymphotoxin-
𝛼, and transforming growth factor-𝛽 by B cells; the synthesis
of granulocyte macrophage colony-stimulating factor (GM-
CSF) by dendritic cells and eosinophils and the synthesis of
TNF-𝛼, IL-1, IL-6, and IL-8 by peripheral blood mononu-
clear cells), chemokines (monocyte chemotactic protein-1
(MCP-1), IL-8, MCP-1, matrix metalloproteinases (MMP-
1,-2,-3,-9,-11, and -13) by peripheral blood mononuclear
cells, macrophages, endothelial and smooth muscle cells
endothelial), adhesion molecules (E-selectin, vascular cell
adhesion molecule-1 (VCAM-1) and intercellular adhesion
molecule-1 (ICAM-1) in endothelial cells and fibroblasts),
platelet-activating factor [175], prostaglandin E2 [176], vascu-
lar endothelial growth factor [177, 178], and NO [172]. which
are involved in the pathophysiology of inflammatory and
autoimmune diseases.

NF-𝜅B may participate in the pathogenesis of vasculitis
of KD in acute stage. Some studies have indicated that
NF-𝜅B is excessively activated in the acute phase of KD
and the inhibition of NF-𝜅B can reduce the generation
of inflammatory cytokines which plays important roles in
vascular damage of KD [179, 180]. NF-𝜅B signaling pathway
is a complex system; it perhaps involves in immune damage
of KD in different levels. Activation of NF-𝜅B can be used
as the trigger of key links of the inflammatory response and
induce the cascade release of inflammatory response factor,
eventually leading to inflammatory pathological damage.

4.4. The NF-AT Signaling and Leukocyte Interactions and NF-
𝜅B Signaling Together May Be Involved in the Pathogenetic
Process of KD. Given the important role of NFAT signaling
and NF-𝜅B signaling in the activation of immune system
and the regulating of vascular remodeling, we speculate that
the interaction betweenNFAT signaling andNF-𝜅B signaling
together may also be involved in the pathogenesis of KD.

Initially due to exposure to some inflammatory stimuli or
certain pathogens, antigen presenting cells present antigenic
peptides to the T-cell receptors via MHC class II leading
to the stimulation of PLC-gamma 1 and hydrolyzation of
PIP2. The second messengers IP3 in the T cells start a
signal leading to the increase in cytosolic Ca(II) through
both the transient release of calcium from intracellular stores
and influx of calcium through Ca(II) channels. The high
calcium levels lead to activation of the calcium-regulated
phosphatase, Calcineurin A. The activated Calcineurin A
cleaves an inhibitory phosphate residue from the transcrip-
tion fator NF-AT (e.g., NF-AT1 and NF-AT2). Consequently,
NF-AT is transported into the nucleus, where it cooperates
with other transcription factors for promoter binding and
activates T cells inducing the expression of a number of
immunologically important genes including IL-2, IL-4, IL-
5, IL-13, CD40 Ligand (CD40L), and Fas Ligand (Fasl).
Through the leukocyte interactions, other immune cells were
activated and release other inflammatory cytokines, such as
leukotrienes and prostaglandins. In B cells and T-cell, CD40

signaling leads to isotype switching, autoantibody produc-
tion, and altering TCR expression. CD40 signaling can also
enhance the expression of cytokines, chemokines, matrix
metalloproteinases, adhesion molecules, platelet-activating
factors, prostaglandin E2, vascular endothelial growth factor,
and NO. in other cells. The combined effect of these factors
causes the vascular damage and formation of coronary artery
lesions inKD.Theprocess ofNFAT signal in regulating devel-
opment and differentiation was also excessively induced by
the pathological damage of vasculature and then contributed
to the remodeling of vascular system.

IL-4, CD40, and CD40L, which are enriched in the path-
way of NF-AT signaling and leukocyte interactions and play a
crucial role in the immune response and remodeling process,
are located in the center position of the network (analysed
by STRING) and are closely linked with the other factors. It
further demonstrate the importance of this pathway.

5. Conclusions

KD is a complex disease. Many studies have shown that it
is associated with a variety of gene polymorphism. Through
GeneGo and DAVID analysis, we speculated that NF-AT
signaling and leukocyte interactions combined with another
transcription factor NF-𝜅B may play an important role in
pathological damage of KD. Their importance needs our
follow-up clinical validation.
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[126] F. Macián, C. López-Rodŕıguez, and A. Rao, “Partners in
transcription: NFAT and AP-1,” Oncogene, vol. 20, no. 19, pp.
2476–2489, 2001.

[127] M. Lee and J. Park, “Regulation of NFAT activation: a poten-
tial therapeutic target for immunosuppression,” Molecules and
Cells, vol. 22, no. 1, pp. 1–7, 2006.

[128] M. Benekli, M. R. Baer, H. Baumann, and M. Wetzler, “Signal
transducer and activator of transcription proteins in leukemias,”
Blood, vol. 101, no. 8, pp. 2940–2954, 2003.

[129] K. Silver and R. J. Cornall, “Isotype control of B cell signaling,”
Science’s STKE, vol. 2003, no. 184, article pe21, 2003.

[130] T.Mizuno andT. L. Rothstein, “B cell receptor (BCR) cross-talk:
CD40 engagement enhances BCR-induced ERK activation,”
Journal of Immunology, vol. 174, no. 6, pp. 3369–3376, 2005.

[131] T. Kawakami and S. J. Galli, “Regulation of mast-cell and
basophil function and survival by IgE,” Nature Reviews
Immunology, vol. 2, no. 10, pp. 773–786, 2002.

[132] A. Lorentz, I. Klopp, T. Gebhardt, M. P. Manns, and S. C.
Bischoff, “Role of activator protein 1, nuclear factor-𝜅B, and
nuclear factor of activated T cells in IgE receptor-mediated
cytokine expression in mature human mast cells,” Journal of
Allergy and Clinical Immunology, vol. 111, no. 5, pp. 1062–1068,
2003.

[133] C. C. Leslie, “Regulation of the specific release of arachi-
donic acid by cytosolic phospholipase A2,” Prostaglandins
Leukotrienes and Essential Fatty Acids, vol. 70, no. 4, pp. 373–
376, 2004.



16 Computational and Mathematical Methods in Medicine

[134] G. R. Crabtree and E. N. Olson, “NFAT signaling: choreograph-
ing the social lives of cells,” Cell, vol. 109, no. 2, pp. S67–S79,
2002.

[135] H. Y. Kim, H. G. Lee, and D. S. Kim, “Apoptosis of periph-
eral blood mononuclear cells in Kawasaki disease,” Journal of
Rheumatology, vol. 27, no. 3, pp. 801–806, 2000.

[136] M. M. Winslow, E. M. Gallo, J. R. Neilson, and G. R. Crabtree,
“The calcineurin phosphatase complex modulates immuno-
genic B cell responses,” Immunity, vol. 24, no. 2, pp. 141–152,
2006.

[137] S.Monticelli, D. C. Solymar, andA. Rao, “Role ofNFATproteins
in IL13 gene transcription inmast cells,”The Journal of Biological
Chemistry, vol. 279, no. 35, pp. 36210–36218, 2004.
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