
 

 

Since January 2020 Elsevier has created a COVID-19 resource centre with 

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the 

company's public news and information website. 

 

Elsevier hereby grants permission to make all its COVID-19-related 

research that is available on the COVID-19 resource centre - including this 

research content - immediately available in PubMed Central and other 

publicly funded repositories, such as the WHO COVID database with rights 

for unrestricted research re-use and analyses in any form or by any means 

with acknowledgement of the original source. These permissions are 

granted for free by Elsevier for as long as the COVID-19 resource centre 

remains active. 

 



Advances in Venti lator
Management for Patients

with Acute Respiratory Distress
Syndrome

Michael C. Sklar, MDa,b,c, Laveena Munshi, MD, MSca,d,*
KEYWORDS

� ARDS � PEEP � Prone positioning � Neuromuscular blockers

KEY POINTS

� Despite decades of research, acute respiratory distress syndrome (ARDS) is not always recognized
in ICU practice.

� Low-tidal-volume ventilation, plateau pressure limitations, driving pressure targets, andmechanical
ventilation in the prone position for moderate–severe ARDS are strategies shown to minimize harm
associated with mechanical ventilation.

� The risk–benefits of spontaneous breathing, optimal and individualized positive end-expiratory
pressure titration, and oxygen therapy thresholds are areas of ARDS research that continue to
evolve and likely have individualized targets for different phenotypes of patients with ARDS.
INTRODUCTION

The supportive care management of the acute res-
piratory distress syndrome (ARDS) has remained a
cornerstone of therapy in critical care medicine for
well over 50 years. Over time, we have seen an
evolution in our understanding of the injured
lung, its interaction with invasive mechanical venti-
lation and the optimal approach to supporting the
lung while minimizing harm. Recent years have un-
veiled the heterogeneous nature of ARDS empha-
sizing the need to more accurately define
sub-phenotypes. Given this, research is ongoing
to better refine and individualized mechanical
ventilatory support (eg, optimal selection of posi-
tive end-expiratory pressure [PEEP] and thresh-
olds when spontaneous breathing efforts could
be harmful). In this review, we highlight the current
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evidence-based ventilatory management prac-
tices for patients with ARDS and explore some
experimental novel ventilation targets (Fig. 1).

What Is Acute Respiratory Distress Syndrome?

ARDS is the clinical syndrome consisting of acute
hypoxemia, reduced lung compliance, and pulmo-
nary infiltrates which was first described in 1967.1

The Berlin definition2 classifies ARDS as respira-
tory failure that occurs acutely (within 7 days)
and is characterized by the onset of bilateral chest
radiograph opacities not fully explained by cardiac
failure. The severity of the syndrome is classified
as mild, moderate, or severe according to the de-
gree of hypoxemia defined by PaO2/FiO2. Impor-
tantly, this must be fulfilled with patients
receiving at least 5 cm H2O of positive pressure.
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The severity of ARDS correlates strongly with mor-
tality. Contemporary estimates of ARDS mortality
were recently described in the LUNGSAFE obser-
vational study,3 where investigators found approx-
imately 25%mortality in mild ARDS and up to 45%
in the severe subgroup. More recently and partially
driven by the COVID-19 pandemic, there has been
an interest in expanding the definition of ARDS,
acknowledging the limitations of arterial blood
gas measurements in resource-limited settings,
and the consideration of high-flow nasal oxygen
and noninvasive ventilation as equivalents of me-
chanical ventilation to satisfy diagnostic criteria.4
Ventilator-Induced Lung Injury

The focus of mechanical ventilatory practices in
ARDS centers around minimizing ventilator-
induced lung injury (VILI). VILI is the consequence
of trauma to the lungs secondary to high-tidal-
volume ventilation (volutrauma), excessive venti-
lating pressure (barotrauma) and the cyclic
opening and closing of alveoli during tidal ventila-
tion (atelectrauma).5,6 These deforming and patho-
logic stresses to the lung architecture cause the
release of inflammatory mediators into the sys-
temic circulation (biotrauma).7 The translocation
of these systemic inflammatory mediators has
been implicated in the causal pathway leading to
multisystemic organ failure and death that is asso-
ciated with VILI and ARDS.8

Ventilatory Management of Acute Respiratory
Distress Syndrome

Lung-protective ventilation
Themainstay of lung-protectivemechanical ventila-
tion derives from the seminal ARDSnet trial in
2000.9 This randomized trial compared ventilating
patients at 6 mL/kg of predicted body weight
(PBW) 12 mL/kg. Compared with the higher tidal
volume (VT) group, patients ventilated at 6 mL/kg
PBW had improved survival, demonstrated impor-
tant secondary objectives including shortened
duration of mechanical ventilation, attenuated sys-
temic inflammation, and reduced the incidence
and amount of extrapulmonary organ failure.9 Cur-
rent recommendations, based on this trial, suggest
limiting both VT to 4-6 mL/kg of PBW along with
limiting plateau pressure (Pplat) to < 30 cmH2O.

Tidal Volume: More than just 6 mL/kg

Although 6 mL/kg of VT compared with 12 mL/kg
has been demonstrated to be effective in
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preventing VILI,9 the ideal VT strategy in ARDS is
unknown. In fact, even when VT is normalized to
a patient’s PBW, there is experimental evidence
to suggest that this too does not guarantee lung
protection.10,11 Conceivably, therefore, ventilating
patients below 6 mL/kg may confer even greater
lung protection. Two human studies in patients
on extracorporeal life support for severe ARDS,
in which VT was below 6 mL/kg demonstrated a
reduction in systemic inflammatory mediators.12,13

However, whether this translates to clinical benefit
remains unclear. A recent trial employing the use
of extracorporeal CO2 removal to facilitate lower
tidal volume ventilation (�3 mL/kg) did not confer
a survival advantage compared with conventional
ventilation and there were increased adverse
events associated with the device. The trial was
stopped early due to futility and feasibility
following recommendations from the data safety
monitoring committee. More research is needed
to evaluate the population, approach, and poten-
tial utility to lowering tidal volumes less than
6 mL/kg.

A physiologically derived ventilation target:
Driving pressure
A pressure- and volume-limited ventilation strat-
egy neglects the individual respiratory pathophys-
iology and heterogeneity of ARDS patients. To
account for this variability in respiratory mechanics
across ARDS patients, investigators evaluated
driving pressure (DP) as a predictor variable for
mortality in ARDS. Compared with set tidal vol-
ume, DP is a tidal volume normalized to an individ-
ual patient’s lung compliance. DP is measured as
the difference between Pplat and total PEEP.
There are a few caveats that should be mentioned
to ensure the measurement of this value is accu-
rate: the patient should be completely passive on
the ventilator (either receiving neuromuscular
blockade or deep sedation) and an end-
expiratory occlusion maneuver should be per-
formed to ensure there is no additional auto-PEEP.

DP 5 Pplat � PEEPtotal

Amato and colleagues performed an individual
patient meta-analysis of more than 3000 patients
with ARDS from several randomized controlled tri-
als (RCTs) to evaluate the association between DP
and survival in ARDS.14 Importantly, these investi-
gators found that increases in DP, even in those
patients receiving conventionally protective Pplat,
were associated with increased mortality. Further-
more, DP was found to be the strongest predictor
associated with outcome in ARDS patients, poten-
tially explained by the physiologic and individual-
ized nature of this variable.14 In this analysis,
there was an association toward increased mortal-
ity as DP became greater than approximately 14
cmH2O. A pilot, RCT was recently published which
established that a DP-targeted ventilation
approach was safe, feasible, and laid the founda-
tion for a future large-scale RCT.15,16

Positive End-Expiratory Pressure Titration and
Lung Recruitment

Physiologic impact of positive end-expiratory
pressure
PEEP has been a cornerstone of ventilator man-
agement for ARDS since its first description.1,17

However, defining the optimal level of PEEP has
been challenging.18 This is likely due to the fact
that no one PEEP strategy is generalizable to all
patients with ARDS. PEEP is used primarily to
improve oxygenation and prevent atelectrauma
(the cyclic opening and closing of alveoli that can
occur during tidal ventilation) that contributes to
VILI.5,19 Further mechanistic benefits of PEEP
include recruiting collapsed alveoli, thereby
improving overall gas exchange,20 reducing intra-
pulmonary shunt, and reducing stress and strain
on the lung.21 By recruiting additional alveolar
units to participate in gas exchange, this improves
the homogeneity of ventilation and reduces VILI by
mitigating the effects of stress multipliers on the
lung.22

PEEP can have a major effect on circulatory
function and plays a key role in complex heart–
lung interactions in mechanically ventilated pa-
tients. PEEP can affect both left and right heart
function and depending on volume status and ven-
tricular function can have either beneficial or detri-
mental effects on cardiovascular and respiratory
function. With respect to the compromised left
ventricle, PEEP can improve cardiac function by
reducing afterload, although PEEP typically in-
creases right ventricular afterload.23 Conversely,
higher levels of applied PEEP via reduction in
venous return and therefore preload can signifi-
cantly reduce cardiac output.24

Recruitment maneuvers
Predicated on the physiologic basis that atelec-
tasis is a major contributor to VILI, an “open
lung” approach has been advocated for the man-
agement of patients with ARDS.25 One such way
to maximally open the lung units is to perform a
“recruitment” maneuver. Using a sustained in-
crease in airway pressure, alveolar units are
opened, and then a certain amount of applied
PEEP is maintained to keep the lungs “open.”26

Two commonly described approaches to deliv-
ering a recruitment maneuver involve a sustained
inflation and “staircase” increase in positive
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pressure. Typically, a sustained inflation recruit-
ment maneuver may be executed as a set applied
PEEP for a fixed time (30 cmH2O for 30 seconds).26

The staircase maneuver involves progressive
increased airway pressure while maintaining a
constant driving pressure up to peak airway pres-
sure of approximately 40 to 60 cmH2O.27 Although
recruitment maneuvers may serve to open atelec-
tatic lung units to improve oxygenation, they may
also lead to overdistension or compromise in car-
diac output. The overall benefit achieved
(improving oxygenation vs overdistension and
decrease in cardiac output) depends on the overall
recruitability of the lung. Being able to predict
which patients will have a favorable response is
sometimes difficult to determine at the bedside.

Clinical evidence guiding recruitment
maneuvers and positive end-expiratory
pressure
Although it has been at least a decade since the
publication of RCTs evaluating high versus low
PEEP strategies, there is still no clear evidence
for the guidance of PEEP in the contemporary
management of ARDS. The ALVEOLI trial28

enrolled 549 patients to receive either high PEEP
(mean PEEP 13.2 � 3.5 cm H2O) or low PEEP
(mean PEEP 8.3 � 3.2 cm H2O) in patients with
ARDS. The lung open ventilation study (LOVS)29

trial enrolled 983 patients randomized to high
(mean day 1 PEEP 15.6 � 3.9 cm H2O) or low
(mean day 1 PEEP 10.1� 3.0 cm H2O) PEEP strat-
egy. Finally, the EXPRESS trial30 randomized 767
patients to a moderate PEEP strategy (5–9
cmH2O) or titrated PEEP to reach a Pplat of 28
to 30 cmH2O (mean PEEP 15.8 � 2.9 cm H2O).
All studies individually found no difference in mor-
tality between higher and lower PEEP strategies.
However, in a 2299 meta-analysis, high PEEP
was associated with a mortality benefit across
the subgroup of patients with moderate–severe
ARDS.31

An RCT of high-intensity recruitment maneu-
vers, the ART trial,32 was published in 2017. This
trial randomized 1010 patients with moderate or
severe ARDS to either a control arm of low PEEP
or an experimental arm of lung recruitment maneu-
vers followed by a decremental PEEP trial incorpo-
rating compliance measurements to determine
optimal PEEP. The primary outcome of 28-day
mortality was higher in the experimental (55%)
compared with the control group (49%) contrary
to the original hypothesis.
It has been theorized that the excess mortality

rate in the experimental arm may be explained
by at least two physiologic processes. First, the
recruitment maneuvers in the protocol may have
been both excessive and prolonged. Peak pres-
sures upwards of 60 cmH2O and total recruitment
maneuver time for as long as 25 minutes may have
contributed to barotrauma and VILI, leading to the
increased mortality rates.33 The second concern in
this trial was the high proportion of patient–
ventilator dyssynchrony in the experimental group.
These dyssynchronies have the potential to lead to
breath stacking and double triggering, which,
effectively, can double tidal volume and/or peak
pressures and precipitate further lung injury.
Finally, a reevaluation of high versus low PEEP

strategies categorized patients with moderate-to-
severe ARDS into hyperinflammatory versus non-
hyperinflammatory subphenotypes. The impact
of PEEP strategy differed by phenotype for mortal-
ity, ventilator-free days, and organ-failure-free
days.34

Although several questions remain on the
contemporary application of PEEP in ARDS, there
are several emerging, physiologically based
methods proposed to enable clinicians to apply
individualized PEEP to their patients.

The future: Personalized positive end-
expiratory pressure selection
Esophageal pressure Contemporary ventilator
management and guidelines for mechanical venti-
lation target airway Pplat as surrogates for alveolar
distending pressure. Airway pressure, however,
reflects the sum of the distending pressures of
the lungs and the chest wall. The use of esopha-
geal pressure (Pes) manometer allows for the esti-
mation of pleural pressure and therefore allows for
the partitioning of lung and chest wall distending
pressures.
Measurement of Pes during mechanical ventila-

tion has been a technique commonly used in the
research setting but has had sparse clinical up-
take.35 Pes estimates the changes in pleural pres-
sure36 and therefore allows estimation of
transpulmonary pressure, calculated as the differ-
ence between Pplat and Pes.37 Pes tracings can
be used to individually understand and titrate me-
chanical ventilatory support in patients with ARDS.

Ptp 5 Paw � Pes

The most commonly known method to estimate
pleural pressure and calculate transpulmonary
pressure is by directly estimating pleural pressure
from absolute values of Pes.38

The absolute value of the Pes method relies on
the assumption that Pes is a direct estimate of
pleural pressure. A pig and human cadaver study
found that absolute measured Pes accurately re-
flects local pleural pressure in the mid to depen-
dent lung regions,39 where atelectasis and lung
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collapse typically occur in ARDS.40 Thus, titrating
PEEP to absolute Pes is physiologically sound,
and two RCTs of this approach demonstrated
physiologic benefits, but did not demonstrate sur-
vival advantage in ARDS patients.38,41

An alternative approach is using airway Pplat
and the elastance ratio of chest wall to the respira-
tory system.42,43 The ratio of chest wall to respira-
tory system elastance determines the fraction of
airway driving pressure consumed to inflate the
chest wall, thought to be non-harmful to the lungs.
An experimental study found that transpulmonary
pressure calculated from the elastance ratio
reasonably reflects transpulmonary pressure in
the nondependent “baby” lung where it is most
vulnerable to VILI.39

Perhaps applying both approaches in prospec-
tive trials may translate into improved outcomes
in patients with ARDS. Pes measurements also
have a role in the ARDS recovery phase to monitor
spontaneous breathing and the assessment of
patient–ventilatory asynchronies.

Recruitment-to-inflation ratio A novel, single-
breath maneuver, termed the recruitment-to-
inflation (R/I) ratio to assess lung recruitment,
was recently described in non-COVID ARDS.44

Using a drop in PEEP over a single-breath maneu-
ver, investigators measured recruited lung volume
over the given range of PEEP change. Mathemat-
ically, the R/I ratio represents the proportion of vol-
ume distributed to the recruited lung compared
with that volume distributed to the baby lung
with changes in PEEP. In other terms, the R/I ratio
can help clinicians separate patients who may
benefit from higher PEEP (recruitment of collapsed
alveoli) versus over-distending lung units that are
already open (potentially injuring the baby
lung).44 A small prospective study in 24 patients
with COVID-related ARDS supported this
finding.45 A multicenter, prospective RCT
comparing traditional PEEP titration with PEEP–
FiO2 tables versus PEEP based on the R/I ratio in
both COVID and non-COVID ARDS is currently
recruiting patients (NCT03963622).

High-frequency oscillation High-frequency oscil-
latory ventilation was a strategy previously evalu-
ated across patients with moderate–severe
ARDS. It was hypothesized that an approach that
focuses on optimal lung recruitment with minimal
tidal volumes may be the most “lung-protective”
approach to ventilation. In two large randomized
trials across patients with moderate–severe
ARDS, high-frequency oscillation, compared to
the standard of care (conventional ventilation tar-
gets or an open lung ventilatory strategy), did not
improve mortality.46,47 In an individual patient
meta-analysis, however, at a Pao2/Fio2 threshold
below 64mmHg, there was a signal toward benefit
with the use of high-frequency oscillation.48

To Open the Lung or Not

Strategies aimed at fully recruiting or “opening”
the lung through recruitment maneuvers, oscilla-
tory ventilation, or higher PEEP strategies have
consistently lacked translation to clinically mean-
ingful improvements in patient outcomes. Howev-
er, many of these studies adopted an approach to
opening the lung independent of patient’s individ-
ual ARDS physiology. Maximal inflation across all
patients with ARDS may not be the right approach
for all patients. Emerging evidence suggests that
the collapsed lung may not be always harmful
and may in certain settings be associated less in-
flammatory compared with aerated lung units.49–51

Future research evaluating optimal mechanisms of
opening/recruiting the lung needs to focus on the
identification of which patients would benefit
from an open lung strategy and pragmatic
methods to execute this at the bedside.

Oxygen Titration

Optimal oxygen thresholds in the setting of ARDS
have emerged as a topic receiving much attention
in recent years. Liberal oxygen targets (hyperoxia/
hyperoxemia), conservative oxygen targets, and
permissive hypoxia have all been evaluated
yielding conflicting results. The inconsistent find-
ings are likely related to heterogeneous popula-
tions being evaluated with different intensities of
illness and organ injuries present.

Hyperoxia and hyperoxemia have been associ-
ated with local and systemic toxicities. Excess ox-
ygen can result in the development of reactive
oxygen species which can precipitate apoptosis,
vasoconstriction, inflammation, and multisystem
failure. The specific oxygen thresholds and dura-
tions at which this may induce harm have yet to
be determined. In the OXYGEN-ICU trial of 480
critically ill patients (66%–68%mechanically venti-
lated), lower oxygen targets (94%–98%, PaO2 70–
100) were associated with lower mortality
compared with a liberal oxygen strategy (97%–
100%; PaO2 up to 150 mm Hg).52 However, this
study was not restricted to patients with ARDS
and it was stopped early raising concerns about
the potential overestimation of treatment effect.
In the ICU-ROX trial, 965 mechanically ventilated
patients were randomized to a conservative oxy-
gen strategy (91%–96%) compared with a liberal
approach (91%–100%).53 With the exception of
patients admitted with anoxic brain injury following
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cardiac arrest (who did worse overall), there was
no difference in mortality or ventilator-free days
across the conversative versus liberal strategies.
The hypothesis behind the greater harm in the
anoxic brain injury groupmay be related to conser-
vative oxygen-reducing secondary brain injury
compared with a more liberal approach. Limita-
tions of the study include concern for heterogene-
ity of treatment effect across the mechanically
ventilated population (ie, potential harm of liberal
oxygen in the anoxic encephalopathy cohort vs
potential benefit in the septic cohort). It is also
important to note that the “liberal arm” of the
ICU-ROX trial was not one of “hyperoxia.” Further-
more, these trials did not focus on patients with
ARDS.10

The HOT-ICU trial randomized 2928 critically ill
patients with hypoxic respiratory failure (57%–59%
invasive ventilation, 13% ARDS) to a lower oxygen
target (PaO2 60 mm Hg) versus a higher oxygen
target (PaO2 90 mm Hg).54 Neither difference was
found in 90-day mortality nor any of the secondary
outcomes evaluated. This was in contrast to the
LOCO2 trial where 201 patients with ARDS were
randomized to a conservative oxygen target (PaO2

between 55 and 70mmHg) compared with a liberal
target (90–105mmHg).55 Therewas nodifference in
28-day mortality; however, the trial was stopped
early (201/850 original sample size) because of an
increased incidence of mesenteric ischemia in the
conservative group (5 vs 0). They theorized that
pulse oximetry may not be precise enough to avoid
unrecognized hypoxic events in those most at risk.
There was also a lower incidence of prone posi-
tioning in the treatment group which has been
shown to improve mortality in ARDS. The trial was
also terminated early which might have led to inac-
curate estimations of treatment effect.
The ongoing MEGA-ROX trial (NCT01642498) is

a platform trial that attempts to further evaluate the
question of safe oxygen thresholds and address
treatment effects across different populations of
critically ill patients. As the evidence continues to
evolve, given the totality of the evidence thus far,
hyperoxia and hyperoxemia should be avoided, a
lower limit saturation of 90% to 91% is likely
acceptable and targeting a PaO2 between 70 and
100 mmHg has been demonstrated to be safe
across patients with ARDS.
Adjunct Therapies to Optimize Mechanical
Ventilation

Prone positioning
Prone positioning is one of the few interventions
with mortality benefit in patients with moderate–
severe ARDS (Fig. 2).56Prone positioning can
improve both oxygenation and ventilation (CO2)
clearance through a variety of mechanisms.
Oxygenation is improved principally through
improvement in the homogeneity of ventilation
and perfusion matching, alveolar recruitment,
and alterations in the physical mechanics of the
chest wall.57 Alveolar ventilation may improve
with prone positioning because of the above
mechanisms as well, which would manifest in a
reduction in PaCO2.
Although several small trials and physiologic ob-

servations supported the concept of prone posi-
tioning, the seminal trial informing practice today
was PROSEVA. The PROSEVA trial randomized
474 patients with moderate–severe ARDS (P/
F < 150 mm Hg) to prone positioning for at least
16 hours per session or to be continuously venti-
lated in the supine position. Both 28 day and
90 day mortality rates were significantly reduced
in the prone positioning group (the 28-day mortal-
ity was 16.0% in the prone group and 32.8% in the
supine group [P < 0.001], 90-day mortality was
23.6% in the prone group versus 41.0% in the su-
pine group [P < 0.001]).56 Despite these results,
clinical implementation of prone positioning re-
mains poor, as demonstrated in the LUNGSAFE
study, where only 16% of patients received prone
positioning.3 Despite concerns of complications58

(pressure sores, loss of central lines, or endotra-
cheal tubes), there was no such observed differ-
ence in the PROSEVA trial.56

Prone positioning in spontaneous breathing,
non-intubated patients has gained popularity in
the context of the COVID-19 pandemic. One clin-
ical trial of 1126 patients requiring HFNC assessed
whether prone positioning improved treatment
failure as defined as intubation or mortality by
28 days.59 The primary outcome of interest in
this trial was death or intubation at 28 days. Treat-
ment failure (mainly driven by intubation) occurred
in 223 (40%) of 564 patients assigned to awake
prone positioning and HFNC and 257 (46%) of
557 patients assigned to standard care with
HFNC (relative risk 0.86 [95% CI 0.75�0.98]).
Physiologic variables (respiratory rate, ROX index,
and oxygenation) all improved when moving from
the supine to prone position. Importantly, the rates
of adverse events were not different between the
two groups. More trials are underway evaluating
the criteria for consideration of prone positioning
and thresholds for intubation.

Neuromuscular blocking agents to facilitate
lung-protective ventilation
The contemporary role of neuromuscular blocking
agents (NMBAs) in ARDS is evolving. Now more
than a decade since its publication, the
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ACURASYS trial was the first major RCT which
demonstrated a mortality benefit with the use of
NMBAs in early ARDS.60 In this trial, 340 patients
with moderate–severe ARDS (P/F < 150 mm Hg)
were randomized to 48 hours of NMBA infusion
with cisatracurium versus placebo. Importantly,
both groups received deep sedation. Investigators
demonstrated improved 90 day survival in the
NMBA group (23.6% in the prone group vs
41.0% in the supine group [P < 0.001]).

The postulated physiologic and survival benefit
of NMBA administration are centered around the
reduction of patient–ventilator dyssynchrony.61 It
is hypothesized that patient–ventilator dyssyn-
chrony can precipitate VILI due to variable VT

and alveolar distending pressure, with increased
risk of breath-stacking. This can lead to further
barotrauma, atelectrauma, and biotrauma, result-
ing in a release of inflammatory mediators and
end-organ dysfunction.8,61 Other physiologic ben-
efits may include reduced respiratory and skeletal
muscle oxygen consumption, leading to an in-
crease in mixed venous oxygen62 and, possibly,
anti-inflammatory effects.63 Despite this sound
physiologic rationale and RCT evidence, the clin-
ical use of continuous NMBA in ARDS is not wide-
spread. The LUNGSAFE study demonstrated that
NMBA was used in approximately 7%, 18%, and
38% of patients with mild, moderate, and severe
ARDS, respectively.3 Reservation surrounding
adoption may be attributable to concerns of
deep sedation in the control arm, which one may
argue does not reflect more contemporary seda-
tion targets.

More recently, and based on evolving clinical
practices since the publication of ACURASYS,
the reevaluation of systemic early neuromuscular
blockade (ROSE) trial was performed with a similar
intervention arm as ACURASYS. It differed signifi-
cantly from ACURAYS, however, in the in the
timing of enrollment and the design of the control
arm.64 Patients with moderate–severe ARDS (P/
F < 150 mm Hg) were randomized either to a
deep-sedation arm with 48 hours of NMBA or a
light sedation strategy arm. Contrary to
ACURASYS, ROSE did not demonstrate a benefit
in 90 day survival with routine and early application
of NMBA. One possible explanation for the differ-
ences in the study findings is that deep sedation
without paralysis may precipitate patient–
ventilator dyssynchrony, which would not be pre-
sent under conditions of paralysis, and may be
significantly less in cases of light-sedation.61

Furthermore, the timing of enrollment in ROSE
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was shorter compared with ACURASYS suggest-
ing that patients in ACURASYS may represent a
subset with more “persistent” ARDS. Current
guidelines recommend against the routine use of
NMBA across all patients; however, NMBA can
be considered when paralytics are deemed neces-
sary to facilitate lung-protective ventilation,
address refractory hypoxia or hypercapnia, in the
setting of ventilator asynchrony.65

Spontaneous Breathing in Patients with Acute
Respiratory Distress Syndrome

Risks and benefits of spontaneous breathing
Early in the course of ARDS, MV, supported by
sedation, and sometimes NMBA will completely
suppress patient respiratory drive and effort.
Passively ventilated patients in this context are at
increased risk of atelectasis and complications of
deep sedation including diaphragm and respira-
tory muscle disuse and atrophy.66–68 Promoting
spontaneous ventilation may mitigate these risks.
However, there may be a threshold of sponta-

neous ventilation that becomes injurious. Sponta-
neous ventilation that is excessive can propagate
patient self-inflicted lung injury (P-SILI).69 The
mechanisms underlying this have some similarities
to VILI.70 Vigorous spontaneous breathing with
large VT can elevate global and regional lung
stress, which precipitates the risk of volutrauma.71

Importantly, even if VT is limited by using volume-
controlled ventilation, spontaneous effort can still
induce injury by increasing local lung stress and
overdistension.72,73 These vigorous efforts can
simultaneously induce diaphragm and respiratory
muscle injury,68 which can delay liberation from
mechanical ventilation and lead to adverse clinical
outcomes.66,67 Finally, exaggerated spontaneous
breathing effort can lead to, or worsen patient–
ventilator dyssynchrony, as a consequence of
double triggering or flow starvation.71 It is there-
fore increasingly recognized that monitoring of pa-
tient effort during mechanical ventilation is
important to identify the risk of P-SILI.74

Monitoring patient effort during mechanical
ventilation
Basic interpretation of ventilator waveforms is insuf-
ficient in detecting potentially injurious patient ef-
forts for a variety of reasons.74 For example,
airwaypressure and flowprovide limiteddirect infor-
mation about inspiratory effort, but close inspection
of flow deformations may be suggestive of patient
effort.71 Furthermore, airway pressure, particularly
in the presence of respiratory effort, may underesti-
mate the increased transpulmonarypressuregener-
ated by negative pleural pressure swings from the
contraction of the inspiratory muscles.75
Pes measurements can be used to assess respi-
ratory intensity of spontaneously breathing pa-
tients.40 Unfortunately, Pes measurement is not
routinely used at the bedside due to technical chal-
lenges, interpretation, and time-constraints.71 Two
simpler techniqueshavebeendescribed toestimate
patient drive and effort. First, the airway occlusion
pressure (P0.1) is the drop in airway pressure in
the first 100 milliseconds after the onset of inspira-
tion during an end-expiratory occlusion of the
airway.76Thismeasurementhasgainedrecent inter-
est as it is not affected by patient’s response to the
occlusion, it is independent of respiratory me-
chanics and not impacted by some degree of respi-
ratory muscle weakness.77 Although thresholds
vary, a P0.1 between 1 and 4 cm H2O may be
considered a safe drive, and below or above these
values may be reflective of excessively low or high
drive to breathe, respectively.78 Second, an end-
expiratory occlusion maneuver (Pocc) in spontane-
ously breathing patients can be used to estimate
the pressure generated by the respiratory mus-
cles.71 Pocc can also be used to estimate dynamic
transpulmonary driving pressure, which is a mea-
sure of the dynamic mechanical stress applied to
the lung during inspiration.79 Although these mea-
surements require prospective analysis, at the
bedside, applying a simple end-expiratory hold ma-
neuver, it may be reasonable to consider an esti-
mated muscular pressure > 15 cm H2O and
estimated dynamic transpulmonary driving
pressure>20 cm H2O as potentially markers of
excessive and potentially injurious efforts.79 There
is active ongoing research into prospectively evalu-
ating thesemeasurements (P0.1 and Pocc) to titrate
ventilation and sedation to achieve safe sponta-
neous breathing in mechanically ventilated adults.
SUMMARY

ARDS supportive care has evolved over the past
few decades as our understanding of injurious in-
teractions between the ventilator and the lung
has improved. Increasingly, the heterogeneous
nature of ARDS and individualized lung physiology
has proven that a single ventilatory strategy (eg,
PEEP, recruitment) is not generalizable to all pa-
tients. The future of ARDS ventilatory practice
will center around more individualized treatment
strategies and targets taking into consideration
the subtype of ARDS and evolution of physiology
over the course of the disease.
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