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Abstract

Shotgun metagenomics methods enable characterization of microbial communities in human 

microbiome and environmental samples. Assembly of metagenome sequences does not output 

whole genomes, so computational binning methods have been developed to cluster sequences into 

genome ‘bins’. These methods exploit sequence composition, species abundance, or chromosome 

organization but cannot fully distinguish closely related species and strains. We present a binning 

method that incorporates bacterial DNA methylation signatures, which are detected using single-

molecule real-time sequencing. Our method takes advantage of these endogenous epigenetic 

barcodes to resolve individual reads and assembled contigs into species- and strain-level bins. We 
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validated our method using synthetic and real microbiome sequences. In addition to genome 

binning, we show that our method links plasmids and other mobile genetic elements to their host 

species in a real microbiome sample. Incorporation of DNA methylation information into shotgun 

metagenomics analyses will complement existing methods to enable more accurate sequence 

binning.

INTRODUCTION

Despite growing appreciation for the role of microbial communities in human health1,2, 

comprehensive characterization of microbiomes remains difficult. Culture-independent 

sequencing of clinical and environmental samples has revealed the immense diversity of 

microbial life. Unlike 16S rRNA gene sequencing3, whole metagenome shotgun 

sequencing4 can identify chromosomes, plasmids and bacteriophages5,6. This approach also 

enables better phylogenetic resolution than 16S rRNA gene amplicon sequencing7,8.

Shotgun-sequenced metagenomes are diverse and complex, meaning that the sequenced 

reads and assembled contigs are challenging to interpret. Reference genome sequences of 

cultivated organisms can help with metagenome annotation9,10, but sequences from bacteria 

lacking cultivated relatives are segregated into putative taxa and species with ‘binning’ 

methods. Unsupervised binning methods do not require data from reference genomes.

Sequence composition features can be used to bin sequences11–14, but often fail to segregate 

sequences from very similar genomes11,13. Coverage features that are based on similar 

abundance profiles across multiple samples provide a powerful means of binning assembled 

contigs15–18. However, they cannot effectively bin mobile genetic elements (MGEs), 

especially plasmids that replicate separately from bacterial chromosomes. Chromosomal 

interaction maps discerned using Hi-C can link assembled contigs, including plasmids19–21, 

but cannot distinguish between closely related organisms due to high sequence similarity 

and uneven Hi-C link densities20.

DNA methylation in bacteria and archaea is catalyzed by DNA methyltransferases (MTases) 

that add methyl groups to nucleotides in a highly sequence-specific manner. Some sequence 

motifs in DNA molecules are almost 100% methylated whereas other motifs remain 

unmethylated22–25. A survey of 230 diverse bacterial and archaeal genomes found evidence 

of DNA methylation in 93% of genomes, with a diverse array of methylated motifs (834 

distinct motifs; average of three motifs per organism)25. Horizontal gene transfer (HGT) of 

MGEs containing MTase genes is the main driver of diversity in bacterial methylomes25–27. 

Importantly, the full genetic complements of a cell (chromosomes and MGEs) are 

methylated by MTases and therefore share the same set of methylated motifs. These motifs 

often differ among species and strains24,25, making it possible to use combinations of 

methylated motifs (endogenous epigenetic barcode) for metagenomic binning.

We develop a method that uses single-molecule, real-time (SMRT) sequencing of 

metagenomic DNA to identify methylated motifs. We show that combination of sequence 

features based on composition and coverage with methylation motifs can improve genome 

segregation and linking of MGEs to their host chromosomes.
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RESULTS

Methylation profiles in metagenome sequences

As with sequence composition or differential coverage profiles, which normalize k-mer 

frequencies across k-mers or normalize coverage values across samples, respectively, DNA 

methylation can be used as a feature to bin sequences. In the case of methylation profiles, 

each sequence has a feature set consisting of DNA methylation scores across motifs (Fig. 1). 

The methylation score for a given motif on a contig reflects the extent to which all instances 

of that motif are methylated and is calculated using inter-pulse duration (IPD) values that 

measure the time it takes a DNA polymerase to translocate from one nucleotide to the next 

during SMRT sequencing22,28,29 (Online Methods).

The sensitivity and specificity of a motif methylation score are a function of the number of 

IPD values comprising the score (Fig. 2a; Online Methods). The IPD count for each motif is 

determined by both the number of motif sites on the contig, which is generally larger for 

shorter motifs, and the number of reads aligning to the contig, as each read contributes 

independent IPD measurements22.

Methylation scores for multiple motifs are compiled into methylation profiles. The 

methylated motifs included in the profile are determined using a motif filtering approach that 

we developed for this study. After assessing the methylation scores for all possible motifs in 

a subset of the metagenomic sequencing data, only those motifs with evidence of 

methylation in at least one of the assembled contigs are retained for inclusion in the 

methylation profiles (Supplementary Methods). Filtering resulted in profiles of between 

7-38 motifs for the metagenomic samples that we analysed (Supplementary Table 1). It is 

the combination of methylated motifs in this set of filtered motifs that provides the 

discriminative power for methylation binning. The code for motif filtering and methylation 

binning (Supplementary Code) is available at https://github.com/fanglab/mbin.

Binning assembled contigs using methylation profiles

To evaluate DNA methylation profiles as features for metagenomic binning, we first created 

a synthetic metagenomic mixture of SMRT sequencing reads from eight separately 

sequenced bacterial species (Supplementary Table 2; Online Methods). All sequencing data 

from this study is available through NCBI BioProject PRJNA404082. Following 

metagenomic assembly of the combined reads (Supplementary Table 3; Online Methods), 

our motif filtering procedure identified 16 N6-methyladenine (6mA) motifs from the 

metagenomic contigs based solely on methylation scores, 14 (87.5%) of which were exact 

matches to the true methylated motifs (as validated by independent methylation analysis of 

each species prior to mixing). The remaining two motifs, GAGC and TCACNNNNNATG, 

are closely related to the true motifs, GGAG and CACNNNNNATG: instances of the 

detected GAGC motif that are preceded by a guanine are expected to be methylated, while 

all instances of TCACNNNNNATG are expected to be methylated as they are specification 

of the true motif. Hierarchical clustering of the motif methylation scores for the largest 

contigs from each species reveals unique methylation profiles for each species across the 

detected 16 motifs (Fig. 2b).
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To visualize and interpret methylation features across multiple metagenomic contigs, we 

used the dimensionality reduction algorithm t-distributed stochastic neighbor embedding (t-

SNE)30,31 (Online Methods), which has previously been used to visualize metagenomic 

sequence composition features13,14. The 2D map of methylation features generated by t-

SNE reveals contigs that are well clustered at the species level (Fig. 2c). We conservatively 

picked eight bins in the 2D map and assessed binning quality by aligning the binned contigs 

to reference genome sequences. We found >98% completeness in 7 of 8 bins (76.91% in the 

Clostridium bolteae bin) and <1% contamination in 7 of 8 bins (4.28% in the Ruminococcus 
gnavus bin) (Supplementary Table 4). Notably, four species from the Bacteroides genus 

showed better separation than was possible using either t-SNE to generate a scatter plot of 5-

mer frequency features alone (Supplementary Fig. 1a; Online Methods) or a scatter plot of 

contig coverage values vs. GC-content (Supplementary Fig. 1b; Online Methods). Two 

small, high-coverage Collinsella aerofaciens contigs (putative plasmids) in the coverage vs. 

GC-content plot illustrate how the coverage values of plasmids can differ dramatically from 

those of their host chromosomes, rendering coverage-based binning methods unable to 

identify the plasmid host in metagenomic samples.

Some small contigs were too short (e.g. <20 kb) to contain all of the motif sites in the 

methylation profile, which can lead to imperfect clustering if methylation of the missing 

motifs is a major discriminating feature between clusters. For example, several small contigs 

from Clostridium bolteae are missing certain methylated motif sites (Supplementary Fig. 2) 

and therefore cluster more closely with Ruminococcus gnavus, one of the rare species 

lacking methylation25. In such cases, complementary discriminative features, like sequence 

composition or coverage, should be leveraged.

Next, we analysed methylation profiles of contigs assembled from SMRT sequencing of a 

fecal microbiota sample isolated from an adult mouse (Online Methods; Supplementary 

Table 2). 16S rRNA gene amplicon sequencing (Online Methods) showed that the sample 

was of low- to medium-complexity and dominated by an unknown number of organisms 

from the S24-7 family of the order Bacteroidales (Fig 2d; SRX3160950). We applied motif 

filtering to detect 38 methylated motifs in the assembly (Supplementary Table 3) and 

visualized the methylation landscape using t-SNE (Fig. 2e). Contigs were annotated using 

Kraken10 (Supplementary Table 5; Online Methods).

We identified nine distinct contig bins using 38 methylation features in the murine gut 

microbiota sample. Seven bins assigned to the order Bacteroidales share high ANI with each 

other (81-91% ANI), but at values suggesting inter- rather than intraspecies relationships32 

(Supplementary Table 6; Supplementary Methods). In eight of nine bins, alignment of reads 

to the binned contigs revealed uniform coverage values within each bin (Supplementary 

Table 6; Online Methods), suggesting that the bins correspond to individual genomes (Fig. 

2f). The split coverage values in bin7 suggest the presence of two genomes. CheckM33, a bin 

validation tool that uses single-copy gene counts to assess genome completeness and 

contamination, found >97% completeness in eight of the nine bins. Bin7 has substantial 

contamination, in accordance with the observed split coverage (Table 1). We validated the 

eight highly complete genome bins by identifying high-quality sequence matches with 

several publicly available mouse gut microbial references34–37 (Supplementary Methods).
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We next explored whether coverage and composition features could resolve the same nine 

bins obtained from the mouse gut microbiota. We applied a variety of strategies for binning 

with these more standard features, including visualizing the contigs in a scatter plot of 

coverage versus GC-content (Supplementary Fig. 3a; Online Methods) and visualizing the 

contigs in a scatter plot of sample coverage versus coverage from a related sample 

(Supplementary Fig. 3b; Online Methods). Although several genomes were binned using 

these approaches, other genomes, including multiple genomes annotated as belonging to the 

order Bacteroidales (Fig. 2e), were not clearly resolved showing that incorporation of 

methylation profiles can improve binning. For example, higher-complexity samples could 

benefit from methylation profiles as a means of refining differential coverage bins, 

analogous to the approach described by Albertsen et al16. An additional analysis of infant 

gut microbiome sequencing (Online Methods; Supplementary Table 2) demonstrated how 

methylation profiles can complement sequence composition features to resolve contigs from 

two mixed strains of Bacteroides dorei (Supplementary Methods; Supplementary Figs. 4a–

c).

In addition to using contig-level methylation profiles as features for binning, methylation 

scores can also be used to detect methylated motifs in bins called by other coverage- or 

composition-based binning tools18,38,39. After using CONCOCT18 to bin assembled contigs 

in our adult mouse gut microbiome sample (Supplementary Methods; Supplementary Fig. 

5), we combined methylation profiles of contigs in each CONCOCT bin (Online Methods). 

By pooling the IPD values across all contigs in each bin, we identified eight additional bin-

level motifs that were not detected on individual contigs (Supplementary Table 7). This 

integrative approach for motif discovery in metagenomic samples is most helpful when 

short, poorly assembled contigs can be successfully binned using composition and coverage, 

but are too short for standard contig-level motif discovery.

Our results confirm that methylation profiles can be used to resolve genomes (Fig. 2e) that 

cannot be completely resolved by composition and coverage features (Supplementary Figs. 

3a,b). However, composition and coverage features are effective at resolving other 

population structures missed by methylation profiles, such as bins containing genomes from 

the orders Lactobacillales and Burkholderiales (Supplementary Table 7). Complete 

resolution of the full genomic architecture of more complex communities will likely require 

the integration of all of these binning features.

Linking mobile genetic elements and host chromosomes

Plasmids can encode antibiotic resistance genes, virulence factors or metabolic pathways 

and it is imperative to understand their contribution to microbiome functions40,41. These 

small (typically 1-200 kb), circular, and mobile DNA elements can transfer among host 

bacteria by conjugation or natural transformation, making them important mediators of 

horizontal gene transfer. Plasmid replication can be independent of chromosomal 

replication, meaning that the sequence coverages of a plasmid and its host chromosome 

typically differ. Furthermore, by comparing 5-mer frequency statistics of plasmids and 

chromosomes of their bacterial hosts (Online Methods), we found that the sequence 
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composition profiles can also differ (Fig. 3a), making such features unreliable for linking a 

plasmid to its host in metagenomic samples.

Plasmid and chromosomal DNA of the bacterial host are methylated by the same set of 

MTases42, resulting in matching methylation profiles. To confirm this, we transformed the 

5.5 kb plasmid pHel3 (GenBank MG214727) from Escherichia coli DH5α into E. coli 
CFT073 and Helicobacter pylori JP26 (Online Methods), then sequenced both plasmid and 

genomic DNA prepared from each of the three bacterial hosts. In each case, SMRT 

sequencing (Supplementary Table 2) showed that pHel3 is marked by the methylation profile 

of its host strain (Fig. 3b).

In order to determine whether methylation profiles can be used to map plasmids to their 

hosts in metagenomics datasets, we first simulated communities of between 20-200 

members by sampling methylomes of SMRT sequenced bacterial chromosomes and 

plasmids from the REBASE database43 (Online Methods). Unambiguous plasmid mapping 

in a microbiome sample requires that the plasmid and host chromosome have unique 

methylomes. As expected, the number of unique methylomes (expressed as a fraction of 

total community members) decreases in larger synthetic communities (Fig. 3c) and is more 

pronounced when multiple strains of a species are present. Similar trends were observed 

when only including the methylomes of organisms that have at least one known plasmid 

(Fig. 3d). Large plasmids are more likely to contain instances of the motifs that are required 

to match plasmid and chromosome methylation profiles. By extracting nucleotide substrings 

of various lengths from random positions in known reference sequences in REBASE (Online 

Methods), we found that, on average, 90% of 35 kb sequences contain at least 75% of the 

6mA motifs found in the host genome, and that 90% of 60 kb sequences capture 100% of 

the 6mA motifs (Fig. 3e). This means that larger, rather than smaller, plasmids are more 

likely to be correctly mapped to their host by methylation-assisted binning.

Furthermore, a notable entry in the REBASE database is the virulent 234-12 strain of 

Klebsiella pneumoniae and its 362 kb plasmid pKpn23412-362, which encodes thirteen 

antibiotic resistance genes. By comparing the methylome of K. pneumoniae str. 234-12 with 

nine other similar species and 24 other K. pneumoniae strains (Online Methods), we found 

the methylation profile of K. pneumoniae str. 234-12 to be unique among the examined 

genomes (Supplementary Figs. 6a,b), making it possible to identify it as the host of 

pKpn23412-362 among similar strains when they co-exist in a microbiome sample.

We next identified six putative plasmid sequences of 4-44 kb (Online Methods) in the 

contigs assembled from our mock community of eight bacterial species (Supplementary 

Table 3). By comparing methylation profiles of these sequences with those of chromosomal 

contigs (Online Methods), we were able to correctly assign these plasmids to their hosts in 

four of the six cases, including the only previously characterized plasmid in the group, B. 
thetaiotaomicron plasmid p5482 (GenBank accession AY171301.1). The remaining two 

putative plasmids were not incorrectly mapped to the wrong host, but were too short (<10 

kbp) to contain sufficient motif sites for conclusive mapping, consistent with the REBASE 

simulation analysis (Fig. 3e) showing that only 40% of 10 kb sequences are expected to 

contain instances of all motifs methylated by the host.
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Finally, we identified nineteen MGE contigs in the adult mouse gut microbiome assembly 

(Supplementary Table 3) between 7-132 kb, of which ten are fully circularized and nine are 

conjugative transposons (encoding at least five genes annotated as conjugative transposon-

related) (Online Methods). Conjugative transposons have an important role in HGT and the 

spread of antibiotic resistance genes in Bacteroidales, having been shown to transfer 

between multiple Bacteroidales species in the human gut44. Thirteen of these MGEs were 

discovered by re-assembling the reads mapping to contigs in each bin using HGAP345 

(Supplementary Methods). Of the nineteen identified MGE contigs, eight had methylation 

profiles that could be conclusively matched to the previously identified methylation bins 

containing genomes from the order Bacteroidales (Table 1; Online Methods). These eight 

linked MGEs included five putative circular plasmids of <50 kb containing an origin of 

replication, as well as three conjugative transposons.

Binning unassembled SMRT reads

Although it has been shown that visualizing sequence composition features of assembled 

contigs using t-SNE can be effective for binning contigs13, we found that sequence 

composition features are also well suited for segregating long, unassembled SMRT reads. 

After combining sequences from both the contigs and unassembled reads previously 

sequenced from a 20-member mock community (Supplementary Table 2), we visualized and 

labeled the reads in the t-SNE map of 5-mer frequency features for all sequences 

(Supplementary Methods). Read clusters in the map are highly species-specific and resilient 

to random sequencing errors. For instance, despite having very low sequence coverage that 

precludes assembly (Supplementary Fig. 7), unassembled reads from Rhodobacter 
sphaeroides form a distinct cluster when read-level 5-mer frequency profiles are visualized 

using t-SNE (Figs. 4a and 4b). Unsurprisingly, species segregation improves with increasing 

read lengths (Supplementary Figs. 8a,b).

In addition to sequence composition features, unassembled SMRT reads also contain 

methylation features that could help address some of the challenges posed by multi-strain 

species in metagenomic samples. To explore whether methylation binning could be extended 

to the level of unassembled reads, we constructed two synthetic mixtures of reads (Online 

Methods) from (1) two strains of H. pylori and (2) three strains of E. coli (Supplementary 

Table 2). Despite the high sequence similarity of the strains in each mixture (93.65% ANI 

for two H. pylori strains and >99% ANI for three E. coli strains) (Supplementary Methods), 

the different MTases they encode result in distinct sets of methylated motifs. Assembly of 

the H. pylori mixture containing reads from strains J99 and 26695 resulted in one small 

contig from strain 26695 and another large chimeric contig (Fig. 4c). We used read-level 

methylation profiles (Online Methods) across four 6mA motifs present at high density in the 

genome: GATC, GAGG, TGCA, and CATG46 (Supplementary Table 8). PCA of the 

methylation profiles revealed a bimodal Gaussian distribution of reads (Fig. 4d) that was 

more amenable to separation than the map generated by t-SNE (Supplementary Fig. 9). 

Separate assembly of each bin (Online Methods) resulted in contigs with improved 

contiguity, including chromosome-scale contigs for both strains, and minimal chimerism 

(Fig. 4e). Finally, we applied a slightly modified approach to the mixture of E. coli strains, 

where an additional error correction step removed much of the sequencing and IPD errors 
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that occur in longer motifs in raw reads (Online Methods). Bulk assembly of the mixture of 

error-corrected reads resulted in many chimeric contigs and very few contigs that are 

specific to a strain (Fig. 4f), but binning the reads by methylation profiles across four 

differentiating motifs (Fig. 4g; Supplementary Table 9) prior to assembly resulted in a 

substantial increase in the purity of contigs (Fig. 4h).

DISCUSSION

We report that microbial DNA methylation can be exploited as endogenous epigenetic 

barcodes to complement coverage and composition features to improve metagenomic 

binning. Notably, methylation motifs can link mobile genetic elements to their host genomes 

in microbial samples and improve strain-level resolution of metagenomes.

We used our approach to bin nine genomes, several of which were previously poorly 

characterized, in an adult mouse gut microbiome. We also linked eight assembled MGEs to 

these genomes based on matching methylation profiles. Furthermore, we show that 

unassembled reads in metagenomics samples can be binned using methylation profiles. This 

holds promise for simplifying multi-strain assembly, although it typically requires read 

lengths of at least 10-15 kb, depending on the methylome complexity. We expect our 

approach to be well suited for analyzing low-to-medium complexity communities, while the 

value added by methylation binning in higher complexity samples will largely be a function 

of sequencing depth, assembly quality, and methylome uniqueness of a particular 

microbiome sample.

Multiple factors should be taken into account before attempting to bin genomes using 

methylation in high-complexity samples, such as adult human gut or environmental samples. 

The most important factor is the degree of methylome uniqueness, that is, the fraction of 

methylomes with unique combinations of methylated motifs in a sample. As the number of 

genomes in a microbiome sample increases, the expected level of methylome uniqueness 

typically declines (Figs. 3c–d) and, consequently, the discriminative resolution of 

methylation binning decreases. In high-complexity samples, methylation profiles are 

therefore better suited to refine bins called by coverage and/or composition features, similar 

to the binning refinement approach described by Albertsen et al16. High-complexity samples 

may contain multiple co-existing strains, which present challenges for assembly tools and 

therefore often lack high-quality contigs for methylation binning, although read-level 

methylation profiles can potentially improve multi-strain assemblies.

The presence of low-abundance organisms in a community presents additional challenges 

for methylation binning, as it is difficult to detect methylated motifs from the small contigs 

that are typically assembled from such genomes. However, this can be complemented by the 

use of binning assignments from coverage- and composition-based binning tools, such as 

CONCOCT18. Phasing IPD information from all contigs in a bin makes it possible to detect 

additional methylated motifs. If organism abundance is too low for genomic assembly, the 

only solution is additional sequencing depth. Despite the relatively higher cost of SMRT 

sequencing, we anticipate that technological advances will continue to bring down the cost 

per base as read lengths and total yields increase. Improved metagenomic assembly 
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algorithms specially designed for long reads should result in higher quality assemblies and 

larger contigs that are more amenable to methylation analysis. Motif discovery on 

unassembled reads remains challenging, but longer reads could make this more feasible in 

the future.

Although our study focused mainly on 6mA motifs, improved detection of other methylation 

events, like 5-methylcytosine (5mC) and N4-methylcytosine (4mC), will expand the set of 

motifs that can be included in methylation profiles. Such improvements, as well as decreases 

in the input DNA requirement, promise to broaden the metagenomic application space for 

third generation technologies.

SMRT sequencing libraries with long insert sizes improve contiguity in metagenomic 

assemblies, but the size selection procedure may filter out certain MGEs like small plasmids 

and phages. Integrating additional sequencing from rolling circle amplification libraries 

might highlight small, circular sequences that are lost during size-selection steps or do not 

fully circularize in the metagenomic assembly.

Beyond metagenomic binning, methylation profiles could be used for monitoring the 

transmission of plasmids and bacteriophages between hosts across multiple time points or 

conditions, such as antibiotic treatment6. Additionally, de novo detection of methylation 

motifs in microbial communities may help to reveal mechanisms of epigenetic regulation in 

uncultured bacteria, and identify novel MTases and restriction enzymes for use in research.

Although our study focused on SMRT sequencing, our framework applies to other third-

generation sequencing technologies capable of detecting bacterial DNA methylation, such as 

Oxford Nanopore47 or possibly Genia48. The Minion instrument from Oxford Nanopore is 

an intriguing option, although efforts to develop robust methylation detection methods are 

ongoing49. Synthetic long read technologies can be useful for interrogating complex 

communities, but lack methylation signatures and are subject to coverage biases that impede 

genomic assembly (Supplementary Methods; Supplementary Figs. 10–12; Supplementary 

Table 10). By integrating second- and third-generation sequencing with complementary 

analyses like Hi-C intrachromosomal maps19–21 or single cell techniques50, we expect 

researchers to gain an increasingly complete understanding of the genomic and epigenomic 

landscape of microbial communities.

Online Methods

Code availability

The software supporting all proposed methods (Supplementary Code) is implemented in 

Python and is available with full documentation at http://www.github.com/fanglab/mbin

Culture conditions for bacteria from eight-species mixture and purification

Bacteroides caccae ATCC 43185, Bacteroides ovatus ATCC 8483, Bacteroides 
thetaiotaomicron VPI-5482, Bacteroides vulgatus ATCC 8492, Collinsella aerofaciens 
ATCC 25986, Clostridium bolteae ATCC BAA-613, and Ruminococcus gnavus ATCC 

29149 were grown individually in 10 ml of supplemented Brain-heart infusion broth53 in an 
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anaerobic chamber from Coy Laboratory Products. Escherichia coli MG1655 was grown 

aerobically in 5 ml of LB broth. Construction of the 10kb DNA libraries for SMRT 

sequencing was performed according to the manufacturer’s instructions.

Mouse gut microbiome DNA purification and library preparation

A male 6-week-old NOD/shiltj mouse (no. 001976, Jackson Labs) was housed in a Specific 

Pathogen Free (SPF) room at New York University Langone Medical Center (NYUMC). At 

week 12 of life, the mouse was placed into a clean plastic container in a fume hood and its 

fresh fecal pellets were collected in sterilized microcentrifuge tubes and frozen at −80°C. 

Fecal DNA was extracted using PowerSoil DNA isolation kit (MoBio Labs, Carsbad, CA). 

A Life Sciences Reporting Summary is available for this study.10kb library preparation for 

SMRT sequencing was performed according to the manufacturer’s instructions. The 

bacterial 16S rRNA gene V4 regions were amplified and libraries constructed as previously 

described by Livanos et al.54

pHel3 plasmid transformation into three species

The E. coli-H. pylori shuttle plasmid pHel355 was electroporated from E. coli strain DH5α 
to strain CFT073 using MicroPulser following procedures recommended by the 

manufacturer (Bio-Rad Lab., Hercules, CA). The same plasmid was also introduced from E. 
coli strain DH5α into H. pylori strain JP26 by natural transformation as previously 

described56. E. coli DH5α carrying pHel3 and CFT073 carrying pHel3 were grown in Luria-

Bertani (LB) medium with kanamycin (Km; 50 μg/ml) at 37°C for 24 hours. H. pylori JP26 

carrying pHel3 were grown in Brucella broth (BB) medium supplemented with 10% 

newborn calf serum (NBCS) and Km (10 μg/ml) at 37°C in microaerophilic condition for 48 

hours. Bacterial cell pellets of E. coli or H. pylori cultures were collected by centrifugation, 

genomic DNA of each culture was purified using Wizard Genomic DNA Purification Kit 

(Promega, Madison, WI), and plasmid DNA of each culture was purified using QIAprep 

Spin Miniprep Kit (QIAgen, Valencia, CA). 2kb library preparation for SMRT sequencing 

genomic and plasmid DNA for each culture was performed according to the manufacturer’s 

instructions.

Three E. coli strains for synthetic mixture

Genomic DNA for the three strains of E. coli, BAA-2196, BAA-2215, and BAA-2440, were 

purchased from ATCC and construction of the 10kb DNA libraries for SMRT sequencing 

was performed according to the manufacturer’s instructions.

Infant gut microbiome samples

DNA was isolated from stool samples taken from two Finnish children. The donor of 

Sample A (containing B. dorei str. 105) was 13.5 months of age, while Sample B (containing 

B. dorei str. 439) was obtained from child at 3.3 months of age. Full details on sample 

isolation and DNA extraction are provided by Leonard et al57. A summary of the SMRT 

sequencing statistics can be found in Supplementary Table 2.
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Sequencing

For SMRT sequencing, primer was annealed to size-selected SMRTbells with the full-length 

libraries (80°C for 2 minutes and 30 seconds followed by decreasing the temperature by 0.1° 

to 25°C). The polymerase-template complex was then bound to the P6 enzyme using a ratio 

of 10:1 polymerase to SMRTbell at 0.5 nM for 4 hours at 30°C and then held at 4°C until 

ready for magbead loading, prior to sequencing. The magnetic bead-loading step was 

conducted at 4°C for 60 minutes per manufacturer’s guidelines. The magbead-loaded, 

polymerase-bound, SMRTbell libraries were placed onto the RSII machine at a sequencing 

concentration of 125-175 pM and configured for a 240-minute continuous sequencing run. 

For 16s rRNA gene amplicon sequencing, sequencing of the 16S V4 region was performed 

using the Illumina MiSeq platform as previously described by Livanos et al.54

Sequence composition features

All k-mer frequency metrics in this study used a k-mer size of 5. Counts of pairs of 5-mers 

that are reverse complements of each other were combined, resulting in a vector of 5-mer 

composition features (length V = 512) for each sequence (contig or single-molecule read), i, 

denoted . Following the procedure described by Alneberg et al.18, we 

add a small pseudo-count to each 5-mer count to ensure all counts are non-zero, then 

normalize by the total number of 5-mers in the sequence and log2-transform the normalized 

values:

The script create_kmer_freq_vectors.py (Supplementary Code) calculates k-mer frequency 

vectors for sequences in an input fasta file. Alternatively, GC-content metrics simply reflect 

the fraction of cytosine or guanine nucleotides in a DNA sequence.

Contig coverage features

All contig coverage features represent the read depth assessed by aligning reads to 

assembled contigs. Illumina reads were aligned to contigs using bowtie258 and SMRT reads 

were aligned to contigs during the HGAP345 assembly process. For a single sample, each 

contig has a single coverage value. Contig coverage values from two samples are leveraged 

by plotting coverage values from each sample on the x- and y-axes. If using additional 

samples, coverage profiles are built for each contig, i, into a vector of N coverage features, 

denoted by , where N is the number of samples.

Motif methylation scoring

The contig- and read-level polymerase kinetics scores are calculated using the inter-pulse 

duration (IPD) values provided in the SMRT sequencing reads22. Subread normalization, 

done by log-transforming the ratio of each subread IPD value to the mean of all IPD values 

in the subread, corrects for any potential slowing of polymerase kinetics over the course of 
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an entire read (which can consists of multiple subreads)28,42. Each normalized IPD (nIPD) 

value in the subread is calculated as follows:

where the subread is N bases long and therefore contains N IPD values. To calculate the 

observed read-level methylation score (Ro) for motif i on read j, , we take the mean of all 

nIPD values from all sites of motif i across all subreads of read j:

where each of the S subreads in the read contains Ms motif sites. Longer subreads typically 

contain more distinct sites of a given motif and generate more reliable methylation scores.

Kinetic variation in the polymerase activity exists even in the absence of methylated bases 

and is highly correlated with the local nucleotide context surrounding the polymerase as it 

processes along the template59. To account for this baseline variation and remove it from the 

final methylation score, we subtract from our observed kinetics scores, , a corresponding 

set of control kinetics scores, . These control kinetics scores are motif-matched and 

calculated similar to  using a sampling of SMRT sequencing unaligned reads (N=20,000) 

known to be free of any methylation:

As no methylated motifs were detected after sequencing an isolate of Ruminococcus gnavus, 

this data served as the non-methylated control set for calculating values of . These non-

methylated control values are used for the motif filtering procedure, but not for the final 

calculation of methylation profiles. Because the dimensionality reduction with t-SNE 

calculates a Euclidian distance between two points (i.e. two methylation profiles), the 

subtraction of a constant (control) vector from both methylation profiles has no effect on 

their pairwise distances.

Contig-level methylation scores (C) for motif i on contig j, Cij, are calculated in a similar 

manner. The difference is that the scores take into account not just the subreads from a 

single read, but rather all subreads that align to the contig:
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where each of the S* subreads that align to the contig contain Ms motif sites. Similar to the 

read-level methylation scores, matching control kinetics scores, , are generated using a 

sample of aligned reads (N=20,000) known to be free of methylation and subtracted from 

the observed kinetics scores, , in order to remove the baseline kinetics variation stemming 

from local sequence context:

As with the read-level methylation scoring, non-methylated control values are used only 

during the motif filtering procedure but not in the final contig-level methylation scores. 

Much like the read-level methylation assessment, the reliability of the motif score on a 

contig increases with the number of motif sites on the contig. Typically, short motifs are 

present at higher density in the genome than longer, more complex motifs, although 

exceptions to this rule exist. Therefore, while even the shortest contigs in an assembly are 

able to return reliable methylation scores for short motifs, longer contigs are usually 

required to accurately assess the methylation status of more complex motifs. A default 

methylation score of zero is assigned if no instances of the motif occur on the read or contig.

The optional parameter –cross_cov_bins in the mBin program accepts a file containing 

contig assignments to bins (in the format contig_name,bin_id) identified from coverage- and 

composition-based binning tools, such as CONCOCT18 or MetaBAT39. If this parameter is 

specified, the IPD values used to calculate each contig-level methylation score are 

aggregated based on binning assignment and bin-level methylation scores are calculated.

Motif filtering for methylation-based clustering

Methylated motifs are identified from the entire space of all possible motifs conforming to a 

predefined set of allowable motif configurations. This study considered all 7,680 possible 4-

mer, 5-mer, and 6-mer contiguous motifs (e.g. CTGCAG), as well as 194,560 bipartite 

motifs (e.g. CATNNNNNCTC). A subset of available reads (N=20,000) are sampled and 

methylation scores are compiled for each of the 202,240 motifs. Only those motifs with 

methylation scores > 1.7 on at least one contig are retained. Finally, multiple specifications 

of a motif are replaced by a single degenerate motif using IUPAC nucleotide codes. See the 

Supplementary Methods for additional details.

Combined k-mer frequency and methylation score vectors

The combination of k-mer frequency and methylation scores used to segregate contigs in the 

combined infant gut microbiome samples A and B (Supplementary Fig. 4c) was done by z-

score transforming both feature matrices after each had been reduced to 2D using t-SNE. 

The two 2D matrices of z-scores were then combined and the resulting 4D matrix of z-

scores was subjected to a second round of t-SNE to generate the final 2D map.

Beaulaurier et al. Page 13

Nat Biotechnol. Author manuscript; available in PMC 2018 June 11.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Bin validation and annotation

We applied CheckM33 to assess the genome completeness and contamination in binned 

genomes. After writing the contig sequences in each bin to a fasta file in a directory called 

bins, we ran the following CheckM command:

For species annotation, a database of 591 reference genomes isolated from the mouse gut 

was compiled from four recent studies34–37 (Supplementary Table 11). Bin-level fasta files 

for the 541 genomes identified in Xiao et al36 were created from binned gene sequences 

using the script write_xiao_MGS_bin_fastas.py (Supplementary Code) after downloading 

the data files located at https://genome.jgi.doe.gov/pages/dynamicOrganismDownload.jsf?

organism=IMG_3300005806. After compiling the database of all 591 reference sequences, 

we ran blastn to identify which of the references had significant matches with the contigs in 

the nine bins identified using methylation profiles. Alignments >100bp in length with >97% 

identity were considered significant. For each bin, the reference genomes were ranked based 

on the percentage of the total binned contig sequences that were covered by a significant hit 

with the reference. We then used the mummer package60 to align the highest ranked 

matching references to the contigs in each bin and visualized the alignments (Supplementary 

Fig. 13) with the mummer package.

Plasmid and chromosome sequence composition distances

The empirical distribution of Euclidian distances between the plasmids and randomly 

selected bacteria was constructed by iterating over all plasmids in REBASE43, randomly 

selecting a “host” bacterium for each plasmid, and calculating the 5-mer frequency vector 

(as described in Sequence composition features) of the plasmid, , and of the largest 

chromosome of the selected bacterium, . The distance, d, between each pair of vectors 

and  was computed as the Euclidian norm of the difference between vectors:

Survey of methylome uniqueness in simulated communities

Methylation motifs were gathered for each of the 878 SMRT sequenced bacterial genomes 

stored in the REBASE database43 and mock communities of N species were constructed, 

where N = 20, 40, 60, …, 200 and each community was created 1,000 times by randomly 

selecting from the 878 organisms. For each mock community, the methylation motifs for 

each constituent organism were analysed and number of organisms with a unique 

methylome in the community was returned, reported as the fraction of total organisms in the 

community. Multiple curves in Fig. 3c represent the different results obtained by varying the 

multi-strain content of the mock communities. The same procedure was again used to 

analyse only those 155 organisms in REBASE that are known to host at least one plasmid 
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sequence. Mock communities of N species were again constructed, where N = 20, 40, 60 

and each community was created 1,000 times by randomly selecting from the 155 

organisms. Multiple curves in Fig. 3d represent the different results obtained by varying the 

multi-strain content of the mock communities.

Survey of methylation motif content in simulated sequences

For each SMRT sequenced genome in the REBASE database43, 500 genomic sequences 

were simulated by extracting nucleotide substrings of length L from random positions in the 

known reference sequence, where L = 5, 10, 15, …, 100kb. Given the known methylation 

motifs for each genome, the number of sequences containing the motifs was returned, 

reported as the fraction of the 500 total simulated sequences. Multiple curves in Fig. 3e 

represent the different results obtained by varying the percentage of the genome’s 

methylation motifs that are required to be present on each sequence. For instance, the 75% 

curve represents the number of simulated sequences that contain at least one instance of at 

least three quarters of the genome’s total set of methylation motifs.

Methylome analysis of Klebsiella pneumoniae strain

We examined the REBASE43 entry for a virulent and antibiotic-resistant strain 243-12 of 

Klebsiella pneumoniae (GenBank CP011313) that was isolated from a patient during a 2011 

outbreak in Germany61 and hosted a single 362kb plasmid named pKpn23412-362 

(GenBank CP011314). We then compared the methylome of K. pneumoniae str. 234-12 to 

those of nine other bacterial genomes listed in REBASE, all of which had more similar 

chromosome sequence composition to plasmid pKpn23412-362 (see plasmid and 
chromosome sequence composition distances) than did the true host K. pneumoniae str. 

234-12 chromosome. The methylated motifs of plasmid pKpn23412-362, K. pneumoniae str. 

234-12, and the nine other bacterial species were represented in a matrix where 0 and 1 

represented unmethylated and methylated motifs, respectively. Another matrix was created 

using all 25 strains of K. pneumoniae listed in REBASE. Using the Python packages 

fastcluster62 and SciPy63, both matrices were subject to 2-dimensional hierarchical 

clustering to evaluate methylome similarities across species and strains.

Matching plasmid and host methylation profiles

We defined a confident mapping of a plasmid to a host if contigs accounting for >75% of the 

host genome contained (1) the same methylated motifs (i.e. motifs with methylation score ≥ 

1.6 calculated from ≥ 10 IPD values) that are found on the plasmid, and (2) no additional 

methylated motifs.

Identification of MGE contigs in metagenomic assembly

A combination of two methods was used to identify circular contigs in metagenomic 

assemblies: (1) a custom script aligned the 20kb sequences at the beginning and end of 

contigs to look for evidence of circularization (Supplementary Code), and (2) the freely 

available program Circlator64 was used with default parameters. Contigs identified as 

circularized were then manually checked using Gepard65 to look for visual evidence of 

circularization, as opposed to signs of mis-assembly. Small (<200kb) contigs were classified 
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as conjugative transposons if they contained at least five genes encoding conjugative 

transposon-related genes, according to gene annotations generated by RAST66.

Synthetic metagenomic communities

Eight species synthetic mixture—SMRT reads were obtained separately from eight 

individual bacterial species (Supplementary Table 2) and the reads were mixed, without any 

labeling, by combining one SMRT cell of sequencing from each species to create a synthetic 

metagenomic mixture at similar relative abundances. Read labels were applied for evaluation 

purposes only after all binning procedures were completed.

Human Microbiome Project Mock Community B—Sequencing data from 49 SMRT 

cells was downloaded from https://github.com/PacificBiosciences/DevNet/wiki/

Human_Microbiome_Project_MockB_Shotgun. In order to simulate a more realistic mixture 

of the twenty species in the HMP mock community, we downsampled the raw sequencing 

reads to impose relative species abundances that follow a natural log decay curve 

(Supplementary Fig. 14; Supplementary Table 2). We first determined the species identity 

for all reads by aligning the reads to reference assemblies for each species. After 

determining the species mappings for all reads (excluding those with ambiguous 

alignments), we then selected reads from each species to impose our desired relative 

abundances. The alignment and labeling procedures were used strictly for data 

downsampling and were not part of the read-level binning procedure. Reads in their original 

abundances were assembled to verify that the contig binning in Supplementary Fig. 7 was 

due to sequence composition differences, not due to poor assembly of the downsampled 

reads (Supplementary Fig. 15).

Multi-strain mixture of Helicobacter pylori—Two strains of H. pylori, str. 26695 

(NC_000915) and str. J99 (NC_000921), were sequenced separately using a Pacific 

Biosciences RSII instrument as part of a previous study29. In order to generate matching 

150x sequence coverage for each strain, reads were downsampled to 35,093 and 30,043 

reads for strains 26695 and J99, respectively (Supplementary Table 2). All reads were 

combined prior to binning and assembly without knowledge of their strain of origin. Strain 

chimerism was assessed by mapping strain labels back to assembled reads after assembly.

Multi-strain mixture of Escherichia coli—Three strains of E. coli, BAA-2196 

O26:H11, BAA-2215 O103:H11, and BAA-2440 O111, were sequenced separately using a 

Pacific Biosciences RSII instrument (see Online Methods section entitled Three E. coli 
strains for synthetic mixture). The synthetic, multi-strain mixture was created by 

combining a single SMRT cell from each of these separate sequencing runs (Supplementary 

Table 2). All reads were combined prior to binning and assembly without knowledge of their 

strain of origin. Strain chimerism was assessed by mapping strain labels back to assembled 

reads after assembly. In order to prevent sequencing errors from corrupting the IPD 

signatures for longer methylation motifs, we conducted an error-correction step by aligning 

the raw reads from each strain to the E. coli K12 MG1655 reference sequence (RefSeq 

accession NC_000913.3) prior to constructing read-level methylation scores for each motif.
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t-SNE embedding for dimensionality reduction

t-SNE is a non-linear algorithm that is designed to preserve local pairwise distances, 

contrasting linear methods that capture global variance, such as principal components 

analysis (PCA). This makes t-SNE well suited for complex microbiome communities with 

subpopulation described by high-dimensional features. The high-dimensional matrix of 

features (e.g. k-mer frequencies, methylation scores, or a combination) for all sequences was 

subjected to the Barnes-Hut implementation of t-distributed stochastic neighbor embedding 

(t-SNE)31. The Barnes-Hut approximation of t-SNE reduces the computational complexity 

from ) to ), making it feasible to generate 2D maps of hundreds of 

thousands of metagenomic sequences containing hundreds of features. All runs used the 

default parameters for perplexity (30) and theta (0.5). Large assembled contigs (>50 kb) are 

represented in the high-dimensional matrices by multiple ‘sub-contigs’ in order to give them 

more weight during minimization of the t-SNE objective function (Supplementary 

Methods).

Metagenomic assembly

All metagenomic assemblies in this study used the hierarchical genome-assembly process 

(HGAP3)45. With the exception of the parameter specifying the expected genome size to be 

assembled, all default parameters were used. See Supplementary Methods for the 

genomeSize parameter values used for each assembly.

Metagenomic annotations using Kraken

Kraken version 0.10.5-beta10 was configured to use two databases. The database used to 

annotate sequences from the Human Microbiome Project (HMP)2 Mock Community B 

consisted of reference sequences for the twenty known species included in the mock 

community (Supplementary Table 2). All other Kraken annotations used a database 

consisting of the RefSeq complete set of bacterial/archaeal genomes (using “--download-

library bacteria”) and draft assemblies of five Bacteroides dorei strains. Database 

construction from these libraries and all Kraken annotations used default parameters. Bin-

level annotations (Table 1 and Supplementary Table 7) reflect the Kraken annotation (the 

taxonomic order) assigned to the largest percentage of contig bases in each bin.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of metagenomic binning using DNA methylation detected in SMRT long 
reads
Given a set of metagenomic shotgun SMRT sequencing reads, one can either assemble them 

into contigs for contig-level binning or can directly perform read-level binning without de 
novo assembly. A widely used approach for unsupervised binning of metagenomic contigs 

uses coverage (and its covariance across multiple samples) and sequence composition 

profiles, but these can be complemented by methylation profiles to better segregate contigs 

with similar sequence composition and coverage covariance, as well as to map mobile 

genetic elements to contigs from their host bacterium in the microbiome sample. Read-level 

binning by sequence composition can isolate reads from low abundance species that do not 

assemble into contigs, while read binning by methylation profiles can segregate reads from 

multiple strains for the purpose of separate, strain-specific de novo genome assemblies. 

These methylation and composition features can be combined with abundance features to 

maximize binning resolution.
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Figure 2. Metagenomic binning by methylation profiles
(a) Receiver operating characteristic (ROC) curve illustrating the power to classify a contig 

as methylated or non-methylated regarding a specific sequence motif, as a function of the 

number IPD values available for the motif sites on the contig. (b) Heatmap of contig-level 

methylation scores for fourteen motifs on a set of contigs from a metagenomic assembly of 

eight bacterial species. Contigs from each species possess distinct methylation profiles 

across the selected motifs. (c) t-SNE scatter plot of contig-level methylation scores across 

fourteen selected motifs, with manually selected bins marked by boxes. Cluster silhouette 
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coefficients51 were computed for the contigs from the four Bacteroides species. The 

coefficients (-1 indicates complete mixing, while 1 indicates complete separation) were 0.53 

using methylation features and t-SNE, 0.14 using 5-mer frequency features and t-SNE 

(Supplementary Fig. 1a), and -0.03 using plotted coverage vs. GC-content values 

(Supplementary Fig. 1b). (d) Family-level annotation of 16S rRNA gene amplicon 

sequencing reads from an adult mouse gut microbiome by QIIME52. (e) t-SNE projection of 

metagenomic contigs assembled from SMRT reads of an adult mouse gut microbiome, 

organized according to differing methylation profiles across 38 sequence motifs in the 

sample. Labeled bins denote genome-scale assemblies with distinct methylation profiles 

(Table 1) (f) Coverage values for contigs (>100kp to exclude small MGEs) in each of the 

nine bins identified by methylation binning.
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Figure 3. Methylation profiles can link plasmids to the chromosomal DNA of their host species. 
(a)
Histogram of sequence-based Euclidian distance between 5-mer frequency vectors of 

plasmid and chromosome sequences, showing the distance between plasmids and their host 

chromosome (blue; based on 2,278 bacterial plasmids and their known hosts), as well as the 

distance between plasmid and randomly sampled chromosomes from other species (red). (b) 
Heatmap showing methylation profiles for the pHel3 plasmid and its three hosts: E. coli 
CFT073, E. coli DH5α, and H. pylori JP26. The methylation profile of pHel3 across twenty 

motifs matches the host from which it was isolated. (c) Simulation analysis (1000 iterations) 

using 878 SMRT sequenced bacterial genomes in the REBASE database showing expected 

number of genomes with a unique 6mA methylome as a function of community size and 

presence of multi-strain species in the community. (d) Simulation analysis (1000 iterations) 

using 155 SMRT sequenced genomes with known plasmids in the REBASE database 

showing expected number of genomes with a unique 6mA methylome as a function of 

community size and presence of multi-strain species in the community. (e) Simulation 

analysis (500 iterations) using 878 SMRT sequenced genomes in the REBASE database 

showing the expected sequence lengths required to capture at least one instance of the 

methylation motifs in a genome. As expected, capturing at least one instance of some, but 

not all, of the methylation motifs reduces the required sequence length.
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Figure 4. Binning SMRT reads using composition and DNA methylation profiles
(a) 5-mer frequency-based binning of assembled contigs and raw reads (length>15 kb) from 

the HMP mock community, where only the unassembled reads are labeled. Reads from the 

low-abundance species R. sphaeroides form a distinct cluster near the coordinates (-8,-22). 

(b) The 2D histogram of contigs and unassembled reads, corresponding to (a); this 2D 

histogram lacks labeling but nevertheless includes many highly species-specific 

subpopulations. (c) Combined assembly of a synthetic mixture of reads from H. pylori 
strains J99 and 26995 results in one small contig containing mostly reads from strain 26695 
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and one large, highly chimeric contig. (d) Read-level methylation profiles for unassembled 

reads from the synthetic mixture are separated by principal component analysis (PCA) into 

discrete, strain-specific clusters. (e) Separate assembly of reads that were segregated using 

methylation profiles results in large, highly strain-specific contigs. (f) Combined assembly 

of a synthetic mixture of reads from E. coli strains BAA-2196 O26:H11, BAA-2215 

O103:H11, and BAA-2440 O111 results in many chimeric contigs that contain reads from 

all three strains. (g) Reads from the synthetic mixture were aligned to the E. coli K12 

MG1655 reference in order to correct sequencing errors and the read-level methylation 

profiles were separated by PCA into strain-specific clusters. (h) Separate assembly of reads 

segregated by methylation profiles as demonstrated in (g) results in a dramatic reduction of 

chimerism in the assembled reads.
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