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Introduction

An important goal of genomics is to understand the
relationship among genes, characterized by the regulation
and synthesis of proteins as reactions to internal and external
signals. These relationships can be concisely represented in
a gene network, where nodes are genes and edges between
them capture interactions at different levels, for instance,
interactions between corresponding proteins or a protein and
a messenger RNA.

Edges in a gene network can be either directed or undi-
rected. A directed edge often represents a causal effect of one
gene to another, for example in the case of transcriptional
protein—-DNA interactions.! An undirected edge, on the
other hand, represents an association between two genes, for

instance in the case of protein—protein interactions.3™

Genetic interactions cast new insights into activities of
biological pathway and cellular response,®” and help deduce
unknown functions of genes from their dependence on other
genes.® 1% Gene networks also provide an overall view into
physical and functional landscape of biological systems.!!12
Incorporating the knowledge of genetic networks into analy-
sis of omics data has thus resulted in identification of novel

13,14 3nd more accurate classification methods.r>~17

biomarkers

In addition to providing insight into complex biological
systems, genetic networks provide new clues into mechanisms
of initiation and progression of complex diseases. Specifi-
cally, alterations in mechanisms of gene regulation have been
implicated in different types of cancer.!2° Identifying dif-
ferential patterns of genetic interactions, referred to as dif-

ferential network analysis,?»™3 thus offers new opportunities
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for understanding causal mechanisms of disease initiation
and progression.

Differential interaction patterns are often identified by
comparing genetic networks under different experimental
conditions, at different time points or for different disease
subtypes and stages. Unfortunately, existing databases of bio-
logical networks, eg, BioGRID, HPRD, IntAct, DIP, and
GeneMania?*?’ include information on genetic interactions
under a single static condition, often corresponding to stan-
dard laboratory settings. Therefore, the information in these
repositories cannot be readily used to identify the differential
interaction patterns in biological networks.

Numerous statistical and bioinformatics methods have
been proposed for reconstructing genetic networks from
diverse molecular measurements. Unlike physical interac-
tion mapping techniques,*® these computational tools can be
directly applied to data obtained from high throughput tech-
nologies to estimate networks of genetic interactions in dif-
ferent cellular states or disease stages. As pointed out earlier,
directed edges are often used to model causal relations. Thus,
estimation of directed edges is in general not possible from
observational data alone;®! in this paper, we focus only on
methods for reconstructing undirected edges.

Despite many differences, existing statistical and bioin-
formatics methods for reconstruction of genetic networks have
a common goal and many common features. Of course, exist-
ing methods vary in modeling assumptions, computational
techniques, and inferential procedures. Accordingly, esti-
mated genetic networks vary depending on the method used,
and their interpretations may not be compatible. Investigat-
ing the differences among available reconstruction methods,
and understanding the properties of estimated networks thus
plays a key role in making these computational tools accessible
and informative. Our comparative study provides a thorough
comparison of seven computational methods with publicly
available software for reconstruction of genetic networks. The
methods considered in this paper include commonly used and
recently proposed approaches for networks reconstruction,
and span over marginal and conditional association-based
methods, as well as linear and non-linear interaction models
for genetic interactions.

To examine the similarities and differences in con-
structed networks based on different computational tools, we
apply each method to a data set consisting of gene expres-
sion profiles from 83 normal and 83 breast cancer tumor
samples, assembled from publicly available samples in the
Gene Expression Omnibus (GEO).3? We focus particularly
on 273 genes known to be associated with cancer, includ-
ing those mapped to the “p53 signaling pathway”, the
“breast cancer pathway” and the “cancer pathway” as iden-
tified by the Kyoto Encyclopedia of Genes and Genomes
(KEGG).** We examine the effect of tuning parameters
for each method, and compare the estimated networks in
terms of their statistical characteristics. Finally, we construct

a weighted consensus network by aggregating the estimated
networks from different estimation methods, and examine the
differences between networks of normal and tumor samples.
The results show significant differences between genetic net-
works in normal and tumor samples, suggesting the presence
of many differentially regulated genes in these networks.

'The rest of the paper is organized as follows. In the next
section, we review existing methods of network reconstruc-
tion, and discuss the benefits and limitations of each method.
The results of applying these methods to reconstruct genetic
networks of normal and tumor samples, along with compari-
son of network properties are presented in the Results section.
We conclude the paper with a discussion of our findings and
future research directions.

Methods

Data preprocessing. The data for this study is obtained
from 166 Affymetrix expression arrays (83 tumor and 83
normal). The data for all expression arrays was available on GEO
(http://ncbi.nlm.nih.gov/geo/) and was extracted from raw
CEL files. The arrays are from a common platform (GPL570)
and belong to six different GEO series related to normal/breast
tumor samples. Detailed information about the arrays used in
this study is given in Table S1 in Supplementary material.

To prepare data for analysis, we normalized raw probe
intensities to gene expression levels using robust multi-array
average (RMA)3* with default parameters. After microar-
ray normalization, we merged and combined the expression
profiles from different series using the COMBAT? method,
which employs an empirical Bayes method and is imple-
mented in the R-package “inSilicoMerging.”*® Briefly, in this
approach, series are normalized separately, series with more
samples are merged together first. Additional details about the
process of normalization of raw probe intensities and merging
data from different data sets are given in Figure S3 in Supple-
mentary material.

To delineate the genetic interactions in cancer, we limit
our study to genes mapped to the “p53 signaling pathway”,
the “breast cancer pathway” and the “cancer pathway” based
on the information from KEGG.?® The resulting data set
includes expression profiles of 273 genes, each observed over
166 samples.

Network reconstruction methods. Despite many dif-
ferences, existing statistical and bioinformatics methods for
reconstruction of genetic networks have a common theme:
they deduce the existence of an edge among a pair of genes
by considering a notion of “relatedness.” Interestingly, a key
distinction between methods of network reconstruction is
the notion of relatedness used to define an interaction in the
network. Broadly, network reconstruction methods can be
categorized into methods based on marginal and conditional
associations: genes X and Y are marginally associated, if, irre-
spective of other genes, they have similar behaviors; on the
other hand, X and Y are conditionally associated given a set
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of genes Z, if their behaviors are similar, after removing the
effects of Z.

Methods based on marginal and conditional associations
have advantages and shortcomings. While methods based on
marginal association ignore the information from other genes
when determining whether there is an edge between a pair
of genes, methods based on conditional association take the
information from other genes into account. As an example,
suppose two genes X and Y are both regulated by a common
transcription factor Z. In this case, it is natural to expect the
expression levels of X and Y to be correlated. Thus, using a
marginal measure of association X and Y would be considered
connected with each other. However, this correlation is due to
the common effect of Z, and hence, if we remove this effect,
X and Y may no longer be correlated. This means that a con-
ditional measure of relatedness that corrects for the effect of Z
would not result an edge between X and Y.

The above example suggests that methods based on condi-
tional associations can provide a more realistic picture of genetic
interactions and should be preferred for reconstructing genetic
networks. However, estimation of conditional association
measures is, in general, more computationally demanding and
requires larger sample sizes (more observations) than their mar-
ginal counterparts. Perhaps more importantly, by construction,
measures of conditional association work well when all relevant
variables are included in the experiment and are conditioned
on. In the example above, if Z is not measured, and hence not
conditioned on, then a reconstruction based on conditional
associations would also draw an edge between X and Y.

The above limitations of computational methods for recon-
structing genetic networks indicate that the choice of network
reconstruction method depends not only on the problem at
hand but also on the data available for reconstruction. In addi-
tion to the above differences, network reconstruction methods
assume different models with varying underlying assumptions,
although the underlying assumptions are not always explic-
itly stated. Early network reconstruction methods used lin-

ear measure of associations,>’?

eg, correlation, while others
assumed multivariate normality.*>*! In fact, it turns out that
these two assumptions are closely related.*” A number of
methods have hence been proposed to relax these assump-
tions, for instance, by considering Gaussian copula distribu-

tiOHS43 42,44

or non-linear dependencies among variables.

In this study, we consider seven methods of recon-
structing genetic networks. Among the methods considered,
Weighted Gene Correlation Network Analysis (WGCNA)#
and Algorithm for the Reconstruction of Accurate Cellular
Networks (ARACNE)** use marginal measures of related-
ness, although ARACNE incorporates a screening step, based
on data processing inequality (DPI) (see below for additional
details about ARACNE), which has a similar effect as condi-
tioning on a third gene. Therefore, ARACNE can be classi-
fied as a method based on a mix of marginal and conditional
associations. In addition, WGCNA uses a linear measure of

association (Pearson correlation) to decide whether an edge
should be drawn between two genes. On the other hand,
ARACNE is based on mutual information (MI), which
can capture non-linear associations among genes. However,
MI needs to be estimated from the data, and the estimation
process may be inaccurate, particularly if the sample size is
small.

'The majority of the methods considered in this paper
focus on conditional association. Estimation of conditional
associations is particularly challenging in the setting of high-
dimensional genetic networks, where the number of genes p
is much larger than the number of available observations 7.
Unfortunately, this is the common setting in biological
applications, where the sample size is considerably smaller
than the number of genes. Network reconstruction based on
conditional association has therefore attracted considerable
attention from the machine learning community, including
statisticians and computer scientists. Many of the methods
proposed in this area, and several considered here, focus on
the use of sparsity-inducing penalties, in particular the 7,
or lasso, penalty.*=0 In this paper, we consider two meth-
ods that assume multivariate normality, namely graphical
lasso (GLASSO)* and Sparse PArtial Correlation Esti-
mation (SPACE),*! as well as a method that assumes linear
dependencies among variables, called neighborhood selec-
tion (NS).*” We also consider two newly proposed methods,
NONPARANORMAL (NPN)* and Sparse PArtial Cor-
relation Estimation with Joint Additive Models (SPACE
JAM),* which relax the multivariate normality and linearity
assumptions, respectively.

In the following, we briefly review each of the recon-
struction methods considered, and discuss their advantages
and limitations.

Weighted Gene Correlation Network Analysis. WGCNA®
determines the presence of edges between pairs of genes based
on the magnitude of their Pearson correlation U which is a
marginal measure of linear associations. Pearson correlation
values are first transformed by applying a power adjacency
function |51.j|/?, where the exponent £is selected to obtain a net-

work with a scale-free topology,®>>3

which is expected to better
represent real-world biological networks. The presence of an
edge between a pair of genes is then determined by threshold-
ing the values of |s1.j.|/K at a given level. WGCNA also facilitates
identification of gene modules by converting co-expression
values into the topology overlap measure (TOM), which rep-
resents the relative interconnectedness of pair of genes in the
network. While the identification of gene modules is certainly
of interest, it is outside the scope of this paper.

WGCNA is implemented in an R-package with the same
name, and an estimate of the network is obtained from func-
tion adjacency (). The output of this function is a weighted
adjacency matrix of the network; the number of edges in the
network can thus be controlled by applying a threshold 7 to
this matrix.
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Algorithm  for the Reconstruction of Accurate Cellular
Networks. ARACNE* is a network reconstruction method
based on MI, which can measure non-linear similarities
among expression levels for a pair of genes. ARACNE is in
some sense a bridge between marginal and conditional associ-
ation models: the presence of an edge between a pair of nodes
is decided based on the similarities among the gene expression
levels for those genes, regardless of other genes; however,
ARACNE employs a pruning step, based on the DPI, which
mimics the effect of conditioning on a third gene.

In more detail, ARACNE computes a pairwise MIL/
for each pair of genes 7 and 7 and uses it as a weight for the
edge between them. Then, it removes the edges whose weight,
MIZ.’/., is lower than a given threshold, &. Finally, it prunes the
network to remove false-positive (FP) edges corresponding to
indirect interactions in real networks. To prune such edges,
ARACNE applies the DPI principle, which gives a necessary
condition for presence of indirect interactions. Based on DPI,
an indirect interaction between i and j that both through a
third gene # satisfies the condition:

MI, , < min(MI, MI, ) (1)

Given that ARACNE considers triplets of genes, its com-
putational complexity for a network with p nodes is O(p%).
ARACNE isimplemented in the Bioconductor packageminet>*
through the function aracne (). The output of aracne() isa
pruned MI matrix, with nonzero entries for edges of the network.
‘The number of edges in the estimated network can be (partially)
controlled using the threshold € via the argument eps.

Neighborhood Selection. NS is a simple approach to esti-
mate a sparse graphical model. For this purpose, the authors
propose to use a lasso-penalized regression of each node on
all other nodes to sparsely select the edges in each neighbor-
hood. In a p-dimensional multivariate normal distribution
X=X, X, .., XP) ~ NP(‘U’ ¥), a graphical model can be
inferred based on conditional independence of the distribu-
tion. Specifically, there is no edge between two condition-
ally independent variables, given all other variables; this
corresponds to a zero entry in the inverse covariance matrix.
Finding the graph from a set of independent and identically
distributed (i.i.d.) observations is known as covariance selec-
tion. NS is a kind of covariance selection in which the neigh-
borhood set ne; of a gene j is the smallest subset of remaining
variables so that, conditional on ne, )(; is independent of
the remaining variables. NS estimates the neighborhood
of each variable in the graph by converting the problem to
a /,-penalized regression problem as follows:

it ={kel:6]" +0} 2)

where A is a penalty parameter, I' = {1,...,p} indexes the set of
nodes, and

o
674 = min (|| X, - X_6|B +2 11611, )

Here, [0], =Y, |6’b| is the /-norm of the coefficient

vector, and X_]. dentb)etgs the set of variables excluding Xj

Clearly, above equation may give asymmetric estimates
of edges weights between two nodes. It may even happen that
benel but agde). To obtain a symmetric estimate of the
network, the authors recommend using either the union or the
intersection of the neighborhoods from two nodes.

To utilize the above formula, it is recommended that
all variables be normalized to a common empirical variance.
Larger values of A reduce the number of variables in 7’1}? . One
option for choosing A is based on the prediction-oracle value,
which is obtained by cross-validation. However, the authors
argue that this choice may not be optimal for estimation of
network structure. Instead, they suggest a choice of A to con-
trol the probability of falsely connecting two separate compo-
nents of the network; this latter choice has been found to be
conservative in empirical studies.”

The NS approach is implemented in the R-package
glasso, and an estimate of the gene network can be obtained
based on the estimated inverse covariance matrixusing the func-
tion glasso() with the option approx = TRUE. However,
as mentioned earlier, the resulting estimate of the inverse
covariance matrix may be asymmetric, necessitating a post-
processing step to obtain a symmetric matrix.

Graphical Lasso. GLASSO* builds on a basic property
of multivariate normal random variables, that two variables
X and Yare conditionally independent of each other, given all
other variables, if and only if their corresponding entry of the
inverse covariance, or concentration matrix X is zero.

Thus, assuming multivariate normality, the graph of con-
ditional independence relations among the genes can be esti-
mated based on the nonzero elements of the estimated inverse
covariance matrix. To achieve this, GLASSO estimates a
sparse concentration matrix by maximizing the /-penalized
log likelihood function for a p-dimensional multivariate
normal distribution, NP(O, ) given by

logdet(Z™) —#(SZ7)—p || Z7|],,

Here, #7 indicates the trace of a matrix, § is the empiri-
cal covariance matrix, and the /, penalty ||Z7, is the sum of
absolute values of elements of . This penalty enforces spar-
sity in the estimate of ™! by setting some of its entries to zero.
The tuning parameter p is a positive number controlling the
degree of sparsity.

'The above optimization problem is concave and can hence
be solved using an iterative coordinate-descent algorithm.
In each iteration of the algorithm, one row of X is updated,
given most recent estimates of the remaining rows. This
algorithm is implemented in the R-package glasso, and
an estimate of the gene network can be obtained based on
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the estimated inverse covariance matrix using the function
glasso() with the option approx = FALSE.

Sparse PArtial Correlation Estimation. SPACE® converts the
estimation of concentration matrix into a regression problem,
based on the loss function

» 2

L (6,0,Y)= % Y w

i=

e xd

i o

where Y, = (Y!,...,Y")T,Y*= (Y} .,Y;)T and {Y*}r_,

are ii.d. observations from ]\;(O,Z), for £ =1, ..., n. Here

0=(p", ..., p*~7)" where p/ is the partial correlation between Y,

and Y. Finally, o= {G’/}l< = ATE the diagonal entries of the con-

=p

centratlon matrix, and w = {w, }P are nonnegative weights.
To address the estimation of parameters in high-dimension,

low-sample-size settings, the authors consider minimizing

the penalized loss function
L (0,0,Y)=1L (0,0,Y)+ J(0) ®)

where the penalty J(6) encourages sparse estimates of 6. Spe-
cifically, the authors consider an /; penalty, or in other words,

J©)=2lel=2 3, |p7] ©6)

1<i<j< p

In summary, SPACE minimizes a penalized loss func-
tion with symmetric constraint by performing separate lasso
regressing each variable on the others.

Numerical experiments indicate that this approach has
an advantage over competing methods, in settings where the
network includes hub nodes, eg, genes connected to many
other genes. The algorithm for solving the above optimi-
zation problem is implemented in the R-package space,
where the function space.joint () can be used to obtain
an estimate of the concentration matrix. The tuning param-
eter A controls the sparsity level, ie, the number of edges in
the network.

Nonparanormal. NPN* is a penalized maximum likeli-
hood estimation method which generalizes the estimation of
sparse concentration matrices to non-Gaussian distributions.
In particular, NPN distribution replaces the original random
variables X' = (X, .., X P) by the transformed random variable
AX) = (f,(X) ];(XP)), and assume that f{X) is multivariate
Gaussian. The proposed semiparametric approach applies a
Gaussian copula transformation, where variables are margin-
ally transformed by smooth monotone functions. The distri-
bution of the transformed data is then assumed to be p-variate
Gaussian.

The estimate of the gene network is obtained by solving
a problem similar to GLASSO, on the transformed vari-
ables. The NPN approach is implemented in the R-package
huge (High-dimensional Undirected Graph Estimation),

where function huge () returns an adjacency matrix. The
sparsity level of the graph is controlled through the tuning
parameter lambda.

Sparse PArtial Correlation Estimation with Joint Additive
Models. SPACE JAM* is a semi-parametric method, which
estimates conditional independence relationships using
joint additive models. This is achieved by estimating the
conditional means E (X|{X ((/,k)€S}) using an additive
modeLX;|{ LEE =Y

term.

k#jfk( )+£ wheree is a mean-zero

To encourage sparsity in the conditional independence
graph, the authors apply a group lasso penalty®® by linking
p individual sparse additive models, and estimating j}k(-) by
solving the following optimization problem

min
fu1</ k< p 271

e Zf,AX)

Mé{nmn}||f@-<xj>||§}2} ”

This is a convex optimization problem, which is solved

by a block coordinate descent algorithm implemented in the
R-package spacejam; the adjacency matrix of the network
is obtained using the function SJ(), and the tuning parameter
lambda controls the sparsity level of the network.

Results

Estimation of genetic networks for tumor and normal
samples. Using each of the methods described in the Meth-
ods section, we separately estimated the genetic networks for
tumor and cancer samples. To limit the bias from specific
choices of tuning parameters, for each method we estimated
the networks corresponding to tumor and normal samples
at four different sparsity levels, namely 700, 800, 900, and
1000 edges in the network. These choices were set based on
the limitations of ARACNE in generating sparse graphs:
the minimum number of edges in networks generated using
ARACNE in normal and tumor samples are 622 and 698,
respectively.

Considering that the exact control of number of edges
may not be possible for all methods, the number of edges in
estimated networks may vary slightly (within 10 edges from
the target) from one method to another. Nonetheless, the
complete set of estimated networks, consisting of 56 (= 2*7%4)
networks provides a comprehensive view of differences among
genetic networks of tumor and normal samples reconstructed
using different estimation methods. Details of the number of
edges in each estimated network, along with the value of tuning
parameter used to obtain the estimates, are given in Tables S4
and S5 in Supplementary material.

Comparison of network reconstruction methods. To
compare the network reconstruction methods, we compare
summary statistics of the estimated networks including:
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e  Summary of measures of the degree distributions of the
estimated networks, ie, minimum, first quartile, median,
mean, third quartile, max, and standard deviation, as well
as interquartile range (IQR) (=3rd quartile — 1st quartile)
of the degree distribution.

e Number of connected components (also known as the
number of clusters) in the network.

Among the summary measures described above, the
properties of the degree distribution assess the local proper-
ties of the network, while the number of connected compo-
nents concerns global properties of the network. The summary
measures for networks of normal and tumor samples with 700
edges are shown in Tables 1 and 2, respectively. The results for
networks with 800, 900, and 1000 edges are qualitatively sim-
ilar, and given in Supplementary material D (Tables S6—-511 in
Supplementary material).

Examining the results indicates that the networks esti-
mated by ARACNE are fully connected in both sample types
and for all sparsity levels. On the other hand, the networks
estimated by GLASSO, WGCNA, and NPN consist of many
connected components (clusters). The number of connected
components in SPACE, SPACE JAM, and NS are between
these two extremes. Interestingly, these observations corrobo-
rate with the underlying properties of the estimation meth-
ods. ARACNE is the only method based on MI, and uses an
algorithm that is different than the other six methods. The
common feature of GLASSO, WGCNA, and NPN is that
they estimate the network by estimating the entire matrix. On
the other hand, NS, SPACE, and SPACE JAM estimate the
network by finding the neighborhood of each gene separately.

'The finding regarding the number of connected compo-
nents seem inversely related to the spread of the degree dis-
tribution of the estimated networks. Specifically, the degree
distributions of estimates from ARACNE and SPACE JAM
are more concentrated, and less skewed around their means
compared to estimates from GLASSO, WGCNA, and NPN,
and the estimates from SPACE and NS again fall between

these two extremes. Interestingly, the maximum degree in
estimates from GLASSO, WGCNA, and NPN is almost
thrice larger than those of ARACNE and SPACE JAM.

Together, the observations regarding the number of con-
nected components and the skewness of the degree distribu-
tions provide interesting insight into estimates obtained from
network reconstruction methods: compared to ARACNE and
SPACE JAM, the estimates from GLASSO, WGCNA, and
NPN have considerably more heterogeneous degree distribu-
tions; this degree heterogeneity results in many (apparently)
highly connected components, as well as many singletons.
Estimates from SPACE and NS seem to have a medium
degree of heterogeneity. Comparing the estimated network
for normal and tumor samples, we find the above observations
regarding the degree heterogeneity of estimated networks are
generally valid for both sample types (tumor and normal). In
the next section, we investigate the differences between esti-
mated networks of tumor and normal samples in more detail.

Comparison of networks of normal and tumor samples.
To compare the genetic networks of normal and tumor sam-
ples, we first consider estimates from each of the reconstruc-
tion methods separately.

The results in Tables 1 and 2 for networks with 700
edges, as well as Tables S6-S11 in Supplementary material
for networks with more edges, indicate that networks using
NS in normal samples are more connected than networks in
tumor samples (lower number of connected components in
normal samples). This is reversed in estimates from GLASSO,
WGCNA, SPACE JAM, and NPN. However, the number
of connected components in either case does not appear to be
drastically different.

To assess whether the differences between normal and
tumor networks are statistically significant, we permuted the
sample labels for normal and tumor, and drew B = 100 sam-

ples of size n,= n,= 83 each consisting of a mix of normal

1
and tumor samples. For each 4 =1, ..., B, denote these two

groups as M and 7°. Considering that the samples in V¢ and

77 are randomly drawn from the same mixture, any difference

Table 1. Properties of estimated network with [700 + 10] edges based on normal samples.

NS GLASSO SPACE ARACNE WGCNA SPACE JAM NPN
(697) (696) (704) (697) (703) (706) (707)
Min 0 0 0 1 0 0 0
“qg: c 1st Qu. 2 0 2 4 0 3 0
53 Median 4 2 4 5 2 5 2
B = Mean 5.106 5.099 5.158 5.106 5.15 5.172 5.179
£s 3rd Qu. 6 8 7 6 8 7 8
g % Max 36 38 24 13 33 15 33
a® STD 5.046 6.933 4.038 2.244 6.782 2.826 6.807
IQR 4 8 5 2 8 4 8
# Clusters 22 87 21 1 84 8 84

Note: Numbers in parentheses show the total number of edges in each estimated network.
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Table 2. Properties of estimated network with [700 = 10] edges based on tumor samples.

NS GLASSO SPACE ARACNE WGCNA SPACE JAM NPN
(695) (700) (700) (700) ) ) )
Min 0 0 0 1 0 0 0
:,8_, c 1st Qu. 2 1 2 4 0 3 0
; E Median 4 3 5 5 2 5 2
é % Mean 5.092 5.128 5.128 5.128 5.106 5.143 5.143
> 3rd Qu. 7 7 7 7 6 7 6
é %’) Max 23 38 19 12 35 15 35
a © STD 4.209 6.2 3.582 2.2 7.696 2.687 7.738
IQR 5 6 5 3 6 4 6
# Clusters 25 64 23 1 83 4 83
Note: Numbers in parentheses show the total number of edges in each estimated network.
among networks estimated from these two groups should be 1E
due to random variation in estimation procedures. This per- P= Ebz,l I(nc 2 nc”) ®

mutation scheme provides a systematic framework for assess-
ing whether differences in normal and tumor networks are
systematically different. Figure 1 shows an example of such an
analysis for the network with 700 edges reconstructed using
SPACE. The figure shows the histogram of the numbers
of common edges between N and 7% (4 = 1, ..., B) samples
along with the number of common edges between normal and
tumor networks in the original data. Let zc denote the number
of common edges between networks of original normal and
tumor samples, and let nc” be the same number for networks
from 4th permuted samples. The P-value

can then be used to test the null hypothesis that the number
edges common to normal and tumor samples are no different
than that for two networks estimated based on data from the
same distribution. Here, I(nc = nc’) is the indicator of whether
nc is greater than or equal to nc.

As it can be seen, the number of common edges in the
original data is significantly smaller than the number of com-
mon edgesin the permuted data (P-value < 0.01). This behavior
is not unique to the estimates from SPACE! Table 3 summa-
rizes these findings for all other methods considered in this

Density

P<0.01

0.000 0.005 0.010 0.015 0.020 0.025 0.030 0.035

[ —

60 80 100

I I I 1
120 140 160 180

Figure 1. Number of common edges in estimated networks of normal and tumor samples using the SPACE method. The gray histogram shows the
number of common edges in randomly selected sets of 83 samples (permuted sets), and the red arrow shows the number of common edges in the original
normal and tumor samples. The number of common edges in networks estimated from permuted samples is significantly larger than the number for the

original data. Results for other methods are summarized in Table 3.
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Table 3. Comparison of the number of common edges between networks of normal and tumor samples, with corresponding results based on
networks estimated from 100 randomly permuted samples.

METHOD P-VALUE ORIGINAL DATA RANDOM SAMPLING

# COMMON MEAN OF # STD OF #

EDGES COMMON EDGES COMMON

EDGES

NS < 0.01 48 149.72 10.763838
GLASSO < 0.01 38 175.48 25.283236
SPACE < 0.01 61 158.56 11.476212
WGCNA < 0.01 82 264.01 19.295415
SPACE JAM < 0.01 82 165.49 9.440398
NPN < 0.01 83 26117 18.515653

manuscript with the exception of ARACNE: we were unable
to control the tuning parameters to obtain networks with 700
edges in all randomly selected samples. The table shows the
number of common edges between normal and tumor sam-
ples, as well as the mean and standard deviation of the num-
ber of common edges for networks estimated from randomly
drawn samples, and the P-value estimated by comparing the
number of edges among original and permuted samples. As
it can be seen, networks of normal and tumor samples are
significantly different, at least in terms of the number of com-
mon edges, irrespective of the reconstruction method.

To assess whether the choice of preprocessing method
(COMBAT) affects the differences in estimated networks, we
repeated this experiment using data obtained from two other
preprocessing approaches, namely normalize-then-merge and
merge-then-normalize, which are explained in Supplementary
material B. The results for these alternative preprocessing
methods are shown in Tables S12 and S13, and mirror the
findings in Table 3.

In addition to showing the differences between normal
and tumor networks, Figure 1 also indicates that the number
of common edges in randomly generated networks is surpris-
ingly small: on average ~160/700 edges between two networks
generated from samples from the same distributions are the
same! The small number of common edges between networks
estimated from NV and 77 (4 = 1,..., B) suggests that there is
a potentially large degree of randomness in computationally
reconstructed networks, particularly in the setting of genetic
networks, where the sample size is relatively small.

'The large degree of randomness in computationally recon-
structed networks, as well as the significant differences among
networks reconstructed using different estimation methods,
suggests the use of aggregate estimation as a potential remedy
for this instability. Aggregation of networks has been previ-
ously shown to result in improved reconstruction accuracy,’!
and may result in more stable network estimates. Comparison
of aggregated normal and tumor networks may offer a more
reliable view of the differences between genetic networks in
cancer and tumor samples.

Let adj* denote the adjacency matrix of the network esti-
mated using method 2K, where K= {ARACNE, WGCNA,
SPACE JAM, SAPCE, NS, GLASSO, NPN}. Each ad/* is
a binary matrix, ad/*(i,j]€{0,1} with ad*[i,j] = 1 indicating
an edge between genes 7 and ;. The adjacency matrix of the
aggregated network can then be defined as:

adj® =) adj*, ©)
kK

where adf’%¢ is the weighted aggregated network, in which
0 = adiefif] = [K|.

Based on Eq. (9), if none of the methods estimate an edge
between gene i and gene j, then adi’¢[i,;] = 0. On the other
hand, ad7%s[i,j] > 0 indicates that at least one method identi-
fies edge (i,7). Thus, ad/¢[i,j] shows the number of methods
that agree on edge (i,7).

Figures 2—4 show the aggregated networks from indi-
vidual estimates with [700 % 10] edges for both sample types.
In these plots, edges common in the two networks are shown
in red, and green and blue edges show those specific to normal
and tumor samples, respectively. The width of each edge is
proportional to the edge weight in adj¢¢, and hence represents
the degree of agreement among estimated networks. Fig-
ure 2 shows the union of estimated edges using all methods.
There are 1576 and 1640 edges in the normal and tumor net-
works, respectively; 210 edges are common to both networks
(red edges).

Figure 2 by itself does not provide useful information,
as it shows the union of the edges estimated networks. To
delineate the differences among normal and tumor networks,
we can apply a cutoff T to limit the edges of the network
to those appearing in at least T networks. In other words,
for a given value of T, we calculate a new adjacency matrix
whose [i,] element is zero if ad/%[i,j] < 1. Figure 3 shows
the aggregated network with 7= 5. For this value of 1, the
normal and tumor networks have 416 and 396, respectively,
out of which only 37 appear in both network (red edges).

This finding corroborates with our earlier observation that
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Figure 2. (A) Aggregated network for normal samples, (B) Aggregated
network for tumor samples. Edges in red show those common among the
estimates in (A) and (B).

only a small fraction of edges estimated in normal and tumor
networks are in common to both.

Figure 4 shows the extreme case of looking at most con-
sistent edges among estimated networks. In other words, the
networks in Figure 4 are obtained by setting 7= |K| = 7, where
K is the set of methods considered. The networks of normal and
tumor samples have 174 and 133 edges, respectively. Similar to
the previous settings, only nine edges are in common between
the two networks, indicating a small amount of agreement
between the networks estimated from two different conditions.

Tables S12 and S13 and Figures S4-S9 in Supplemen-
tary material compare the aggregated networks of normal
and tumor samples normalized using two other preprocessing

v‘\‘é:',",'
‘A‘.‘ o\

T V-
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Figure 3. Aggregated network, cutoff = 5: (A) Aggregated network for
normal samples, (B) Aggregated network for tumor samples. Edges in
red show those common among the estimates in (A) and (B).

methods. The results show that similar patterns of differences
among normal and tumor samples are observed, regardless of
how the data are preprocessed.

Discussion

Gene networks provide useful information about interactions
among genes, as well as new insight into complex biological
systems. Increasing evidence also suggests an association
between alterations in genetic networks and initiation and pro-
gression of complex diseases. However, existing repositories
of biological networks only include information about genetic
interactions in a single condition, often the “normal” or labo-
ratory state of the cell. Therefore, these public repositories do
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Figure 4. Aggregated network, cutoff = |K|: (A) Aggregated network for
normal samples, (B) Aggregated network for tumor samples. Edges in
red show those common among the estimates in (A) and (B).

not offer insight into changes in biological networks associated
with complex diseases. Computational methods for network
reconstruction are hence critical for understanding alterations
in biological networks.

In this paper, we conducted an extensive empirical study to
compare seven network reconstruction methods, by examining
the differences in their estimated networks. We also investigated
differences in networks corresponding to genetic interactions in
normal versus tumor samples. The results suggest that

i.  thedegree distributions of networks obtained from difter-
ent reconstruction methods have a considerable amount
of heterogeneity;

ii. there is a considerable amount of stochasticity or ran-
domness in networks using computational methods; and

iii. significant differences exist among networks of normal
and tumor samples.

More research is thus needed to make network recon-
struction methods a useful tool for studying changes in
biological networks associated with complex diseases. First,
current research often focuses on accuracy of reconstruction
methods in terms of edge discovery (using eg, true positive
and false positive rates or precision and recall). However, little
has been done to understand other properties of networks
constructed using computational methods, including local
(degree distribution, etc.) and global (conductance, diameter,
etc.) network properties. Second, despite significant progress
in development of network reconstruction methods, charac-
terization of the uncertainty of the estimated edges has not
received much attention in the literature, and more research
is needed in this area. Finally, a lot more research is needed to
understand the differences among networks estimated under
different disease or experimental conditions. Such research
will offer the opportunity to systematically test for differen-
tial network structures and their associations with complex
diseases.
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Supplementary Material

Table S1. The list of data sets used in this study.

Table S2. The number of edges in estimated networks for
normal and tumor samples, as well as the number of common
edges between them.

Table S3. The number of edges in aggregated networks
for normal and tumor samples and the number of common
edges between them at different cuzoff values.

Tables S4 and S5. The number of edges in estimated net-
works of normal and tumor samples by different methods as
well as the corresponding tuning parameters.

Tables S6—S11. Similar to Tables 1 and 2, these show
selected properties of estimated networks with 800, 900, and
1000 edges for normal and tumor samples.
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Tables S12 and S13. Results of comparing the number
of edges common to normal and tumor samples in original
and permuted samples normalized using two other normal-
ization methods, namely, normalize-then-merge and merge-
then-normalize.

Figure S1. Data pre-processing using normalize-then-
merge technique.

Figure S2. Data pre-processing using merge-then-
normalize technique.

Figure S3. Data pre-processing using COMBAT.

Figure S4. Aggregated networks of (a) normal and (b)
tumor samples preprocessed using normalize-then-merge
method. An edge is included if it appears in at least T =1 esti-
mated networks. Edges in red show those common among the
estimates in (a) and (b).

Figure S5. Aggregated networks of (a) normal and (b)
tumor samples preprocessed using normalize-then-merge
method. An edge is included if it appears in at least T =5 esti-
mated networks. Edges in red show those common among the
estimates in (a) and (b).

Figure S6. Aggregated networks of (a) normal and (b)
tumor samples preprocessed using normalize-then-merge
method. An edge is included if it appears in at least T= |K| =7
estimated networks. Edges in red show those common among
the estimates in (a) and (b).

Figure S7. Aggregated networks of (a) normal and (b)
tumor samples preprocessed using merge-then-normalize
method. An edge is included if it appears in at least T =1 esti-
mated networks. Edges in red show those common among the
estimates in (a) and (b).

Figure S8. Aggregated networks of (a) normal and (b)
tumor samples preprocessed using merge-then-normalize
method. An edge is included if it appears in at least T=5 esti-
mated networks. Edges in red show those common among the
estimates in (a) and (b).

Figure S9. Aggregated networks of (a) normal and (b)
tumor samples preprocessed using merge-then-normalize
method. An edge is included if it appears in at least T= |[K| =7
estimated networks. Edges in red show those common among
the estimates in (a) and (b).
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