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Introduction
An important goal of genomics is to understand the 
relationship among genes, characterized by the regulation 
and synthesis of proteins as reactions to internal and external 
signals. These relationships can be concisely represented in 
a gene network, where nodes are genes and edges between 
them capture interactions at different levels, for instance, 
interactions between corresponding proteins or a protein and 
a messenger RNA.

Edges in a gene network can be either directed or undi-
rected. A directed edge often represents a causal effect of one 
gene to another, for example in the case of transcriptional 
protein–DNA interactions.1–3 An undirected edge, on the 
other hand, represents an association between two genes, for 
instance in the case of protein–protein interactions.3–5

Genetic interactions cast new insights into activities of 
biological pathway and cellular response,6,7 and help deduce 
unknown functions of genes from their dependence on other 
genes.8–10 Gene networks also provide an overall view into 
physical and functional landscape of biological systems.11,12 
Incorporating the knowledge of genetic networks into analy-
sis of omics data has thus resulted in identification of novel 
biomarkers13,14 and more accurate classification methods.15–17

In addition to providing insight into complex biological 
systems, genetic networks provide new clues into mechanisms 
of initiation and progression of complex diseases. Specifi-
cally, alterations in mechanisms of gene regulation have been 
implicated in different types of cancer.18–20 Identifying dif-
ferential patterns of genetic interactions, referred to as dif-
ferential network analysis,21–23 thus offers new opportunities 
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for understanding causal mechanisms of disease initiation 
and progression.

Differential interaction patterns are often identified by 
comparing genetic networks under different experimental 
conditions, at different time points or for different disease 
subtypes and stages. Unfortunately, existing databases of bio-
logical networks, eg, BioGRID, HPRD, IntAct, DIP, and 
GeneMania24–29 include information on genetic interactions 
under a single static condition, often corresponding to stan-
dard laboratory settings. Therefore, the information in these 
repositories cannot be readily used to identify the differential 
interaction patterns in biological networks.

Numerous statistical and bioinformatics methods have 
been proposed for reconstructing genetic networks from 
diverse molecular measurements. Unlike physical interac-
tion mapping techniques,30 these computational tools can be 
directly applied to data obtained from high throughput tech-
nologies to estimate networks of genetic interactions in dif-
ferent cellular states or disease stages. As pointed out earlier, 
directed edges are often used to model causal relations. Thus, 
estimation of directed edges is in general not possible from 
observational data alone;31 in this paper, we focus only on 
methods for reconstructing undirected edges.

Despite many differences, existing statistical and bioin-
formatics methods for reconstruction of genetic networks have 
a common goal and many common features. Of course, exist-
ing methods vary in modeling assumptions, computational 
techniques, and inferential procedures. Accordingly, esti-
mated genetic networks vary depending on the method used, 
and their interpretations may not be compatible. Investigat-
ing the differences among available reconstruction methods, 
and understanding the properties of estimated networks thus 
plays a key role in making these computational tools accessible 
and informative. Our comparative study provides a thorough 
comparison of seven computational methods with publicly 
available software for reconstruction of genetic networks. The 
methods considered in this paper include commonly used and 
recently proposed approaches for networks reconstruction, 
and span over marginal and conditional association-based 
methods, as well as linear and non-linear interaction models 
for genetic interactions.

To examine the similarities and differences in con-
structed networks based on different computational tools, we 
apply each method to a data set consisting of gene expres-
sion profiles from 83 normal and 83 breast cancer tumor 
samples, assembled from publicly available samples in the 
Gene Expression Omnibus (GEO).32 We focus particularly 
on 273 genes known to be associated with  cancer, includ-
ing those mapped to the “p53 signaling pathway”, the 
“breast cancer pathway” and the “cancer pathway” as iden-
tified by the Kyoto Encyclopedia of Genes and Genomes 
(KEGG).33 We examine the effect of tuning para meters 
for each method, and compare the estimated networks in  
terms of their statistical characteristics. Finally, we construct 

a weighted consensus network by aggregating the estimated 
networks from different estimation methods, and examine the 
differences between networks of normal and tumor samples. 
The results show significant differences between genetic net-
works in normal and tumor samples, suggesting the presence 
of many differentially regulated genes in these networks.

The rest of the paper is organized as follows. In the next 
section, we review existing methods of network reconstruc-
tion, and discuss the benefits and limitations of each method. 
The results of applying these methods to reconstruct genetic 
networks of normal and tumor samples, along with compari-
son of network properties are presented in the Results section. 
We conclude the paper with a discussion of our findings and 
future research directions.

Methods
data preprocessing. The data for this study is obtained 

from 166 Affymetrix expression arrays (83 tumor and 83 
normal). The data for all expression arrays was available on GEO 
(http://ncbi.nlm.nih.gov/geo/) and was extracted from raw 
CEL files. The arrays are from a common platform (GPL570)  
and belong to six different GEO series related to normal/breast 
tumor samples. Detailed information about the arrays used in 
this study is given in Table S1 in Supplementary material.

To prepare data for analysis, we normalized raw probe 
intensities to gene expression levels using robust multi-array 
average (RMA)34 with default parameters. After microar-
ray normalization, we merged and combined the expression 
profiles from different series using the COMBAT35 method, 
which employs an empirical Bayes method and is imple-
mented in the R-package “inSilicoMerging.”36 Briefly, in this 
approach, series are normalized separately, series with more 
samples are merged together first. Additional details about the 
process of normalization of raw probe intensities and merging 
data from different data sets are given in Figure S3 in Supple-
mentary material.

To delineate the genetic interactions in cancer, we limit 
our study to genes mapped to the “p53 signaling pathway”, 
the “breast cancer pathway” and the “cancer pathway” based 
on the information from KEGG.33 The resulting data set 
includes expression profiles of 273 genes, each observed over 
166 samples.

Network reconstruction methods. Despite many dif-
ferences, existing statistical and bioinformatics methods for 
reconstruction of genetic networks have a common theme: 
they deduce the existence of an edge among a pair of genes 
by considering a notion of “relatedness.” Interestingly, a key 
distinction between methods of network reconstruction is 
the notion of relatedness used to define an interaction in the 
network. Broadly, network reconstruction methods can be 
categorized into methods based on marginal and conditional 
associations: genes X and Y are marginally associated, if, irre-
spective of other genes, they have similar behaviors; on the 
other hand, X and Y are conditionally associated given a set 
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of genes Z, if their behaviors are similar, after removing the 
effects of Z.

Methods based on marginal and conditional associations 
have advantages and shortcomings. While methods based on 
marginal association ignore the information from other genes 
when determining whether there is an edge between a pair 
of genes, methods based on conditional association take the 
information from other genes into account. As an example, 
suppose two genes X and Y are both regulated by a common 
transcription factor Z. In this case, it is natural to expect the 
expression levels of X and Y to be correlated. Thus, using a 
marginal measure of association X and Y would be considered 
connected with each other. However, this correlation is due to 
the common effect of Z, and hence, if we remove this effect, 
X and Y may no longer be correlated. This means that a con-
ditional measure of relatedness that corrects for the effect of Z 
would not result an edge between X and Y.

The above example suggests that methods based on condi-
tional associations can provide a more realistic picture of genetic 
interactions and should be preferred for reconstructing genetic 
networks. However, estimation of conditional association 
measures is, in general, more computationally demanding and 
requires larger sample sizes (more observations) than their mar-
ginal counterparts. Perhaps more importantly, by construction, 
measures of conditional association work well when all relevant 
variables are included in the experiment and are conditioned 
on. In the example above, if Z is not measured, and hence not 
conditioned on, then a reconstruction based on conditional 
associations would also draw an edge between X and Y.

The above limitations of computational methods for recon-
structing genetic networks indicate that the choice of network 
reconstruction method depends not only on the problem at 
hand but also on the data available for reconstruction. In addi-
tion to the above differences, network reconstruction methods 
assume different models with varying underlying assumptions, 
although the underlying assumptions are not always explic-
itly stated. Early network reconstruction methods used lin-
ear measure of associations,37–39 eg, correlation, while others  
assumed multivariate normality.40,41 In fact, it turns out that 
these two assumptions are closely related.42 A number of 
methods have hence been proposed to relax these assump-
tions, for instance, by considering Gaussian copula distribu-
tions43 or non-linear dependencies among variables.42,44

In this study, we consider seven methods of recon-
structing genetic networks. Among the methods considered, 
Weighted Gene Correlation Network Analysis (WGCNA)45 
and Algorithm for the Reconstruction of Accurate Cellular 
Networks (ARACNE)44 use marginal measures of related-
ness, although ARACNE incorporates a screening step, based 
on data processing inequality (DPI) (see below for additional 
details about ARACNE), which has a similar effect as condi-
tioning on a third gene. Therefore, ARACNE can be classi-
fied as a method based on a mix of marginal and conditional 
associations. In addition, WGCNA uses a linear measure of 

association (Pearson correlation) to decide whether an edge 
should be drawn between two genes. On the other hand, 
ARACNE is based on mutual information (MI), which 
can capture non-linear associations among genes. However, 
MI needs to be estimated from the data, and the estimation 
process may be inaccurate, particularly if the sample size is 
small.

The majority of the methods considered in this paper 
focus on conditional association. Estimation of conditional 
associations is particularly challenging in the setting of high-
dimensional genetic networks, where the number of genes p 
is much larger than the number of available observations n.  
Unfortunately, this is the common setting in biological 
applications, where the sample size is considerably smaller 
than the number of genes. Network reconstruction based on 
conditional association has therefore attracted considerable 
attention from the machine learning community, including 
statisticians and computer scientists. Many of the methods 
proposed in this area, and several considered here, focus on 
the use of sparsity-inducing penalties, in particular the l1, 
or lasso, penalty.46–50 In this paper, we consider two meth-
ods that assume multivariate normality, namely graphical 
lasso (GLASSO)46 and Sparse PArtial Correlation Esti-
mation (SPACE),51 as well as a method that assumes linear 
dependencies among variables, called neighborhood selec-
tion (NS).47 We also consider two newly proposed methods, 
NONPARANORMAL (NPN)43 and Sparse PArtial Cor-
relation Estimation with Joint Additive Models (SPACE 
JAM),42 which relax the multivariate normality and linearity 
assumptions, respectively.

In the following, we briefly review each of the recon-
struction methods considered, and discuss their advantages 
and limitations.

Weighted Gene Correlation Network Analysis. WGCNA45 

determines the presence of edges between pairs of genes based 
on the magnitude of their Pearson correlation sij, which is a 
marginal measure of linear associations. Pearson correlation 
values are first transformed by applying a power adjacency 
function |sij|ß, where the exponent ß is selected to obtain a net-
work with a scale-free topology,52,53 which is expected to better 
represent real-world biological networks. The presence of an 
edge between a pair of genes is then determined by threshold-
ing the values of |sij|ß at a given level. WGCNA also facilitates 
identification of gene modules by converting co-expression 
values into the topology overlap measure (TOM), which rep-
resents the relative interconnectedness of pair of genes in the 
network. While the identification of gene modules is certainly 
of interest, it is outside the scope of this paper.

WGCNA is implemented in an R-package with the same 
name, and an estimate of the network is obtained from func-
tion adjacency(). The output of this function is a weighted 
adjacency matrix of the network; the number of edges in the 
network can thus be controlled by applying a threshold τ to 
this matrix.
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Algorithm for the Reconstruction of Accurate Cellular 
Networks. ARACNE44 is a network reconstruction method 
based on MI, which can measure non-linear similarities 
among expression levels for a pair of genes. ARACNE is in 
some sense a bridge between marginal and conditional associ-
ation models: the presence of an edge between a pair of nodes 
is decided based on the similarities among the gene expression 
levels for those genes, regardless of other genes; however, 
ARACNE employs a pruning step, based on the DPI, which 
mimics the effect of conditioning on a third gene.

In more detail, ARACNE computes a pairwise MIi,j 
for each pair of genes i and j and uses it as a weight for the 
edge between them. Then, it removes the edges whose weight, 
MIi,j, is lower than a given threshold, ε. Finally, it prunes the 
network to remove false-positive (FP) edges corresponding to 
indirect interactions in real networks. To prune such edges, 
ARACNE applies the DPI principle, which gives a necessary 
condition for presence of indirect interactions. Based on DPI, 
an indirect interaction between i and j that both through a 
third gene k satisfies the condition:

 MI MI MI, , ,i j i k k j≤ min( )  (1)

Given that ARACNE considers triplets of genes, its com-
putational complexity for a network with p nodes is O(p3). 
ARACNE is implemented in the Bioconductor package minet54 
through the function aracne(). The output of aracne() is a 
pruned MI matrix, with nonzero entries for edges of the network. 
The number of edges in the estimated network can be (partially) 
controlled using the threshold ε via the argument eps.

Neighborhood Selection. NS47 is a simple approach to esti-
mate a sparse graphical model. For this purpose, the authors 
propose to use a lasso-penalized regression of each node on 
all other nodes to sparsely select the edges in each neighbor-
hood. In a p-dimensional multivariate normal distribution 
X = (X1, X2, …, Xp) ∼ Np(µ, Σ), a graphical model can be 
inferred based on conditional independence of the distribu-
tion. Specifically, there is no edge between two condition-
ally independent variables, given all other variables; this 
corresponds to a zero entry in the inverse covariance matrix. 
Finding the graph from a set of independent and identically 
distributed (i.i.d.) observations is known as covariance selec-
tion. NS is a kind of covariance selection in which the neigh-
borhood set nej of a gene j is the smallest subset of remaining 
variables so that, conditional on nej, Xj is independent of 
the remaining variables. NS estimates the neighborhood 
of each variable in the graph by converting the problem to 
a l1-penalized regression problem as follows:

  ,ˆ{ : }j
j kne kλ λθ= ∈Γ ≠ 0  (2)

where λ is a penalty parameter, G = {1,…,p} indexes the set of 
nodes, and
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= ∑1  is the l1-norm of the coefficient 

vector, and X−j denotes the set of variables excluding Xj.
Clearly, above equation may give asymmetric estimates 

of edges weights between two nodes. It may even happen that 
 ab neλ∈  but  ba neλ∉ . To obtain a symmetric estimate of the 

network, the authors recommend using either the union or the 
intersection of the neighborhoods from two nodes.

To utilize the above formula, it is recommended that 
all variables be normalized to a common empirical variance. 
Larger values of λ reduce the number of variables in  jneλ . One 
option for choosing λ is based on the prediction-oracle value, 
which is obtained by cross-validation. However, the authors 
argue that this choice may not be optimal for estimation of 
network structure. Instead, they suggest a choice of λ to con-
trol the probability of falsely connecting two separate compo-
nents of the network; this latter choice has been found to be 
conservative in empirical studies.55

The NS approach is implemented in the R-package 
glasso, and an estimate of the gene network can be obtained 
based on the estimated inverse covariance matrix using the func-
tion glasso() with the option approx = TRUE. However,  
as mentioned earlier, the resulting estimate of the inverse 
covariance matrix may be asymmetric, necessitating a post-
processing step to obtain a symmetric matrix.

Graphical Lasso. GLASSO46 builds on a basic property 
of multivariate normal random variables, that two variables 
X and Y are conditionally independent of each other, given all 
other variables, if and only if their corresponding entry of the 
inverse covariance, or concentration matrix Σ−1 is zero.

Thus, assuming multivariate normality, the graph of con-
ditional independence relations among the genes can be esti-
mated based on the nonzero elements of the estimated inverse 
covariance matrix. To achieve this, GLASSO estimates a 
sparse concentration matrix by maximizing the l1-penalized 
log likelihood function for a p-dimensional multivariate 
normal distribution, Np(0, Σ) given by

 log det( ) ( ) || || ,tr S ρ− − −Σ − Σ − Σ1 1 1
1

Here, tr indicates the trace of a matrix, S is the empiri-
cal covariance matrix, and the l1 penalty ||Σ−1||1 is the sum of 
absolute values of elements of Σ−1. This penalty enforces spar-
sity in the estimate of Σ−1 by setting some of its entries to zero. 
The tuning parameter ρ is a positive number controlling the 
degree of sparsity.

The above optimization problem is concave and can hence 
be solved using an iterative coordinate-descent algorithm. 
In each iteration of the algorithm, one row of Σ is updated,  
given most recent estimates of the remaining rows. This 
algorithm is implemented in the R-package glasso, and 
an estimate of the gene network can be obtained based on 
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the estimated inverse covariance matrix using the function 
glasso() with the option approx = FALSE.

Sparse PArtial Correlation Estimation. SPACE51 converts the 
estimation of concentration matrix into a regression problem, 
based on the loss function

 
L wn i
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are i.i.d. observations from Np(0,Σ), for k = 1, …, n. Here  
θ = (ρ12, …, ρ(p–1)p)T where ρij is the partial correlation between Yi 
and Yj. Finally, σ = {σ      ij}1#i,j,#p are the diagonal entries of the con-
centration matrix, and w = ={ }wi i

p
1  are nonnegative weights.

To address the estimation of parameters in high-dimension, 
low-sample-size settings, the authors consider minimizing 
the penalized loss function

 ( , , ) ( , , ) ( )n nL L Jθ σ θ σ θ= +Y Y  (5)

where the penalty J(θ ) encourages sparse estimates of θ. Spe-
cifically, the authors consider an l1 penalty, or in other words,

 
( ) ij

i j p
J θ λ θ λ ρ

≤ < ≤
= = ∑1

1

 (6)

In summary, SPACE minimizes a penalized loss func-
tion with symmetric constraint by performing separate lasso 
regressing each variable on the others.

Numerical experiments indicate that this approach has 
an advantage over competing methods, in settings where the 
network includes hub nodes, eg, genes connected to many 
other genes. The algorithm for solving the above optimi-
zation problem is implemented in the R-package space, 
where the function space.joint() can be used to obtain 
an estimate of the concentration matrix. The tuning param-
eter λ controls the sparsity level, ie, the number of edges in 
the network.

Nonparanormal. NPN43 is a penalized maximum likeli-
hood estimation method which generalizes the estimation of 
sparse concentration matrices to non-Gaussian distributions. 
In particular, NPN distribution replaces the original random 
variables X = (X1, ..., Xp) by the transformed random variable 
f(X) = (f1(X1), ..., fp(Xp)), and assume that f(X) is multivariate 
Gaussian. The proposed semiparametric approach applies a 
Gaussian copula transformation, where variables are margin-
ally transformed by smooth monotone functions. The distri-
bution of the transformed data is then assumed to be p-variate 
Gaussian.

The estimate of the gene network is obtained by solving 
a problem similar to GLASSO, on the transformed vari-
ables. The NPN approach is implemented in the R-package 
huge (High-dimensional Undirected Graph Estimation), 

where function huge() returns an adjacency matrix. The 
sparsity level of the graph is controlled through the tuning 
parameter lambda.

Sparse PArtial Correlation Estimation with Joint Additive 
Models. SPACE JAM42 is a semi-parametric method, which 
estimates conditional independence relationships using  
joint additive models. This is achieved by estimating the  
conditional means EXj

(X j|{Xk:(  j,k)∈S}) using an additive 
model Xj|{Xk, k ≠ j} = ∑k ≠ j fjk (Xk) + εj where εj is a mean-zero 
term.

To encourage sparsity in the conditional independence 
graph, the authors apply a group lasso penalty56,57 by linking 
p individual sparse additive models, and estimating fjk(⋅) by 
solving the following optimization problem

 

f n
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This is a convex optimization problem, which is solved 
by a block coordinate descent algorithm implemented in the 
R-package spacejam; the adjacency matrix of the network 
is obtained using the function SJ(), and the tuning parameter 
lambda controls the sparsity level of the network.

results
estimation of genetic networks for tumor and normal 

samples. Using each of the methods described in the Meth-
ods section, we separately estimated the genetic networks for 
tumor and cancer samples. To limit the bias from specific 
choices of tuning parameters, for each method we estimated 
the networks corresponding to tumor and normal samples 
at four different sparsity levels, namely 700, 800, 900, and 
1000 edges in the network. These choices were set based on 
the limitations of ARACNE in generating sparse graphs: 
the minimum number of edges in networks generated using 
ARACNE in normal and tumor samples are 622 and 698, 
respectively.

Considering that the exact control of number of edges 
may not be possible for all methods, the number of edges in 
estimated networks may vary slightly (within 10 edges from 
the target) from one method to another. Nonetheless, the 
complete set of estimated networks, consisting of 56 (= 2*7*4) 
networks provides a comprehensive view of differences among 
genetic networks of tumor and normal samples reconstructed 
using different estimation methods. Details of the number of 
edges in each estimated network, along with the value of tuning 
parameter used to obtain the estimates, are given in Tables S4 
and S5 in Supplementary material.

comparison of network reconstruction methods. To 
compare the network reconstruction methods, we compare 
summary statistics of the estimated networks including:
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•  Summary of measures of the degree distributions of the 
estimated networks, ie, minimum, first quartile, median, 
mean, third quartile, max, and standard deviation, as well 
as interquartile range (IQR) (=3rd quartile – 1st quartile) 
of the degree distribution.

•  Number of connected components (also known as the 
number of clusters) in the network.

Among the summary measures described above, the 
properties of the degree distribution assess the local proper-
ties of the network, while the number of connected compo-
nents concerns global properties of the network. The summary 
measures for networks of normal and tumor samples with 700 
edges are shown in Tables 1 and 2, respectively. The results for 
networks with 800, 900, and 1000 edges are qualitatively sim-
ilar, and given in Supplementary material D (Tables S6–S11 in 
Supplementary material).

Examining the results indicates that the networks esti-
mated by ARACNE are fully connected in both sample types 
and for all sparsity levels. On the other hand, the networks 
estimated by GLASSO, WGCNA, and NPN consist of many 
connected components (clusters). The number of connected 
components in SPACE, SPACE JAM, and NS are between 
these two extremes. Interestingly, these observations corrobo-
rate with the underlying properties of the estimation meth-
ods. ARACNE is the only method based on MI, and uses an 
algorithm that is different than the other six methods. The 
common feature of GLASSO, WGCNA, and NPN is that 
they estimate the network by estimating the entire matrix. On 
the other hand, NS, SPACE, and SPACE JAM estimate the 
network by finding the neighborhood of each gene separately.

The finding regarding the number of connected compo-
nents seem inversely related to the spread of the degree dis-
tribution of the estimated networks. Specifically, the degree 
distributions of estimates from ARACNE and SPACE JAM 
are more concentrated, and less skewed around their means 
compared to estimates from GLASSO, WGCNA, and NPN, 
and the estimates from SPACE and NS again fall between 

these two extremes. Interestingly, the maximum degree in 
estimates from GLASSO, WGCNA, and NPN is almost 
thrice larger than those of ARACNE and SPACE JAM.

Together, the observations regarding the number of con-
nected components and the skewness of the degree distribu-
tions provide interesting insight into estimates obtained from 
network reconstruction methods: compared to ARACNE and 
SPACE JAM, the estimates from GLASSO, WGCNA, and 
NPN have considerably more heterogeneous degree distribu-
tions; this degree heterogeneity results in many (apparently) 
highly connected components, as well as many singletons. 
Estimates from SPACE and NS seem to have a medium 
degree of heterogeneity. Comparing the estimated network 
for normal and tumor samples, we find the above observations 
regarding the degree heterogeneity of estimated networks are 
generally valid for both sample types (tumor and normal). In 
the next section, we investigate the differences between esti-
mated networks of tumor and normal samples in more detail.

comparison of networks of normal and tumor samples. 
To compare the genetic networks of normal and tumor sam-
ples, we first consider estimates from each of the reconstruc-
tion methods separately.

The results in Tables 1 and 2 for networks with 700 
edges, as well as Tables S6–S11 in Supplementary material 
for networks with more edges, indicate that networks using 
NS in normal samples are more connected than networks in 
tumor samples (lower number of connected components in 
normal samples). This is reversed in estimates from GLASSO, 
WGCNA, SPACE JAM, and NPN. However, the number 
of connected components in either case does not appear to be 
drastically different.

To assess whether the differences between normal and 
tumor networks are statistically significant, we permuted the 
sample labels for normal and tumor, and drew B = 100 sam-
ples of size n1= n2=  83 each consisting of a mix of normal 
and tumor samples. For each b = 1, …, B, denote these two 
groups as Nb and Tb. Considering that the samples in Nb and 
Tb are randomly drawn from the same mixture, any difference 

Table 1. Properties of estimated network with [700 ± 10] edges based on normal samples.

NS
(697)

GLASSo  
(696)

SPACE  
(704)

ARACNE  
(697)

WGCNA  
(703)

SPACE JAM  
(706)

NPN
(707)

S
um

m
ar

y 
m

ea
su

re
s 

of
  

de
gr

ee
 d

is
tri

bu
tio

n

Min 0 0 0 1 0 0 0

1st Qu. 2 0 2 4 0 3 0

Median 4 2 4 5 2 5 2

Mean 5.106 5.099 5.158 5.106 5.15 5.172 5.179

3rd Qu. 6 8 7 6 8 7 8

Max 36 38 24 13 33 15 33

STD 5.046 6.933 4.038 2.244 6.782 2.826 6.807

IQR 4 8 5 2 8 4 8

# Clusters 22 87 21 1 84 8 84

Note: Numbers in parentheses show the total number of edges in each estimated network.

http://www.la-press.com


Reconstructing genetic networks of cancer-related pathways

61CanCer InformatICs 2014:13(s2)

among networks estimated from these two groups should be 
due to random variation in estimation procedures. This per-
mutation scheme provides a systematic framework for assess-
ing whether differences in normal and tumor networks are 
systematically different. Figure 1 shows an example of such an 
analysis for the network with 700 edges reconstructed using 
SPACE. The figure shows the histogram of the numbers 
of common edges between Nb and Tb (b = 1, …, B) samples 
along with the number of common edges between normal and 
tumor networks in the original data. Let nc denote the number 
of common edges between networks of original normal and 
tumor samples, and let ncb be the same number for networks 
from bth permuted samples. The P-value

 
p

B
I nc ncb

b

B
= ≥

=
∑1

1

( )  (8)

can then be used to test the null hypothesis that the number 
edges common to normal and tumor samples are no different 
than that for two networks estimated based on data from the 
same distribution. Here, I(nc $ ncb) is the indicator of whether 
nc is greater than or equal to ncb.

As it can be seen, the number of common edges in the 
original data is significantly smaller than the number of com-
mon edges in the permuted data (P-value , 0.01). This behavior 
is not unique to the estimates from SPACE! Table 3 summa-
rizes these findings for all other methods considered in this 

Table 2. Properties of estimated network with [700 ± 10] edges based on tumor samples.

NS
(695)

GLASSo  
(700)

SPACE 
(700)

ARACNE  
(700)

WGCNA  
(697)

SPACE JAM  
(702)

NPN
(702)

S
um

m
ar

y 
m

ea
su

re
s 

of
 

de
gr

ee
 d

is
tri

bu
tio

n

Min 0 0 0 1 0 0 0

1st Qu. 2 1 2 4 0 3 0

Median 4 3 5 5 2 5 2

Mean 5.092 5.128 5.128 5.128 5.106 5.143 5.143

3rd Qu. 7 7 7 7 6 7 6

Max 23 38 19 12 35 15 35

STD 4.209 6.2 3.582 2.2 7.696 2.687 7.738

IQR 5 6 5 3 6 4 6

# Clusters 25 64 23 1 83 4 83

Note: Numbers in parentheses show the total number of edges in each estimated network.
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figure 1. Number of common edges in estimated networks of normal and tumor samples using the SPACE method. The gray histogram shows the 
number of common edges in randomly selected sets of 83 samples (permuted sets), and the red arrow shows the number of common edges in the original 
normal and tumor samples. The number of common edges in networks estimated from permuted samples is significantly larger than the number for the 
original data. Results for other methods are summarized in Table 3.
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manuscript with the exception of ARACNE: we were unable 
to control the tuning parameters to obtain networks with 700 
edges in all randomly selected samples. The table shows the 
number of common edges between normal and tumor sam-
ples, as well as the mean and standard deviation of the num-
ber of common edges for networks estimated from randomly 
drawn samples, and the P-value estimated by comparing the 
number of edges among original and permuted samples. As 
it can be seen, networks of normal and tumor samples are 
significantly different, at least in terms of the number of com-
mon edges, irrespective of the reconstruction method.

To assess whether the choice of preprocessing method 
(COMBAT) affects the differences in estimated networks, we 
repeated this experiment using data obtained from two other 
preprocessing approaches, namely normalize-then-merge and 
merge-then-normalize, which are explained in Supplementary 
material B. The results for these alternative preprocessing 
methods are shown in Tables S12 and S13, and mirror the 
findings in Table 3.

In addition to showing the differences between normal 
and tumor networks, Figure 1 also indicates that the number 
of common edges in randomly generated networks is surpris-
ingly small: on average ∼160/700 edges between two networks 
generated from samples from the same distributions are the 
same! The small number of common edges between networks 
estimated from Nb and Tb (b = 1,…, B) suggests that there is 
a potentially large degree of randomness in computationally 
reconstructed networks, particularly in the setting of genetic 
networks, where the sample size is relatively small.

The large degree of randomness in computationally recon-
structed networks, as well as the significant differences among 
networks reconstructed using different estimation methods, 
suggests the use of aggregate estimation as a potential remedy 
for this instability. Aggregation of networks has been previ-
ously shown to result in improved reconstruction accuracy,31 
and may result in more stable network estimates. Comparison 
of aggregated normal and tumor networks may offer a more 
reliable view of the differences between genetic networks in 
cancer and tumor samples.

Let adjk denote the adjacency matrix of the network esti-
mated using method k∈K, where K = {ARACNE, WGCNA, 
SPACE JAM, SAPCE, NS, GLASSO, NPN}. Each adjk is 
a binary matrix, adjk[i,j]∈{0,1} with adjk[i,j] = 1 indicating 
an edge between genes i and j. The adjacency matrix of the 
aggregated network can then be defined as:

 K
,Agg k

k
adj adj

∈
= ∑  (9)

where adjAgg is the weighted aggregated network, in which 
0 # adjAgg[i,j] # |K|.

Based on Eq. (9), if none of the methods estimate an edge 
between gene i and gene j, then adjAgg[i,j] = 0. On the other 
hand, adjAgg[i,j] . 0 indicates that at least one method identi-
fies edge (i,j). Thus, adjAgg[i,j] shows the number of methods 
that agree on edge (i,j).

Figures 2–4 show the aggregated networks from indi-
vidual estimates with [700 ± 10] edges for both sample types. 
In these plots, edges common in the two networks are shown 
in red, and green and blue edges show those specific to normal 
and tumor samples, respectively. The width of each edge is 
proportional to the edge weight in adjAgg, and hence represents 
the degree of agreement among estimated networks. Fig-
ure 2 shows the union of estimated edges using all methods. 
There are 1576 and 1640 edges in the normal and tumor net-
works, respectively; 210 edges are common to both networks 
(red edges).

Figure 2 by itself does not provide useful information, 
as it shows the union of the edges estimated networks. To 
delineate the differences among normal and tumor networks, 
we can apply a cutoff τ to limit the edges of the network 
to those appearing in at least τ networks. In other words, 
for a given value of τ, we calculate a new adjacency matrix 
whose [i,j] element is zero if adjAgg[i,j] , τ. Figure 3 shows 
the aggregated network with τ = 5. For this value of τ, the 
normal and tumor networks have 416 and 396, respectively, 
out of which only 37 appear in both network (red edges). 
This finding corroborates with our earlier observation that 

Table 3. Comparison of the number of common edges between networks of normal and tumor samples, with corresponding results based on 
networks estimated from 100 randomly permuted samples.

METhoD P-vALUE oRIGINAL DATA RANDoM SAMPLING

# CoMMoN  
EDGES

MEAN of #  
CoMMoN EDGES

STD of #  
CoMMoN 
EDGES

ns , 0.01 48 149.72 10.763838

GLASSO , 0.01 38 175.48 25.283236

SPACE , 0.01 61 158.56 11.476212

WGCNA , 0.01 82 264.01 19.295415

SPACE JAM , 0.01 82 165.49 9.440398

NPN , 0.01 83 261.17 18.515653
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methods. The results show that similar patterns of differences 
among normal and tumor samples are observed, regardless of 
how the data are preprocessed.

discussion
Gene networks provide useful information about interactions 
among genes, as well as new insight into complex biological 
systems. Increasing evidence also suggests an association 
between alterations in genetic networks and initiation and pro-
gression of complex diseases. However, existing repositories 
of biological networks only include information about genetic 
interactions in a single condition, often the “normal” or labo-
ratory state of the cell. Therefore, these public repositories do 

figure 2. (A) Aggregated network for normal samples, (b) Aggregated 
network for tumor samples. Edges in red show those common among the 
estimates in (A) and (b).

figure 3. Aggregated network, cutoff = 5: (A) Aggregated network for 
normal samples, (b) Aggregated network for tumor samples. Edges in 
red show those common among the estimates in (A) and (b).

only a small fraction of edges estimated in normal and tumor 
networks are in common to both.

Figure 4 shows the extreme case of looking at most con-
sistent edges among estimated networks. In other words, the 
networks in Figure 4 are obtained by setting τ = |K| = 7, where 
K is the set of methods considered. The networks of normal and 
tumor samples have 174 and 133 edges, respectively. Similar to 
the previous settings, only nine edges are in common between 
the two networks, indicating a small amount of agreement 
between the networks estimated from two different conditions.

Tables S12 and S13 and Figures S4–S9 in Supplemen-
tary material compare the aggregated networks of normal 
and tumor samples normalized using two other preprocessing 
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not offer insight into changes in biological networks associated 
with complex diseases. Computational methods for network 
reconstruction are hence critical for understanding alterations 
in biological networks.

In this paper, we conducted an extensive empirical study to 
compare seven network reconstruction methods, by examining 
the differences in their estimated networks. We also investigated 
differences in networks corresponding to genetic interactions in 
normal versus tumor samples. The results suggest that

i. the degree distributions of networks obtained from differ-
ent reconstruction methods have a considerable amount 
of heterogeneity;

ii. there is a considerable amount of stochasticity or ran-
domness in networks using computational methods; and

iii. significant differences exist among networks of normal 
and tumor samples.

More research is thus needed to make network recon-
struction methods a useful tool for studying changes in 
biological networks associated with complex diseases. First, 
current research often focuses on accuracy of reconstruction 
methods in terms of edge discovery (using eg, true positive 
and false positive rates or precision and recall). However, little 
has been done to understand other properties of networks 
constructed using computational methods, including local 
(degree distribution, etc.) and global (conductance, diameter, 
etc.) network properties. Second, despite significant progress 
in development of network reconstruction methods, charac-
terization of the uncertainty of the estimated edges has not 
received much attention in the literature, and more research 
is needed in this area. Finally, a lot more research is needed to 
understand the differences among networks estimated under 
different disease or experimental conditions. Such research 
will offer the opportunity to systematically test for differen-
tial network structures and their associations with complex 
diseases.
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supplementary Material
table s1. The list of data sets used in this study.
table s2. The number of edges in estimated networks for 

normal and tumor samples, as well as the number of common 
edges between them.

table s3. The number of edges in aggregated networks 
for normal and tumor samples and the number of common 
edges between them at different cutoff values.

tables s4 and s5. The number of edges in estimated net-
works of normal and tumor samples by different methods as 
well as the corresponding tuning parameters.

tables s6–s11. Similar to Tables 1 and 2, these show 
selected properties of estimated networks with 800, 900, and 
1000 edges for normal and tumor samples.

figure 4. Aggregated network, cutoff = |K|: (A) Aggregated network for 
normal samples, (b) Aggregated network for tumor samples. Edges in 
red show those common among the estimates in (A) and (b).
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tables s12 and s13. Results of comparing the number 
of edges common to normal and tumor samples in original 
and permuted samples normalized using two other normal-
ization methods, namely, normalize-then-merge and merge-
then-normalize.

Figure s1. Data pre-processing using normalize-then-
merge technique.

Figure s2. Data pre-processing using merge-then- 
normalize technique.

Figure s3. Data pre-processing using COMBAT.
Figure s4. Aggregated networks of (a) normal and (b) 

tumor samples preprocessed using normalize-then-merge 
method. An edge is included if it appears in at least τ = 1 esti-
mated networks. Edges in red show those common among the 
estimates in (a) and (b).

Figure s5. Aggregated networks of (a) normal and (b) 
tumor samples preprocessed using normalize-then-merge 
method. An edge is included if it appears in at least τ = 5 esti-
mated networks. Edges in red show those common among the 
estimates in (a) and (b).

Figure s6. Aggregated networks of (a) normal and (b) 
tumor samples preprocessed using normalize-then-merge 
method. An edge is included if it appears in at least τ = |K| = 7  
estimated networks. Edges in red show those common among 
the estimates in (a) and (b).

Figure s7. Aggregated networks of (a) normal and (b) 
tumor samples preprocessed using merge-then-normalize 
method. An edge is included if it appears in at least τ = 1 esti-
mated networks. Edges in red show those common among the 
estimates in (a) and (b).

Figure s8. Aggregated networks of (a) normal and (b) 
tumor samples preprocessed using merge-then-normalize 
method. An edge is included if it appears in at least τ = 5 esti-
mated networks. Edges in red show those common among the 
estimates in (a) and (b).

Figure s9. Aggregated networks of (a) normal and (b) 
tumor samples preprocessed using merge-then-normalize 
method. An edge is included if it appears in at least τ = |K| = 7  
estimated networks. Edges in red show those common among 
the estimates in (a) and (b).
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