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Abstract. Cells from 7 patients operated on for thyroid cancer were investigated. Samples of cells from the carcinoma and
from the normal thyroid tissue were cultured with and without TSH stimulation. For light microscopy, serial sections of cells
were cut and the size of nucleoli was measured and the number of nucleoli per cell counted. At the electron microscopic
level the number and the volume of the fibrillar centres (FC) were estimated taking the Swiss cheese effect into account.
The areal densities of FC, the fibrillar and granular component in nucleoli were determined by point counting. The results
indicate that the malignant transformation has no influence on the size of the FC, but the observed numbers as well as the
total area of FC are larger in cancer cells than in the normal thyroid epithelial cells. The nucleolar density of the fibrillar
component is larger and that of the granular component is smaller in thyroid carcinoma cells than in non-malignant thyroid
epithelial cells (p = 0.0001). Thus simple morphometry at the electron microscopic level might be helpful to discriminate
between thyroid epithelial cells and thyroid carcinoma cells in culture.
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1. Introduction

Nucleolar organizer associated proteins (NORAPs) are essential for ribosomal gene transcription
and have been recognised in the nucleolar organizer regions (NORs). They are of fundamental
interest to tumour cell biologists [4]. Accumulations of the NORAP’s are visualized as argyrophil
components of nucleoli (AgNOR) in the light microscope and as fibrillar centres (FC) in the electron
microscope. Although the AgNOR reaction occurs mainly in the nucleolar fibrillar centres [3], the
fibrillar component of the nucleoli also shows AgNOR reaction [6]. The numbers of discernible (and
therefore countable) interphase AgNOR dots depend on at least three variables: the degree of NOR
dispersion, the spatial resolution of the optical system (microscope coupled to either image analyser or
human observer) and control of the AgNOR staining technique [22]. AgNOR profile areas have been
measured using image cytometry [19], but the resolution of the image analysis systems is too low to
recognize the individual FC. Moreover, the AgNOR dots lie at different levels in the nuclear section
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decreasing the resolution of individual dots. At the electron microscopic level the number and volume
of FC can be estimated without these shortcomings [2]. It has been demonstrated that the degree of
differentiation, rather than the proliferation state, may sometimes be related to the AgNOR numbers
per nucleus [8]. The primary objective of the present investigation is to determine whether the size and
number of NORAP accumulations in malignant cells differed from those of non-malignant cells. In
normal cells, stimulation of the secretion influences the content of the nucleolar components [1,9,20].
The secondary objective was to investigate to what extent the content of the fibrillar and granular
components differs between thyroid epithelial cells (TEC) and thyroid carcinoma cells (TCC) and the
influence of TSH on both sets of samples. The nucleoli were examined at the light as well as the
electron microscopic level.

2. Material and methods

2.1. Culture and stimulation

TCC and TEC were obtained in connection with strumectomies of 7 patients with thyroid cancer
and prepared as previously described [18]. Diagnostic criteria: the criteria of the World Health Orga-
nization were used [12]. The cells were cultured in Hams F12 medium modified by Kohn [16] sup-
plemented with 5% fetal calf serum (Biological Industries), antibiotics (100 kU/l penicillin, 100 mg/l
streptomycin, Biological Industries) and six growth factors: bovine TSH 1 U/l (Armour, Collegeville,
PA, USA), human insulin 10 mg/l (Boehringer, Mannheim, Germany), somatostatin 10 µg/l (Nova-
biochem, Länfalfingen, Switzerland), human transferrin 6 mg/l (Boehringer), hydrocortisone 10−8 M
(Calbiochem, La Jolla, CA, USA), glycyl-histidyl-lysine acetate 10 µg/l (Calbiochem) and non-
essential amino acids (Biological Industries). After one week the cells were passaged and seeded
into 4 TEC-25 plastic flasks. Two of the TEC-25 flasks were stimulated with TSH for 72 h. This
resulted in four samples of cells from each patient. Two samples of TCC from the carcinoma, one
TSH-stimulated (TCC+) and one unstimulated (TCC−). TEC were obtained from apparently normal
thyroid tissue situated in the opposite site of the carcinoma, one TSH-stimulated culture (TEC+) and
one unstimulated (TEC−). A total number of 7 patients were investigated. In 5 patients we were able
to obtain and grow cells from normal and malignant tissue. Only in three patients a complete set of
TEC and TCC, grown with and without TSH, was obtained.

2.2. Fixation and embedding

After a wash in Hanks BBS, the cells were fixed in 2% glutaraldehyde (TAAB) in 0.1 M cacodylate
buffer (pH 7.0) for 2 h at room temperature. The cells were then loosened mechanically with a plastic
scraper, transferred to tubes and centrifuged for 5 min at 1700 rpm. The sediment was transferred
to 2% glutaraldehyde in 0.1 M cacodylate buffer and kept overnight at room temperature. The cells
were postfixed in 2% OsO4 in 0.1 M cacodylate buffer for 2 h, rinsed very briefly in 0.1% cacodylate
buffer and in distilled water, dehydrated in 70, 96 and 99% ethanol, and routinely embedded in Epon
for light and electron microscopy.

2.3. Microscopy and morphometry

The microscopy and the morphometry were performed with the observer unaware of the identity of
the sample involved. For light microscopy, consecutive 1 µm thick sections were cut from each sample
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and stained with toluidine blue until 500 nuclei were fully sectioned. The sections were examined
using a Leitz Orthoplan microscope equipped with a 100× Plan Apo objective (NA 1,32) attached to
a video camera Kappa CF 11/2. The number of nucleoli per nucleus was counted in sections observed
on a TV-screen (final magnification of 4,500×). Nucleoli were defined as round intranuclear bodies
with an average diameter > 1 µm. The diameter of the nucleolar profile was measured with a set of
test circles of increasing diameter on a transparency. The circle which fitted best with the largest profile
size was chosen. The nucleoli were assumed to be spheres, and the individual nucleolar volumes were
calculated using the formula V = (1/6)πD3. The means of the following parameters were calculated
for 20 nuclei in each sample: the number of nucleoli per nucleus, the volume of the individual nucleoli
and the volume of the nucleoli per cell. The chosen nuclei were the first 20 nuclei not seen in the first
section. To follow these 20 nuclei through the serial sections photographs were taken of every third
section and the individual nuclei were identified by means of pattern recognition of the shape of the
nucleus and the cell as well as the position in relation to the other cells. Furthermore, the metaphase
index (MI) was determined as the ratio of cells arrested in metaphase to the total number of cells
counted (500) [7].

For electron microscopy, 70 nm thick sections were cut from several levels at 4 µm intervals.
70 nm was the minimal thickness which provided enough contrast to identify the FC. All nucleoli
from each level were photographed until a total of at least 55 nucleoli from each specimen was reached,
resulting in a total of 1300 pictures. The following criteria were used for identification of the nucleolar
compartments. Fibrillar centres: small rounded areas containing fibrils about 5 nm in diameter and
displaying a low electron density [11]. Fibrillar component: dense osmiophilic material composed of
fibrils with diameters in the range of 4–10 nm [11]. Similar fibrils of lower electron density situated in
or near interstices were also categorized as fibrillar component. Granular component: areas containing
granules 15–20 nm in diameter. Interstices: light areas of lower electron density than the surrounding
nucleolar mass [10]. Micrographs with a final magnification of 42,000× were examined through a
magnifying glass with a magnification factor of 2. A quadratic test lattice with 2.0 cm spacing was
superimposed on each micrograph and the densities of the FC, the fibrillar and granular components
as well as the interstices were determined. The profile diameter of the FC was measured with a
transparent set of test circles of increasing diameter. The circle which fitted best with the profile size
of the FC was chosen. The FC appeared as small rounded areas of low electron density and were
surrounded by the fibrillar component of high electron density. When tissue sections are observed
in the electron microscope, the FC appear as holes in a Swiss cheese. A slice of cheese will show
a profile of a hole only when each of the two planar faces of the slice penetrate the same hole.
Moreover, the diameter of the profile will be smaller than the diameter of the hole. The diameters
of the FC (De) were estimated from the observed diameters (Do) taking the Swiss cheese effect into
account by a modification of the method described by Keiding and Andersen [14]; instead of the earlier
used χ2-distributions, logarithmically normal distributions of true diameters were used for increased
flexibility [15]. The number of FC per observed square micrometer (NA) was calculated, after which
the numerical density in nucleoli

NV = NA/
(
De cosΘ − T

)
could be determined. Θ is the minimal size of the capping angle between the section and the FC,
necessary to identify FC. The mean area (A) and the mean volume (V ) of the individual FC were
calculated using the formulas A = D2π/4 and V = D3π/6, where D2 and D3 were estimated from
the fitted FC diameter distributions. The volume of FC per cell is calculated by multiplying NV by V .
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2.4. Statistics

For each variable there were measurements from 7 patients on some or all of the samples TEC−,
TEC+, TCC−, TCC+. The comparisons between samples had to take the individual matching into
account and were performed as an unbalanced two-way analysis of variance except for the nucleolar
densities for which the counts were analysed in a logistic regression analysis based on the same lay-
out. All p-values quoted are from these analyses, so when comparing, e.g., TEC− and TCC−, the
p-value for the contrast between these two factors in the analysis of variance is quoted.

3. Results

Light microscopy showed that the observed cells contained one nucleus and all nuclei contained
at least one nucleolus, the average of all samples being 1.98 ± 0.45 nucleolus per cell. For each
patient, the numbers and volumes of nucleoli in the TEC− and TCC− samples are shown in Fig. 1.
The number of nucleoli in TEC− is larger than in TCC− (p = 0.039). The volumes of the individual
nucleoli varied from patient to patient, but there was no significant pattern in the variations of the
nucleolar volumes. When the TEC+ and TCC+ samples were compared, there was no change in the
number of nucleoli per cell, nor was there any systematic change in the volume of nucleoli per cell.
These results are not shown in the figures. In the TEC and TCC samples cultured with and without
TSH the MI was maximally 2‰ and there was no difference between the TEC and TCC samples.

In the electron microscope, FC appear as light circular areas in the nucleoli and it is easy to
distinguish FC, the fibrillar and granular compartments from each other (Fig. 2). The diameters of the
FC were measured and estimated. The distribution of these diameters in one of the TCC− samples is
shown in Fig. 3. The differences between Do and De are small. The difference between the means
of Do and De is a few nanometers. Only in one patient was the difference between the means about
20 nm. For each patient, the observed diameters of FC in the unstimulated cells are compared in
Fig. 4(A), the means show no significant difference (p = 0.19).

Fig. 1. Pairs of mean numbers and mean volumes of nucleoli per cell in thyroid epithelial cells (TEC) and thyroid carcinoma
cells (TCC) grown without TSH (−) from each patient.
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Fig. 2. Nucleolus of thyroid carcinoma cells grown without TSH. The fibrillar centres (c) are sharply delineated from
the surrounding fibrillar component (f). Moreover, the granular component (g) and the nuclear membrane (m) are indi-
cated (×46,000).

Fig. 3. Size distributions of diameters of fibrillar centres in one sample of carcinoma cells grown without TSH. The observed
diameters, and the estimated diameters are shown taking the Swiss cheese effect into account.
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Fig. 4. Pairs of observed diameters and numbers of fibrillar centres in nucleoli from each patient. The means in thyroid
epithelial cells (TEC) and thyroid carcinoma cells (TCC) grown without TSH (−).

Fig. 5. Pairs of means of number and volume of fibrillar centres per cell from each patient. These parameters are estimated
taking the Swiss cheese effect into account.

The observed numbers of FC per nucleolar area in TCC and TEC from each patient were compared.
The results for the unstimulated samples are shown in Fig. 4(B). The means of the numbers in TCC−

are larger than in TEC− (p = 0.044). In contrast, the numbers of FC in the stimulated TEC+ and
TCC+ samples are nearly the same. Only in three out of 5 patients is it possible to compare the
influence of TSH on both non-malignant and malignant cells. In two of these three patients the
number of FC is larger in malignant than in non-malignant cells.

The estimated numbers and volumes of FC per cell in the unstimulated cells are shown in Fig. 5.
There are no significant differences between the numbers of FC per cell (p = 0.44), but the volumes
of FC per cell tend to be larger in the TCC− than in the TEC− samples (p = 0.18). No differences
can be demonstrated between the stimulated cells.

The nucleolar densities of the FC, the fibrillar component and the granular component in the
unstimulated cells are presented in Fig. 6. Whereas the density of FC is larger in TCC− than in TEC−

(p = 0.009), there is no significant difference between TCC+ and TEC+. The fibrillar component
makes up a larger proportion of the nucleoli in TCC− than in TEC− (p = 0.0002) and correspondingly
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Fig. 6. The areal densities of centres, fibrillar and granular components in nucleoli in cells grown without TSH (−). Pairs
of the means in thyroid epithelial cells (TEC) and thyroid carcinoma cells (TCC) grown without TSH from each patient.

Fig. 7. The areal densities of centres, fibrillar and granular components in nucleoli of thyroid epithelial cells (TEC) grown
with (+) and without (−) TSH. Pairs from each patient are compared.

the granular component makes up a lesser part in TCC− than in TEC− (p = 0.0001). When comparing
TCC+ with TEC+, the densities of the fibrillar and granular components show the same pattern
(p = 0.0001).

The unstimulated and stimulated TEC are compared in Fig. 7. The fibrillar component has a larger
density in TEC− than in TEC+ (p = 0.008) and the granular component has a smaller density in
TEC− than in TEC+ (p = 0.058). There is no significant difference between the densities of the FC.
A comparison of TCC− and TCC+ shows no detectable differences in the densities of the fibrillar
component or the granular component or FC.

4. Discussion

By studying serial sections of the glutaraldehyde fixed samples, nucleoli were found in all cells,
TEC as well as TCC. Montironi et al. [17] studied cell smears obtained from fine needle aspirations.
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They found nuclei, which contained nucleoli in 50% of the follicular adenoma cells and 74% of the
follicular carcinoma cells. Montironi found a higher percentage of cells with two or more nucleoli
in carcinoma cells than in normal cells. In cells cultured with TSH we found an equal number of
nucleoli in carcinoma and normal cells. But in cells cultured without TSH the number of nucleoli in
normal cells was larger than in cancer cells. The overall average number of nucleoli was 1.98, which
may indicate that our method is more sensitive. However, these discrepancies may also be due to
differences in obtaining the specimens, e.g., secondary cultures versus fine needle aspiration, fixation
methods and/or the counting technique.

The mean volume of the nucleoli per cell was measured and there was no significant difference
between the samples. Hence, under our experimental conditions, changes in volume densities of the
nucleolar compartments reflect the changes in the total content per cell. As mentioned above, there
were fewer nucleoli in TCC− than in TEC−, but the volumes of the individual nucleoli did not show
an opposite significant pattern to compensate for the change in number. Therefore the result that the
volume per cell is identical in the samples should be interpreted with caution.

The difference between the observed and estimated diameters of the FC is smaller than in earlier
observations of neurons in the rat [2]. The size distribution found in this study makes the difference
smaller; so small that it is acceptable to disregard the Swiss cheese effect in future studies of TEC
and TCC.

AgNORs are the product of staining argyrophilic non-histone proteins which are mostly comprised
of two NORAPs, nucleolin (C22) and numatrin (B23) [13]. If these argyrophilic NORAPs are mainly
situated in the FC [3] three results of our morphometric investigations of FC support the evaluation of
AgNORs as a means in cancer diagnostics. But if a considerable part of the argyrophilic NORAPs are
localized in the fibrillar component the comparisons between FC and AgNOR carry less weight. First,
there was no significant difference between the diameters of FC in the TEC− and TCC− samples.
Thus, an AgNOR staining should give the same proportion of discernible AgNOR dots. Second, the
numerical density of FC in the nucleoli was larger in TCC− than in TEC−. As already stated, the
size of the nucleoli in these two categories of samples is the same. Therefore, in AgNOR stained
samples the number of discernible AgNOR dots per nucleolus should be larger in the TCC− than in
the TEC−. Third, the areal density of FC in nucleoli was significantly larger in TCC− than in TEC−.
This indicates that the areal density of AgNORs should be larger in TCC− than in TEC−.

A higly significant correlation between the AgNOR number and the speed of cell replication has
been found in a series of experiments carried out on human cultured cancer cell lines [21]. In the
present investigation the percentage of cells in division was the same in TEC and TCC. Thus, the
observed increased number of FC in TCC− may be related to the transformation to cancer and to the
degree of differentiation. This is in accordance with Edwards et al. [8] who demonstrate that in a
promonocytic cell line the degree of differentiation rather than the proliferation state may be related
to AgNOR numbers. Derenzini [5] proposed that cells capable of dividing rapidly must concentrate
their ribosomal biogenesis in a shorter time. This can be achieved by activating a greater number
of rDNA sequences for transcription. Therefore a greater number of NORAPs must be synthesized,
which gives rise to a greater number of FC.

In TCC the volume density of the fibrillar component was higher and that of the granular component
lower than in TEC. Thus a ratio between the fibrillar and granular densities might be a useful method for
establishing a differential diagnosis between non-malignant and malignant cells in cultures. However,
it remains to be shown in biopsies. TSH decreased the density of the fibrillar component and increased
that of the granular component. These changes are seen in other cellular systems in which protein
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synthesis is stimulated [1,9,20]. Thyrocytes in secondary monolayer culture preserve the ability to
produce thyroglobulin (TG) and to react to TSH-stimulation [18]. Thus the decrease in density of
the fibrillar component and the increase of the granular component in the present investigation may
be related to increased protein synthesis. When TCC were treated with TSH the densities of the
components did not change. This indicates that TSH does not increase protein synthesis in TCC. This
may either be due to a lack of functioning TSH receptors or to a constitutively acting TSH receptor.

The density of FC was larger in TCC− than in TEC−. This indicates a lower level of protein
synthesis [1], just as the observed higher density of the fibrillar component and the lower of the
granular component does. These observations indicate that TCC in culture have a lower level of
protein synthesis than TEC and do not respond to TSH stimulation. One of the authors of this paper
has previously demonstrated that by inhibiting protein synthesis the number of FC decreased to one-
third but the size of the individual FC increased to the double. This resulted in a 60% higher areal
density of FC. Moreover, the density of the granular component decreased (p = 0.04) [2]. In electron
as well as in light microscopy the number of FC–AgNOR dots and areal density of FC–AgNORs are
two different parameters.

5. Conclusion

The investigated cells were almost exclusively in interphase and the proliferation state probably
the same in TEC and TCC. The number as well as the total area of FC are larger in TCC than in
TEC. This result supports the hypothesis that the number of FC may be related to the degree of
differentiation. The density of the fibrillar component in nucleoli is larger and that of the granular
component is smaller in TCC than in non-malignant TEC. Thus, simple morphometry at the electron
microscopic level might be helpful to discriminate between TEC and TCC in culture.
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