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The emergence of parvoviruses of carnivores
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Abstract — The emergence of canine parvovirus (CPV) represents a well-documented example highlighting
the emergence of a new virus through cross-species transmission. CPV emerged in the mid-1970s as a new
pathogen of dogs and has since become endemic in the global dog population. Despite widespread
vaccination, CPV has remained a widespread disease of dogs, and new genetic and antigenic variants have
arisen and sometimes reached high frequency in certain geographic regions or throughout the world. Here
we review our understanding of this emergence event and contrast it to what is known about the emergence
of a disease in mink caused by mink enteritis virus (MEV). In addition, we summarize the evolution of CPV
over the past 30 years in the global dog population, and describe the epidemiology of contemporary
parvovirus infections of dogs and cats. CPV represents a valuable model for understanding disease
emergence through cross-species transmission, while MEV provides an interesting comparison.
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1. INTRODUCTION related autonomous parvoviruses which we will

refer to as “carnivore parvoviruses”, canine par-

Members of the parvovirus genus (i.e. auton-
omous parvoviruses, subfamily Parvovirinae)
infect a wide variety of mammalian hosts
including pigs, several members of the order
Carnivora (henceforth referred to as “carni-
vores”) and various rodents, and are character-
ized by more or less strict host specificity
[13,42]. Camivores are infected by three closely
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vovirus (CPV), feline panleukopenia virus
(FPV) and mink enteritis virus (MEV). Dogs
and mink are also hosts for other distantly
related viruses in the same subfamily, including
the minute virus of canines (also known as CPV
type-1 or canine minute virus) and Aleutian
mink disease virus (AMDYV) which belong to
the Bocavirus and Amdovirus genera, respec-
tively. There appear to be no immunological,
epidemiological or pathological interactions
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between CPV-1 or AMDV and CPV, FPV or
MEYV respectively in their various hosts.

Parvoviruses are non-enveloped viruses with
a capsid of about 25 nm in diameter, that pack-
age a single-stranded DNA genome of approx-
imately 5 000 bases. The genomes are simple
and contain two large open reading frames
(ORF) as well some smaller or overlapping
genes, mostly generated by alternative splicing.
In the conventional orientation, the right-hand
ORF encodes the capsid proteins and the left-
hand ORF encode the non-structural proteins
(reviewed for example in [14]). Parvovirus
capsids are highly antigenic and play major roles
in determining viral host ranges and tissue tro-
pisms (reviewed for example in [31]). The
non-structural proteins are multi-functional and
required for viral gene expression and genome
replication. Parvoviruses replicate using various
components of the host cell DNA replication
complex and, since they cannot induce mitosis,
only replicate in actively dividing cells [47].
Several aspects of this replication scheme —
including the likely lack of involvement or
absence of some subunits of the host cell
DNA polymerase complex, the rapid replication
of the genome, and the single-stranded nature
of the parvovirus genome — lead to a lower
fidelity of parvovirus replication compared to
that observed during cellular DNA replication
(reviewed in [25]). While parvoviruses of
rodents and AMDV can establish long-lasting
or persistent infections, camivore parvoviruses
are usually cleared within 10 days of infection,
after which little residual viral DNA remains
[1, 54, 59]. The immune response that protects
animals against parvovirus infection is predom-
inantly humoral, and antibodies efficiently neu-
tralize most parvoviruses. The important role of
antibodies in protecting animals from infection
is emphasized by the effectiveness of maternal
immunity, which is antibody mediated, and
which confers efficient protection against these
parvoviruses. Infections occur predominantly in
young animals after maternal antibodies have
declined to low levels, generally between 2
and 4 months of age depending on the maternal
antibody titer and level of transfer. Cell medi-
ated immunity clearly plays an important role
in recovery from disease.
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2. THE PARVOVIRUSES OF CARNIVORES

Carnivore parvoviruses are endemic in most
domestic and feral carnivore populations and
they infect a variety of host species (see for
example [19, 21, 28, 62, 64, 67, 73, 77]). The
related group of “FPV-like” viruses, which
includes FPV, viruses from raccoons (termed
RPV) and arctic foxes (termed blue fox parvo-
virus (BFPV)), has been widespread for many
decades. “FPV-like” viruses infect various
hosts including domestic and wild cats, lions,
tigers, leopards, cougars, lynx, civets, leopard
cats, arctic foxes and raccoons [7, 8, 19, 32,
64, 65, 74]. These viruses are all very similar,
appear to be transmitted readily among these
hosts, and form a monophyletic clade in phylo-
genetic analyses of the viral sequences [56, 66].
However, FPV-like viruses do not spread
among dogs, which are infected only in thymus
and bone marrow and therefore do not appear to
allow onward transmission [68].

As parvoviruses only infect actively dividing
host cells, the clinical manifestations of disease
are strongly dependent on the age of the host,
and symptoms are similar in wild and domestic
animals [54]. In animals older than about
4 weeks, the virus mainly replicates in the tis-
sues containing proliferating cells, including
the bone marrow, lymph nodes, the spleen in
some cases, and the progenitor cells in the
crypts of Lieberkiihn in the intestine. Cytolysis
of bone marrow and other lymphoid cells leads
to lymphopenia or leukopenia, while loss of
intestinal epithelial cells can lead to hemor-
rhagic enteritis, the most pronounced clinical
symptoms associated with parvovirus infections
of carnivores. Lymphoid depletion can involve
loss of all myeloid progenitor cells, decreasing
the number of circulating thrombocytes, eryth-
rocytes, granulocytes and mast cells. However,
viral strain, individual host and host-species dif-
ferences result in preferential tissue tropisms
and differential clinical symptoms, so that the
manifestation of clinical disease can vary from
severe to subclinical. If animals survive the
acute infection, complete recovery normally
occurs.

Where maternal immunity is not present,
infection of neonatal animals and fetuses may
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occur. In those animals additional tissues can be
infected, and virus replication is seen in the
myocardium and/or cerebellum, leading to
myocarditis in puppies, and cerebella hypopla-
sia in kittens. In rare cases, infections in utero
can lead to abortion or generalized viral replica-
tion in numerous fetal organs [74]. Intriguingly,
no signs of diarrhea are observed in neonatal
animals, likely due to the lower rate of replica-
tion of the intestinal epithelium early in life, but
infections of fetuses and neonates are
generally fatal or lead to debilitating permanent
damage.

Parvoviruses are extremely stable in the
environment and indirect transmission likely
plays an important role in the transmission and
maintenance of viruses in a population, particu-
larly in wild camivore populations which may
be characterized by low contact rates between
animals. Transmission between domestic and
wild carnivores also probably occurs readily,
and while direct transmission through close
contact or predation on smaller carnivores has
been proposed, the viruses are probably readily
transmitted across long distances by fomites.
Carnivore parvoviruses can spread rapidly, and
in naive populations there can be a high associ-
ated mortality that can lead to considerable
decreases in population size (see [5] for a review
of this topic). In populations in which the
viruses are endemic, new cases occur mainly
in young animals that become infected after
maternal antibodies wane, and for seasonal
breeders the infection dynamics can depend
heavily on the replenishment of young suscepti-
ble animals, frequently leading to cyclical infec-
tion dynamics [5].

Vaccination is the main method of control-
ling disease in domestic animals and in captive
populations of wild carnivores. FPV vaccines
of various types have been on the market since
the 1950s, and vaccines for MEV and CPV
were developed soon after these diseases
emerged, with the first CPV vaccine available
in 1979. These vaccines are also frequently
used in captive wild carnivores where they
appear to be safe and to confer protective
immunity. However, those vaccines have not
been explicitly tested in or licensed for use in
the wildlife species, and questions remain
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regarding dosage, the most appropriate type of
vaccines to use in which wildlife species, the
frequency of re-vaccination, and the level of
protection conferred.

3. THE EMERGENCE OF MEV

MEV was first described as a disease of
mink in 1947 when it caused devastating dis-
ease in farmed mink [63]. Initially, the disease
was reported in Ontario, Canada, but was
reported world-wide within a few years, and it
is currently endemic wherever mink are farmed
[63, 66]. MEV likely also infects wild mink,
although the impact on their health is not
known. MEV can cause acute hemorrhagic
enteritis in mink, in particular in younger ani-
mals, and is frequently associated with leukope-
nia. The virus is highly transmissible on and
between mink farms, and in extreme cases
can cause mortalities of 20 to 80% [10, 75].
When MEV emerged in mink, the clinical and
pathological similarities to FPV infections were
soon recognized, and antigenic similarities
between the two viruses were first shown by
Wills in 1952 [75]. He documented that FPV
confers cross-protection against MEV infection
of mink and that the reciprocal is true for MEV,
which protects against FPV infection of cats
[10, 76]. Inactivated FPV tissue-derived vac-
cines were used successfully in the field to pro-
tect mink against MEV [76]. FPV and MEV do
not appear to differ significantly in host range
and both viruses can replicate efficiently in cats
and mink. However, the viruses may differ in
virulence and tissue tropism, and each virus
appears less pathogenic in the heterologous
host. In fact, in mink histological differences
between lesions caused by MEV and FPV were
reported as early as 1959 [43, 51]. Intriguingly,
FPV and MEV capsid protein genes are phylo-
genetically indistinguishable and form a single
clade within parvovirus phylogenies [64, 70].
The reasons for the sudden emergence of
MEV have remained unclear and the subject
has received only limited attention, mostly since
CPV emerged in the 1970s. Changes in viral
virulence leading to increased recognition of
the disease have been suggested as drivers
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of MEV emergence or at least recognition, and
the fact that FPV readily infects but does not
cause significant disease in related Mustelidae
such as otters, skunks and ferrets supports this
notion, but further research is needed to test this
hypothesis [4, 66]. It is possible that MEV
adapted to mink during the initial period of
rapid viral spread. The high population density,
especially the increased density of susceptible
young animals resulting from the single short
breeding season, and perhaps changes in hus-
bandry practices on commercial mink farms,
may have facilitated MEV emergence or
recognition. MEV may therefore represent a
mink-adapted variant of FPV, but clear genetic
signatures of this adaptation have not been
identified.

Similarly scarce is data on the > 60 years of
MEYV evolution in mink, and potentially in other
carnivores. MEV-like viruses are endemic
wherever mink are farmed and outbreaks have
been reported in Canada, the USA, Denmark,
Sweden, Finland, France, the Netherlands,
Poland and the UK [9, 10]. Asymptomatic car-
riers have been implicated in the dispersion of
MEYV across the globe, but clear epidemiologi-
cal evidence for this mode of spread is limited.
During the early outbreaks in the 1950s, MEV
was frequently found to repeatedly affect the
same farms, indicating likely year-to-year per-
sistence in the environment, or management
practices that favored reintroduction of the
virus. MEV can reach high prevalences on
infected farms, and disease tends to be particu-
larly high in the later summer, with the seasonal
replenishment of naive hosts likely contributing
to this phenomenon.

Three antigenic variants of MEV have
been recognized, which differ by only small
numbers of amino acid sequence changes in
the capsid protein, and cross-immunity protects
mink from infection with both homologous and
heterologous MEV strains [49]. The relative
abundance, geographic distribution and clinical
importance of these antigenic types, however,
are unclear, and those and many other ques-
tions concerning the emergence, epidemiology
and evolution of MEV have so far remained
unanswered.
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4. THE EMERGENCE OF CPV

In early 1978, a new parvovirus of dogs was
identified, referred to as CPV type-2 (CPV-2) to
distinguish it from the distantly related minute
virus of canines. CPV-2 caused FPV-like hem-
orrhagic enteritis with associated leukopenia
in dogs [2, 3]. The disecase was characterized
by a high associated mortality and within a
few months CPV was detected around the
world [55]. Phylogenetic studies and analysis
of historical samples show that CPV emerged
in the early to mid-1970s, only a few years prior
to its first recognition [26, 64, 70]. Based on
serological testing, dogs in Europe or Eurasia
were infected before 1978 (between 1974 and
1976), after which the virus became distributed
in dogs world-wide during the first half of 1978
[55, 69]. The specific ancestral strain of virus
that gave rise to CPV has not been identified,
but CPV clearly derived from either FPV or
one of the closely related viruses of wild carni-
vores. A phylogenetic analysis of several FPV-
like viruses collected during the 1960s, 1970s,
and 1980s revealed a virus strain from a farmed
arctic fox in Finland as most closely related to
CPV [70]. A partial parvovirus DNA sequence
from a German red fox also appeared to be
intermediate between FPV and CPV, at least
for the genomic region covered. A role of wild-
life reservoirs in the emergence of CPV has
thus been proposed, but conclusive evidence
is not yet available [66, 73].

The original 1978 strain of virus was desig-
nated as CPV-2, and during 1979 a variant virus
emerged, referred to as CPV-2a. That virus
replaced the CPV-2 strain world-wide during
1979 and 1980, and it is the descendents of
CPV-2a that continue to circulate around
the world [26, 53] (Fig. 1). The CPV-2 and
CPV-2a strains differ in a number of properties,
including antigenic structure when analyzed
with monoclonal antibodies, the affinity of
binding to the feline transferrin receptor
(TfR), and the ability to replicate in cats [68].
Although CPV-2 was unable to replicate in
cats, the CPV-2a strains isolated in the 1980s
efficiently infected cats and an estimated
10-20% of feline cases of parvovirus disease
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CPV-2a, b, ¢, etc
(1979 - present)

FPV, MEV, etc.
<1900 - present

Figure 1. Genetic relationship and host ranges of FPV, CPV and related parvoviruses. The host range, year
of emergence and genetic relationship are indicated. Where these have been identified, host-range and

strain-defining mutations are indicated.

in Germany, Japan and the USA during that
time were caused by CPV (although the sample
sizes analyzed were small) [70-72].

The canine and feline host ranges of CPV
and FPV appear to be controlled primarily by
residues in the viral capsid. The ability of
CPV to bind the canine TfR and infect canine
cells is largely controlled by mutations of
VP2 residues 93 (Lys to Asn) and 323 (Asp
to Asn) in the viral capsid, which together
determine the canine host range of CPV [29,
30, 55] (Fig. 1). The mutations in CPV-2 which
affect the ability to infect and replicate in cats
have been less clearly defined, but at least
two regions in the capsid protein gene, and in

particular substitutions of VP2 residues 87,
300 and 305 appear to be involved [55]. Inter-
estingly, these mutations are not the same resi-
dues that were changed during the emergence
of CPV-2, although they are located in close
spatial proximity in the viral capsid, indicating
that they may have compensatory functions.
Phylogenetic analysis of the carnivore parv-
oviruses show that they fall into three distinct
clades, with the longest internal branch separat-
ing the FPV-like viruses from the viruses iso-
lated from dogs (Fig. 2). All currently known
CPV-2- and CPV-2a-derived viruses are mono-
phyletic, indicating that a single cross-species
transmission event gave rise to all currently
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Figure 2. Phylogenetic relationship between the carnivore parvoviruses, based on the capsid protein gene
VP2. Phylogenetic tree was constructed using PAUP* version 4.1 with the best model of nucleotide
substitution determined using modeltest. Viruses are as follows: FPV: feline panleukopenia virus; BFPV:
blue fox parvovirus; RPV: raccoon parvovirus; RDP: raccoon dog parvovirus; CPV: canine parvovirus;
* nodes with bootstrap supports > 75%. (For a color version of this figure, please consult www.vetres.org.)

known CPV strains [26, 64]. The CPV isolates  clearly distinguished clade, containing all other
are divided into two clades, with one clade con-  CPV-like viruses which are derived from a sin-
taining the CPV-2 isolates, and as second, gle CPV-2a ancestor (Fig. 2). Comparing the
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Table I. The emergence of specific mutations in the genome of CPV that became widespread during

the evolution of the virus in dogs.

Mutation(s) Mutant Year of first Relative

that have virus name recognition prevalence

become (if any) (approximate in

widespread some cases)

VP2 residues FPV to CPV Associated with the

80 Arg to Lys host range switch

93 Lys to Asn from cats to dogs.

103 Val to Ala Result in altered binding

323 Asp to Asn to the canine transferrin

564 Asn to Ser receptor.

568 Ala to Gly

VP2 residues CPV-2a 1979 100% by ~ 1980

87 Met to Leu

101 Ile to Thr

300 Ala to Gly

305 Asp to Tyr

VP2 residue 426 Asn to Asp CPV-2b 1984 30-80% between 1984 and 2005

VP2 residue 297 Ser to Ala 1990 Increasing to > 90% by 2000

VP2 residue 426 Asp to Glu CPV-2c 2001 Increasing after 2001, becoming
globally distributed; no estimate

available
VP2 residue 440, Thr to Ala ~ 2005 Found in several countries

around world, no estimate
available

entire genomes of the viruses shows that FPV
sequences are distinguished from CPV
sequences by a total of 16 substitutions, of
which 11 are located in the capsid protein
genes, emphasizing the important role of the
capsid in this emergence event [26]. Seven sub-
stitutions distinguish the genomes of CPV-2
and CPV-2a, of which 5 are located in the cap-
sid protein gene [26].

At a population level, CPV is evolving sig-
nificantly faster than FPV, with mean estimates
equalling roughly 2 x 10~* and 8 x 10> sub-
stitutions/site/year respectively, and the capsid
protein gene region of the viral genome evolved
more rapidly than the region encoding the non-
structural proteins [26]. Notably, the capsid pro-
tein gene substitution rate estimate associated
with the emergence of CPV is within the ranges

of the rates observed for rapidly evolving RNA
viruses [64].

5. CONTINUING EVOLUTION AND
SPREAD OF CPV IN THE GLOBAL
DOG POPULATION - THE ROLES
OF CAPSID VARIANTS

CPV has undergone considerable further
evolution during the > 30 years since it
emerged (Figs. 1 and 2, Tab. I), but the dynam-
ics of the spread and variation of the virus may
have changed during that period. While the
emergence of CPV-2, immediately after 1978,
was characterized by global viral spread, the
continuing evolution the CPV-2a on a popula-
tion level has resulted in it become increasingly
geographically subdivided, and viruses now
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appear to be circulating predominantly locally
[26]. In fact, separate Taiwanese-Japanese,
Vietnamese and Indian CPV populations have
been described, and the gene flow between
the different populations appears limited, indi-
cating strongly geographically separated popu-
lations in these regions [11, 18, 23].

All CPV-2 isolates are essentially identical in
nucleotide sequence, while viruses within the
CPV-2a clade have become much more diverse,
and can now be further subdivided by the muta-
tions they harbour. However, these CPV-2a
derived viruses form a monophyletic clade in
the parvovirus phylogeny and likely have simi-
lar host ranges. Some of the point mutations
that have arisen and reached high frequency
in the CPV population alter the antigenic prop-
erties of the capsid. The group of CPV-2a muta-
tions results in the change of one epitope
compared to CPV-2, while a substitution of
VP2 residue 426 from Asn to Asp altered a sec-
ond epitope and defined the so-called CPV-2b
strain [52] (Tab. I). Around the year 2000,
another substitution of the same codon for res-
idue 426 arose, changing the Asp426 to Glu,
giving another antigenic variant referred to as
CPV-2c. CPV-2b (426Asp) was detected
world-wide soon after it first emerged in
1984, while since 2000 the CPV-2c¢ strain
(426Glu) has also been detected in many
regions of the world including several European
countries, Vietnam, North and South America
[15, 27, 36, 58]. The currently available data
does not allow a complete analysis of the epide-
miology and evolution of the CPV-2¢ variant,
but a recent phylogenetic analysis of the capsid
protein genes indicates that there is a European
lineage containing the 426Glu, and separate
genotypes with that change in North America
and in Asia [17]. The original CPV-2a
(426Asn) and CPV-2b co-circulated in many
parts of the world after CPV-2b emerged
around 1984, and the relative frequencies of
the two strains appeared to vary by geographic
region. For example, in Brazil CPV-2a and -2b
co-circulated, at least after 1986, with CPV-2b
the more prevalent variant between 1995 and
2001 [12, 57]. In contrast, CPV-2a was seem-
ingly the more dominant variant in Italy for
several years in the 1990s, then CPV-2a and
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CPV-2b reached similar frequencies in 1999/
2000 [40]. In North America CPV-2b appears
to have been the predominant subtype circulat-
ing for many years, while CPV-2¢ has become
common since about 2007 [27, 36]. The rea-
sons for the continuing co-circulation of the dif-
ferent strains or for the variation in subtype
prevalence in different parts of the world are
not understood [17]. Despite their antigenic dif-
ferences, strong cross-immunity between CPV-
2a and CPV-2b protects recovered animals
against infection by the heterologous strain,
and there is clearly cross protection between
the various strains and CPV-2¢ [38]. The fact
that CPV-2c is characterized by an alternate
mutation at VP2 residue 426 points to a special
role of this residue in infection or immune eva-
sion, and that codon is shown to be under posi-
tive selection in the viral genome. However,
apart from the antigenic differences seen by
monoclonal antibody analysis, other specific
biological roles of the Asn, Asp, or Glu variants
at this residue have not yet been defined [26].

A mutation altering VP2 residue 297 was
first observed in viruses collected around
1990, and has since reached high frequency in
the global CPV population [26]. This residue
was found in a Brazilian study to be under
strong positive selection [57]. It is unclear what
functions VP2 residue 297 might be altering, as
no antigenic variation was detected in viruses
bearing this mutation, but it is located close to
VP2 residues (such as 299 and 300) that control
TfR binding, suggesting it may affect that
function. It may also affect capsid stability as
changing residue 297 in FPV or CPV-2 altered
susceptibility of the viral capsid to proteolytic
cleavage, although that effect was not observed
if the mutation was created in the CPV-2a
background [46].

Residue 300 is exposed on the surface of the
capsid, is highly variable, alters the antigenic
structure of the capsid, affects the binding to
the TfR, and may be involved in controlling
the feline host range of the viruses. This residue
may be of particular importance during infec-
tions of cats, as viruses from CPV-infected cats
frequently show additional mutations at this
position [45]. Substitution of either VP2 resi-
dues 299 and 300 with negatively charged
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amino acids alters the interaction of the virus
with the canine and feline TfR [30, 48]. Those
may also alter capsid stability since the muta-
tion of this residue in the CPV-2 background
changed the susceptibility of the viral capsid
to proteolytic cleavage [46]. Mutations that
changed residue 300 were responsible for the
antigenic variation detected in MEV strains
[49]. However, the true biological significance
of changes of that residue remains obscure,
and a role for antibody selection is plausible.
Antibody neutralization of parvovirus capsids
and any immune evasion it evokes in the virus
are incompletely understood. Large parts of the
capsid surface can be efficiently recognized by
antibodies, and the overlaid footprints of several
anti-CPV antibodies spanned large portions of
the viral capsid, with the same residues being
recognized by several neutralizing antibodies
[22]. As many neutralizing antibodies show
overlap with the TfR binding site, blockage of
viral entry through hindrance of receptor bind-
ing may be a common method of CPV
neutralization.

6. CPV INFECTIONS OF CATS

The role of CPV in causing infections or dis-
ease of cats has not been systematically ana-
lyzed. CPV has been isolated from a variety
of domestic cats, as well as other more-or-less
related carnivores, including raccoons, Asiatic
raccoon dogs, cheetahs, mountain lions, leopard
cats and a red panda [32, 33, 37, 60, 61, 65].
The disease caused by CPV in cats generally
appears to be much milder than that seen in
dogs infected with that virus, or that caused
by FPV in cats. CPV has also been isolated
from the feces of clinically healthy domestic
and wild felines [41], suggesting that the virus
was either shed long after infection, or that it
causes very mild or subclinical disease. Exper-
imental infections of specific pathogen free
(SPF) cats with CPV lead to mild or subclinical
disease [20, 44]. However, CPV infections of
SPF dogs also tend to induce mild or no clinical
symptoms. Moreover, the experimental CPV
infections of normal cats have resulted in
clinical FPV-like symptoms in some cases, indi-
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cating a role for secondary infections or other
underlying stressors in increasing the severity
of CPV or FPV diseases (reviewed in [34]).

Some CPV-2a-derived isolates from cats and
raccoons have had unique substitutions of VP2
residue 300, in particular Gly to Asp changes
[33, 37, 60], which would alter their antigenic
properties, and also likely affect their receptor
binding properties [30, 39]. Similar mutants of
CPV made the viruses unable to bind efficiently
to the canine TfR or infect dog cells [39, 50],
although an example of one virus with
300Asp has been reported from a dog in Korea
[35]. These mutations therefore are likely adap-
tations to the feline host, indicating that CPV
evolution is otherwise maintained by adaptation
to dogs. In fact, in a recent study where naive
kittens were challenged with a recent (2007)
CPV-2b strain failed to result in detectable viral
replication, while viral replication was more
readily detected after challenge with an older
CPV-2a isolate [24]. One earlier study including
samples from the USA, Europe and Japan
reported the detection of CPV in naturally
infected cats at an estimate frequency of
10-20%, indicating that cats were a natural host
for CPV at that time, but the number of samples
tested was small and little information was
given about the sampling scheme and inclusion
criteria [70]. Ikeda et al. reported the detection
of CPV at high frequency in samples collected
from domestic and wild cats in Japan and Viet-
nam, but several of these isolates contained sub-
stitutions of VP2 residue 300, only 19 isolates
were examined, and the samples were not nec-
essarily representative of the viruses in the pop-
ulation [33]. Given the continuing evolution
and population subdivision in the CPV popula-
tion, CPV strains in different parts of the world
may differ in their infectivity to cats, but no sys-
tematic analysis is available to address this
question. Most diagnostic tests do not discrim-
inate between CPV and FPV infections, only
clinically affected animals are tested in most
cases, and large-scale epidemiological studies
of CPV in cats have not been performed, so
the true prevalence and significance of CPV
in cats remains unknown.

Our knowledge of the evolutionary dynam-
ics governing CPV infections of cats is also
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limited. Battilani et al. analyzed sequence
diversity in the capsid protein gene of CPV
sequences isolated from a single infected cat,
which revealed a very heterogeneous viral pop-
ulation [6], including 10 distinct sequences
among 14 cloned sequences examined. Those
included two antigenically distinct CPV variants
(CPV-2a and CPV-2¢), suggesting that some of
the variation was likely due to co-infection
rather than de-novo arising mutations. Multiple
cases of co-infection of dogs with CPV field
strains and vaccine virus have also been reported
recently [16], and similar events likely lead to
mixed infections during parvovirus infections of
cats. Moreover, we detected very homogenous
viral populations but evidence of co-infection
in some animals when we analyzed the intra-
host population structures of natural infections
by FPV in cats and CPV in dogs, indicating that
co-infection might have been the source of
variability of these viruses in vivo [24].

7. CONCLUSIONS

Many aspects of the emergence and subse-
quent spread of carnivore parvoviruses are
now becoming clear, but a number of questions
remain unanswered. The critical role of the viral
capsid protein gene in the evolution of CPV and
the importance of mutations changing multiple
functions including host range, receptor binding
and antigenicity, and likely other aspects of the
viral life cycle and pathogenesis are now clear.
The health impacts, epidemiology, and evolu-
tion of CPV and FPV in wild carnivore popula-
tions remain largely obscure, and little is known
about transmissions between wild and domestic
carnivore populations, but such events undoubt-
edly occur in both directions. Since parvovirus
infections can severely impact threatened or
endangered wild carnivore populations, and
foxes or other hosts likely played a role in the
emergence of CPV, a better understanding of
the epidemiology and evolution in hosts other
than domestic cats and dogs appears crucial.
The emergence of genetic variants of CPV that
have different receptor binding and antigenic
properties makes it difficult to determine which
property if any is under selection, but raises
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concerns that vaccines will need to be updated
to maintain the highest levels of protection.

The evolution of MEV in mink and of FPV
and CPV in cats are less well understood that
that of CPV in dogs, and many determinants
of host specificity, adaptations, and pathogenic-
ity are likely still unknown. The emergence of
CPV represents a rare and important model of
disease emergence through cross-species trans-
mission, both because of high-quality data is
available about the newly emerged virus and
also because of the information that we have
about the ancestral virus. A better understand-
ing of the evolutionary dynamics of the ances-
tral virus before and after CPV emerged
would also provide valuable information about
the general principals of viral emergence in
new hosts. Our understanding of the emergence
and evolution of CPV has increased greatly
over the last 30 years, but many details of the
origins and evolution of the virus remain to
be revealed.
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