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The structured-population model has been widely used to study the spatial transmission of epidemics in
human society. Many seminal works have demonstrated the impact of human mobility on the epidemic
threshold, assuming that the contact pattern of individuals is mixing homogeneously. Inspired by the recent
evidence of location-related factors in reality, we introduce two categories of location-specific
heterogeneous human contact patterns into a phenomenological model based on the commuting and
contagion processes, which significantly decrease the epidemic threshold and thus favor the outbreak of
diseases. In more detail, we find that a monotonic mode presents for the variance of disease prevalence in
dependence on the contact rates under the destination-driven contact scenario; while under the
origin-driven scenario, enhancing the contact rate counterintuitively weakens the disease prevalence in
some parametric regimes. The inclusion of heterogeneity of human contacts is expected to provide valuable
support to public health implications.

T
o study the epidemic spreading of viruses and diseases in human society, various mathematical models have
been proposed during the past decades1–3. In particular, the network-based models have attracted a great deal
of attention from diverse disciplines4–9. Plenty of works10–16 explored the transmission of etiological agent on

networks, where nodes are individuals and links describe the contacts between individuals to transmit the
infection.

Using the particle-network framework to mould the entire system into structured populations, we arrive at an
important class of models in modern epidemiology, namely, metapopulation. In this model, individuals live in
discrete subpopulations and may transfer between subpopulations via the mobility pathways (or links)17–26. The
reaction-diffusion or reaction-commuting mechanism is harnessed to sketch human daily contact and mobility.
More precisely, the disease prevails inside each subpopulation (with homogeneously mixed as assumed), and
transmits between subpopulations through the travel of infected individuals. Applied in simulating the spatial
transmission at large geographic scale, this model manifests its power in predicting the pandemic outbreak and
evaluating the effectiveness of intervention strategies27–34.

Many works17,20,21,23,24 have focused on the impact of human mobility on the threshold of disease outbreak,
which generalized the reaction-diffusion process to deal with heterogeneous networking populations, and
assumed the mobility scheme as a Markovian memoryless migration. Recent empirical findings on human
mobility35–39 report that the commuting behaviors, characterized by individual recurrent movements between
connected locations, dominates the human daily transportation. Refs. 25, 26 extended the metapopulation
framework by introducing the element of recurrent commuting, which assumes that individuals have the memory
of their original resident subpopulation and displaced commuters who stay at the ‘destination’ subpopulation
cannot diffuse to other places but return to their residence with a certain rate. In contrast to the random diffusion
scenario, the commuting system exhibits a novel epidemic threshold as well as the phenomenon of the saturation
of propagation velocity.

It is well known that the contact pattern of individuals dramatically impacts the spatiotemporal dynamics of
epidemic spreading in a population1–3,40. The evolution of the epidemic process is characterized by the force of
infection, which identifies the probability of acquiring infection for a susceptible individual due to his contacts
with infectious ones. The force of infection is defined proportional to the density of infectious individuals, the
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infection probability via a contact between susceptible (S) and infec-
tious (I) individuals, and the contact pattern between individuals1.
Since human contact pattern is often reflected in the disease trans-
mission rate, which is usually assumed constant1,41,42, in metapopula-
tion models, the general assumption that the disease transmission
rate in all subpopulations is identical indicates the fact that the indi-
vidual contacts inside each subpopulation are uniform.

Within each subpopulation, the assumption of homogeneous con-
tact (homogeneously mixing) is supported with recent empirical
findings. For instance, digital equipments such as Bluetooth43, active
Radio Frequency Identification (RFID) devices44–46, wireless sen-
sors47, and WiFi48,49, have been applied to collect the data of human
close proximity contacts in various social environments, which
unveils that the distribution of the number of distinct persons that
each individual is in contact with per day has a small squared coef-
ficient of variation (CV2)45–49. Therefore, human contacts inside each
subpopulation may possess the characteristic contact rate reflecting
the number of distinct persons each individual encounters per day.

At different subpopulations, human contact pattern may present
evident discrepancies. The location-specific factor has been reported
as a potential driver inducing the substantial variation of disease
incidence between populations in reality50,51. Generally, because of
the distinction in social conditions or lifestyles, the contact rate of
individuals living in an urban area is largely different from what we
can expect for small-town residents. Therefore, we consider the vari-
ety of contacts between connected subpopulations to study their
impact, and in this paper, we theoretically analyze this issue with
the phenomenological model proposed in Ref. 52, where the recur-
rent commuting of individuals couples two typical subpopulations.
The standard susceptible-infectious-susceptible (SIS) model is con-
sidered to reflect individuals’ compartment transitions.

We first consider a general case that the individual contact features
depend on the location where an individual is. This scenario illus-
trates the influence of social environment of the located subpopu-
lation, and may reflect human adaptive ability53–55. Intuitively, con-
sidering the commuting flows between the urban and the suburb
areas, one can expect that the contact rate for an individual commut-
ing from the suburb to the urban area will increase, and vice versa.
Therefore, we assign each individual in the located subpopulation x
with the same characteristic contact rate cx, which means that on
average he contacts with cx other individuals in the same subpopula-
tion per unit time. We define this destination-driven mode as the
type-I contact scenario.

As the commuting mobility distinguishes individuals’ original
residences from their destinations, we further consider another case
that the contacts of individuals correlate to their own residences. This
scenario may derive from the anchoring effect of human56,57, and
reflects that many social factors of one’s home location, e.g., eco-
nomy, cultural background, inevitably affect how gregarious a per-
son is. For instance, the schools of related disciplines of a university
are usually located in the same campus (here each campus is a sub-
population), while each day students from different campuses might
commute among the campuses by the school buses. Students
majored in humanities or social sciences usually have a tendency
to participate in social activities, and they may have a high contact
rate; whereas students majored in natural sciences or medicine (par-
ticularly, graduate students) are more prone to spend their time in
the laboratories or libraries, and they may own a low contact rate.
Despite students from different disciplines having distinct contact
rates may reside at different campuses, the commuting movements
still induce their intersectional couplings in each campus per day. For
simplicity, we assume that each individual from subpopulation x has
the characteristic contact rate c 0x. This means that each one from x
will on average have contacts with c 0x other individuals per unit time,
no matter where he locate at that time. We define this origin-driven
mode as the type-II contact scenario.

In both two cases, the force of infection for a susceptible stems
from all his contacts with infectious individuals per unit of time. By
means of analytical arguments as well as extensive computer simula-
tions, we demonstrate that these location-specific heterogeneous
contact scenarios significantly decrease the epidemic threshold of
the entire system, and thus favor the disease outbreaks in more broad
parametric regimes. Under the destination-driven scenario, the vari-
ance of disease prevalence displays a monotonic mode as the contact
rates change; while the results are more unexpected under the origin-
driven scenario: Enhancing the contact rate will weaken the disease
prevalence in some parametric regimes.

Results
We first specify the mechanism of commuting mobility to transfer
individuals between subpopulations. Consider two coupled subpo-
pulations, x, y, each of which has a population size of the residents
N?

x ~N?
y ~N . They act as the reaction places where the contagion

process occurs. The model proceeds at discrete time steps, with the
unit interval as one hour. Individuals leave their original resident
subpopulation x(y) to visit the neighboring ‘destination’ subpopula-
tion y(x) with a per capita diffusion rate sxy(syx) at each time step,
and the displaced commuters will return to their residence x(y) with a
per capita return rate tx(ty) per unit time. For simplicity, we assume
the detailed balance as: sxy 5 syx 5 s, tx 5 ty 5 t, and Figure 1
illustrates the commuting process.

According to Refs. 26, 52, the residents of each subpopulation can
be partitioned into two subgroups based on the locations where they
actually are at time t (see Figure 1). Define Nxx(t)(Nyy(t)) the sub-
group size of the individuals staying in their original resident sub-
population x(y) at time t, and Nxy(t)(Nyx(t)) the subgroup size of the
individuals from subpopulation x(y) presenting in the subpopulation
y(x) at time t. Therefore, the population size of the residents of each
subpopulation is N?

x ~Nxx tð ÞzNxy tð Þ, N?
y ~Nyy tð ÞzNyx tð Þ. We use

the mean-field approximation to describe the commuting process
with a set of rate equations governing the evolution of population
dynamics26,52, which are discussed in Supplementary Information,
and we have the following equilibria:

Neq
xx~

N?
x

1zs=t
, Neq

xy~
N?

x

1zt=s
,

Neq
yy ~

N?
y

1zs=t
, Neq

yx~
N?

y

1zt=s
,

ð1Þ

with the condition s21 ? t21, i.e., averagely, individuals will remain
at their residence most of the time, which mimics that in reality only a

Figure 1 | Schematic illustration of the commuting process between two
subpopulations x, y. The cyan and orange arrows indicate the back and

forth commuting flows.
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small fraction of residents leave to travel. This condition facilitates
the analysis by considering that per unit time each subpopulation
x(y) has an effective number of residents Neq

xy Neq
yx

� �
interacting with

the individuals in subgroup Nyy(Nxx).
The contagion process takes place inside each subpopulation,

which is composed of the infection dynamics and the contact
dynamics here. For the infection dynamics, we consider the standard
SIS compartment model. At time t, each individual falls in one of the
disease compartments: susceptible or infectious. The population size,
e.g., Nxx(t) (Nyx(t)), can be divided into Sxx(t)(Syx(t)), Ixx(t)(Iyx(t)),
which is the number of susceptible and infectious individuals in each
subgroup, respectively. At each time step, if a susceptible individual
contacts an infectious one, he may acquire the infection with trans-
mission rate b. An infectious individual recovers and becomes sus-
ceptible again with rate n per unit time.

We now specify the contact dynamics in more detail. In the case of
the type-I (destination-driven) contact scenario, we assume that
per unit time each individual staying in subpopulation x(y) has the
same characteristic contact rate cx(cy). Figure S1(a) in Supporting
Information illustrates this case. In the unit interval, the infection
probability, l, for a susceptible individual is determined by all his
contacts with the infectious ones. Therefore, the force of infection for
any susceptible in subgroup Nxy or Nyy at time t is

lxy tð Þ~lyy tð Þ~cyly tð Þ~bcy Ixy tð ÞzIyy tð Þ
� �.

Neq
xyzNeq

yy

� �
, ð2Þ

where ly(t) characterizes the probability that a random contact with
any individual staying in subpopulation y will lead to the infection at
time t. Similarly, the force of infection for any susceptible in sub-
group Nyx or Nxx at time t is

lyx tð Þ~lxx tð Þ~cxlx tð Þ~bcx Iyx tð ÞzIxx tð Þ
� �.

Neq
yxzNeq

xx

� �
: ð3Þ

With the mean-field approximation, the contagion process in each
subgroup under the type-I scenario can be delineated by a set of rate
equations (see Eqs.(S5)–(S8) in Supplementary Information).

We next extend to the type-II (origin-driven) contact scenario. Per
unit time, an individual from subpopulation x(y) has the character-

istic rate of contacts, c 0x c 0y

� �
, which means that on average he

encounters with c 0x c 0y

� �
persons, no matter where he is (see Figure

S1(b) for the illustration). With the mean-field approximation, the
contagion process in each subgroup under the type-II scenario can
also be described by the formalism of rate equations as Eqs. (S5)–(S8),
except the expressions of the force of infection. The force of infection
for any susceptible staying in subgroup Nxy at time t obeys the fol-
lowing relation

l0xy tð Þ~c 0xl0y tð Þ~bc 0x c 0xIxy tð Þzc 0yIyy tð Þ
� �.

c 0xNeq
xyzc 0yNeq

yy

� �
, ð4Þ

where l0y tð Þ denotes the probability that a random contact with any
individual staying in subpopulation y will lead to the infection. It is
worth emphasizing that to normalize the fraction of contacts of the
infectious ones in each subpopulation, the denominator of Eq.(4)
should be the total number of contacts of the population instead of
the total number of individuals staying in the subpopulation.
Similarly, the force of infection for a susceptible presenting in other
subgroups at time t are as follows:

l0yy tð Þ~c 0yl0y tð Þ~bc 0y c 0xIxy tð Þzc 0yIyy tð Þ
� �.

c 0xNeq
xyzc 0yNeq

yy

� �
, ð5Þ

l0yx tð Þ~c 0yl0x tð Þ~bc 0y c 0xIxx tð Þzc 0yIyx tð Þ
� �.

c 0xNeq
xxzc 0yNeq

yx

� �
, ð6Þ

l0xx tð Þ~c 0xl0x tð Þ~bc 0x c 0xIxx tð Þzc 0yIyx tð Þ
� �.

c 0xNeq
xxzc 0yNeq

yx

� �
: ð7Þ

Besides, we consider a baseline scenario that the contact rate in each
subpopulation is equal to Æcæ 5 (cx 1 cy)/2, which corresponds to the
traditional situation that the contact pattern in all subpopulations is

uniform. In this case, the epidemic threshold is captured by the basic
reproductive number, R00~b ch i=n, which identifies the expected
number of secondary infections produced by an infected individual
during his infectious period within the entire susceptible popula-
tion1–3,41,58. If R00v1, the whole system remains at the disease-free state.

Analysis. With embedding the aforementioned contact features, the
epidemic threshold can be characterized by an extended version of
the basic reproductive number R0

2,41,58. We first build the next
generation matrix (NGM) TS21 from the rate equations (S5)–(S8)
at the disease-free equilibrium (DFE). Under the type-I contact
scenario, the transmission matrix T is defined as

T Ixx, Iyx, Iyy, Ixy
� �

~

LTxx

LIxx
� � � LTxx

LIxy

..

.
P

..

.

LTxy

LIxx
� � � LTxy

LIxy

0
BBBBBBB@

1
CCCCCCCA

�������������
DFE

~

1{sð Þbcxt

tzs
1{tð Þbcxs

tzs

1{sð Þbcxt

tzs
1{tð Þbcxs

tzs

0

0

1{sð Þbcyt

tzs
1{tð Þbcys

tzs

1{sð Þbcyt

tzs
1{tð Þbcys

tzs

0
BBBBBBBBBB@

1
CCCCCCCCCCA

,

ð8Þ

while under the type-II contact scenario, the transmission matrix T is

T Ixx, Iyx, Iyy, Ixy
� �

~

LTxx

LIxx
� � � LTxx

LIxy

..

.
P

..

.

LTxy

LIxx
� � � LTxy

LIxy

0
BBBBBBB@

1
CCCCCCCA

�������������
DFE

~

1{sð Þbc’2x
c’xzc’ys=t

1{tð Þbc’xc’y
c’xt
�

szc’y

1{sð Þbc’xc’y
c’xzc’ys=t

1{tð Þbc’2y
c’xt
�

szc’y

0

0

1{sð Þbc’2y
c’xs
�

tzc’y
1{tð Þbc’xc’y
c’xzc’yt=s

1{sð Þbc’xc’y
c’xs
�

tzc’y
1{tð Þbc’2x

c’xzc’yt=s

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

ð9Þ

In the above two matrices, each entry Tij(i, j g (x, y)) represents the
rate of generating new infections in subgroup Nij. In these two
scenarios, the transition matrix S is

S Ixx, Iyx, Iyy, Ixy
� �

~

LSxx

LIxx
� � � LSxx

LIxy

..

.
P

..

.

LSxy

LIxx
� � � LSxy

LIxy

0
BBBBBBB@

1
CCCCCCCA

�������������
DFE

~

sz 1{sð Þn 0 0 {t

0 tz 1{tð Þn {s 0

0 {t sz 1{sð Þn 0

{s 0 0 tz 1{tð Þn

0
BBBBB@

1
CCCCCA

,

ð10Þ
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where Sij~S{
ij {Sz

ij : S
z
ij denotes the rate of transferring infectious

individuals into subgroup Nij, while S{
ij denotes the rate of

transferring infectious people out of Nij. The recovery of infective
individuals also decreases the number of infectious ones, and thus is
included inS{

ij . The matrices T andS are obtained at the disease-free
equilibrium. The global version of the basic reproductive number is
calculated by the spectral radius of the NGM41,58:

R0~r TS{1
� �

: ð11Þ
Since the explicit expression of the threshold is unavailable, we
present the numerical results in the following.

Figure 2 presents the cx�cy c 0x�c 0y

� �
phase diagrams of the global

R0. As the empirical evidence tells that the commuting takes place at
the time scale t21 , 1/3 day36, we choose the return rate t 5 0.125/
hour. For the diffusion rate, we first set a large value s 5 0.042/hour,
which implies that the time scale of diffusion is 1 day. We set other
parameters of the disease as: n 5 0.042/hour (a short duration for the
mean infectious period), and b 5 0.021/hour. Note that fixing the
disease parameters as other values does not change the main results
of this paper. The white dashed line in each panel indicates the
parametric values corresponding to the threshold R0~1. The evid-
ent difference of the thresholds between the two heterogeneous con-
tact scenarios shows that the type-II contact manner may induce the
disease outbreak at much lower contact rates. This is due to the fact
that the commuting process facilitates each subpopulation x(y) to
share an effective number of individuals Neq

xy Neq
yx

� �
into the neighbor-

ing subpopulation y(x). As the displaced commuters will closely
interact with local residents, individuals with distinct contact rates
have the opportunity to directly encounter in each subpopulation
under the type-II scenario.

As shown in Figure 2(a), one can find a monotonic mode for the
variance of global R0 under the type-I scenario, which positively
correlates to the increase of contact rates cx and cy. The results are
more complex under the type-II scenario (see Figure 2(b)), because
the values of global R0 at the upper-left and lower-right corners of
the phase diagram are also very large. The variance of R0 does not
show a monotonic mode when c 0x or c 0y is large (. 2.34) in the case of
type-II scenario. For instance, when c 0x~3, R0 gradually decreases
until reaches the bottom, then monotonically grows with the increase
of c 0y .

We further compare the parametric regions of the endemic phases
among the baseline, type-I, and type-II scenarios with the aforemen-
tioned parameters, as shown in Figure 3(a). The upper triangular
light orange area corresponds to the baseline with R00~b ch i=nw1.
The parametric space of the type-I or type-II scenario with the global
R0w1 is much broader than that of the baseline case. Therefore,
the inclusion of both two location-specific heterogeneous contact

patterns favors the epidemic outbreak. It is also of interest to inspect
the effect of a smaller diffusion rate s on the threshold, since reducing
s weakens the coupling between subpopulations. Figure 3(b) com-
pares the parametric regions pertaining to the endemic phases
among the baseline, type-I, and type-II scenarios with s 5 0.021/
hour, which yields the same results.

Simulations. To verify the above analysis, we use the dynamic Monte
Carlo method to simulate the epidemic evolution. We focus on
inspecting the parametric space of contact rates. With each set of
parameters, we monitor the dynamical evolution of epidemic
spreading in each subpopulation, and record the disease pre-
valence (the fraction of infectious individuals) in subpopulation
x(y), Ix(t)/Nx(Iy(t)/Ny), where Nx 5 Nxx(t) 1 Nyx(t) (Ny 5 Nyy(t)
1 Nxy(t)). Due to the presence of stochasticity, each independent
Monte Carlo simulation generates a random realization of the
dynamic process. We perform 103 random Monte Carlo simula-
tions for each set of parameters.

Initially, each subpopulation has 105 individuals, i.e., Nxx(0) 5

Nyy(0) 5 105, Nxy(0) 5 Nyx(0) 5 0. We fix the return rate t 5

0.125/hour and the diffusion rate s 5 0.042/hour to stress the coup-
ling effect. Figure S2 presents the time series of population evolution
in each subgroup. As analyzed in Supplementary Information, the
population size of each subgroup quickly reaches to the equilibrium:
Neq

xx~Neq
yy ~7:5|104, Neq

xy~Neq
yx~2:5|104. Then we simulate the

contagion process with a variety of typical sets of contact rates, fixing
the transmission parameters b 5 0.021, n 5 0.042/hour. The status of
each individual is updated in parallel per unit time. The mobility and
disease parameters are directly converted into the probabilities with
the unitary time scale of one hour. The algorithm details of the
simulation see the section of Methods.

We start the contagion process by introducing the seeds of infec-
tious individuals into a given subgroup. For simplicity, the case of
multiple introductions is not considered here, i.e., the seeds are only
introduced into one subgroup. The contagion process begins with
Ixx(0) 5 50, Sxx 0ð Þ~Neq

xx{Ixx 0ð Þ, Iyx(0) 5 Iyy(0) 5 Ixy(0) 5 0. By
fixing the transmission parameters b 5 0.021, n 5 0.042, we mainly
study the stationary prevalence (SP) Ieq

x

�
Neq

x , Ieq
y

.
Neq

y with different
parameters (SP reflects the average fraction of infectious individuals
in each subpopulation at the equilibrium). To obtain each data point,
we perform 103 Monte Carlo random experiments, each of which is
simulated with 104 time steps. We define an outbreak run as the
realization that the number of infectious individuals at the equilib-
rium is larger than 50. The stationary prevalence is calculated by
averaging over all the outbreak realizations. We first record the mean
value of the number of infectious individuals in each subpopulation
over the last 10% time steps of each outbreak simulation, then

Figure 2 | The cx�cy c0x�c0y

� �
phase diagrams of the globalR0. (a) presents the type-I contact scenario. (b) presents the type-II contact scenario. The

white dashed curve in each panel illustrates the threshold of contact rates. We fix t 5 0.125/hour, s 5 0.042/hour, b 5 0.021/hour, n 5 0.042/hour.
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average them to obtain the stationary prevalence. If there does not

exist an outbreak run, Ieq
x

.
Neq

x ~Ieq
y

.
Neq

y ~0.

In Figs. 4–5, we compare the phase diagrams of the stationary
prevalence Ieq

x
�

Neq
x , Ieq

y
�

Neq
y among the baseline, type-I, and type-

II contact scenarios with several typical cx c 0x
� �

. Figures 4(a)–(b) show

the variance of Ieq
x
�

Neq
x , Ieq

y

.
Neq

y as cy c 0y

� �
gradually increases, fixing

cx~c 0x~1. The thresholds of contact rate cy c 0y

� �
, which separate the

transition from the disease-free phase to the endemic phase, of both
the type-I and type-II scenarios are much smaller than that of the
baseline case, while the threshold of type-II scenario is the smallest.

Figure 3 | Comparison of the parametric space pertaining to the endemic phases among the baseline, type-I, and type-II contact scenarios. t 5 0.125,

n 5 0.042, b 5 0.021/hour, and s 5 0.042/hour in (a) and s 5 0.021/hour in (b).

Figure 4 | Comparison of the phase diagrams of I eq
x

�
N eq

x , I eq
y

.
N eq

y among the baseline, type-I, and type-II scenarios. (a)(b) show the variance of

Ieq
x
�

Neq
x and Ieq

y
�

Neq
y as cy c0y

� �
gradually increases, fixing cx~c0x~1 (c)(d) show the variance of Ieq

x
�

Neq
x and Ieq

y
�

Neq
y as cy c0y

� �
gradually increases, fixing

cx~c0x~2. The error bar is not shown since the standard deviation is much smaller (less than 1021 of the mean value). The vertical colored dashed lines

illustrate the theoretical prediction of the threshold of cy c0y

� �
.
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We also observe the well agreement between the simulations and
analysis, as illustrated by the colored dashed lines in each panel. In
the endemic phase, we find a counterintuitive phenomenon that,
with the same parameters, the stationary prevalence Ieq

x
�

Neq
x ,

Ieq
y
�

Neq
y of the type-II scenario are larger than those of the type-I

scenario. In subpopulation x, the larger Ieq
x
�

Neq
x of the type-II scen-

ario might relate to the introduction of individuals with a higher
contact rate. However, in subpopulation y, it seems a little unexpec-
ted that the type-II scenario leads to a larger Ieq

y
�

Neq
y , because under

the type-II scenario the displaced commuters from subpopulation x
to y have a smaller contact rate when the global R0w1. In
Figure 6(a), we compare the phase diagrams of global R0 between
the type-I and type-II contact scenarios, fixing cx~c 0x~1. When
R0w1, with the same contact rate cy~c 0y , the global R0 of the
type-II scenario is evidently larger than that of the type-I scenario,
which means that with the same parameters, the prevalence is more
serious in the former one. Since we assume that the individual con-
tact rate keeps unchanged in the case of type-II scenario, this out-
come may be due to the fact that individuals staying in subgroup Nyy

increase their ‘‘within self-subgroup’’ contacts compared with those
of the type-I scenario.

Figures 4(c)–(d) present the variance of stationary prevalence

Ieq
x
�

Neq
x , Ieq

y
�

Neq
y as cy c 0y

� �
gradually increases, fixing cx~c 0x~2.

In this case, the thresholds of contact rate cy c 0y

� �
for the baseline,

type-I, and type-II scenarios overlap at cy~c 0y~2, which is also

supported by Eq.(11) as indicated by the red dashed line in each
panel. In the endemic phase of R0w1, the difference of stationary
prevalence between the type-I and type-II processes is largely shrunk.
Figure 6(b) compares the phase diagrams of global R0 with fixing

cx~c 0x~2. In the case of a large cy c 0y

� �
, the difference ofR0 becomes

smaller than that of the former situation cx~c 0x~1.
When we further increase cx c 0x

� �
, e.g., cx~c 0x~3 or cx~c 0x~4,

the outcomes are more complex. Figures 5(a)–(b) show the variance

of Ieq
x
�

Neq
x , Ieq

y
�

Neq
y as cy c 0y

� �
gradually increases, fixing cx~c 0x~3.

In the baseline case, both the simulations and analysis agree that the
threshold of contact rate decreases to cy 5 1. The heterogeneous
contact scenarios yield that the threshold of cy c 0y

� �
vanishes.

Figures 5(c)–(d) present the variance of Ieq
x
�

Neq
x , Ieq

y
�

Neq
y in depend-

ence on cy c 0y

� �
, fixing cx~c 0x~4. Since the threshold of contact rate

of the baseline also vanishes, the baseline results are not included
in Figures 5(c)(d). The analytical results of global R0 (see
Figures 6(c)(d)) indicate that the disease-free phase is eliminated,
no matter how small cy c 0y

� �
is.

Moreover, under the type-I process, both Ieq
x
�

Neq
x and Ieq

y
�

Neq
y

monotonically increase with the augment of cy, as shown in
Figure 5. Under the type-II process, it is evident that Ieq

y
�

Neq
y also

monotonically increases with the growth of c 0y , while Ieq
x
�

Neq
x

first gradually decreases, after reaching the bottom it begins to

Figure 5 | Comparison of the phase diagrams of I eq
x

�
N eq

x , I eq
y

.
N eq

y among the baseline, type-I, and type-II contact scenarios. (a)(b) show the variance of

Ieq
x
�

Neq
x and Ieq

y
�

Neq
y as cy c0y

� �
gradually increases, fixing cx~c0x~3. (c)(d) show the variance of Ieq

x
�

Neq
x and Ieq

y
�

Neq
y as cy c0y

� �
gradually increases, fixing

cx~c0x~4. The inset in (c) shows the enlargement of the yellow area in that panel. The error bar is not shown since the standard deviation is much smaller.
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monotonically grow with the increase of c 0y . The variance of global
R0 under the type-II scenario also experiences a valley as c 0y gradually
increases (see Figure 6). To explain this untrivial phenomenon, we
observe the stationary prevalence of each subgroup in detail. As an
example, we present the results of c 0x~3 in Figure 7. It is clear that
Ieq

yy
�

Neq
yy and Ieq

yx
�

Neq
yx monotonically increase with the increment of

c 0y , whereas the variances of Ieq
xx
�

Neq
xx and Ieq

xy
�

Neq
xy are nonmonotonic.

In subpopulation x, the probability of an individual of subgroup Nxx

to involve in a contact is c 0x

.
c 0xNxxzc 0yNyx

� �
, while the probability

of an individual of subgroup Nyx to involve in a contact is

c 0y

.
c 0xNxxzc 0yNyx

� �
. With the increase of c 0y , the individuals in

subgroup Nxx will reduce their ‘within self-subgroup’ contacts. As

c 0y initially grows from 0.1, the net loss of infectious individuals in
subgroup Nxx suppresses the gain obtained from subgroup Nyx,
because Neq

xx?Neq
yx . In this stage, the presence of commuters from

subpopulation y mitigates the epidemic situation in subpopulation x,
and their influence will be enhanced with the increment of c 0y . Thus
one can observe the counterintuitive drop of Ieq

x
�

Neq
x . In subpopula-

tion y, with the increase of c 0y , the net increase of infectious indivi-
duals in subgroup Nyy can compensate the loss of subgroup Nxy,

because Neq
yy?Neq

xy . Therefore, Ieq
y
�

Neq
y keeps on increasing as shown

in Figure 5(b). As subpopulations x, y are coupled together, increas-
ing c 0y will eventually cease the decline of Ieq

x
�

Neq
x . After hitting the

bottom, Ieq
x
�

Neq
x positively correlates with the increase of c 0y .

Figure 6 | Comparison of the phase diagrams of globalR0 between the type-I and type-II contact scenarios. Each panel shows the variance of globalR0

as cy c0y

� �
gradually increases, with cx~c0x~1 in (a), cx~c0x~2 in (b), cx~c0x~3 in (c), cx~c0x~4 in (d). The horizontal gray dashed lines in the upper two

panels illustrate the threshold value R0~1.

Figure 7 | Variance of the stationary prevalence of infectious individuals in subgroups Nxx , Nxy (a), Nyy , Nyx (b) as cy c0y

� �
gradually increases, under

the type-II scenario. We fix c0x~3.

www.nature.com/scientificreports

SCIENTIFIC REPORTS | 3 : 1468 | DOI: 10.1038/srep01468 7



As a brief summary, we present the cx�cy c 0x�c 0y

� �
phase dia-

grams of the stationary prevalence Ieq
x
�

Neq
x and Ieq

y
�

Neq
y under the

type-I and type-II scenarios, and give a holistic view about the impact
of different contact patterns on the spatial transmission between
populations. Figures 8(a)–(b) plot the cx2cy phase diagrams of
Ieq

x
�

Neq
x and Ieq

y
�

Neq
y under the type-I scenario, respectively. One

can clearly observe the monotonic increase of Ieq
x
�

Neq
x and Ieq

y
�

Neq
y

with the increment of cx and cy. The white dashed line in each panel
illustrates the threshold of contact rates leading to the globalR0~1
(calculated by the NGM method), which successfully separates the
endemic phase from the disease-free phase. Similarly, Figures 8(c)–
(d) show the c 0x�c 0y phase diagrams of Ieq

x
�

Neq
x and Ieq

y
�

Neq
y under the

type-II scenario, respectively. The parametric space corresponding to
the endemic phase under the type-II scenario is broader than that of
the type-I scenario. When c 0x or c 0yw2:34, the stationary prevalence
Ieq

x
�

Neq
x and Ieq

y
�

Neq
y does not always monotonically increase with the

augment of c 0x , c 0y . In this case, the increment of contact rates will
reduce the disease prevalence Ieq

x
�

Neq
x or Ieq

y
�

Neq
y in some parametric

regimes.

Discussion
With the evidence of location-related factors in reality, we have
introduced two categories of location-specific contact patterns in a
phenomenological structured populations model based on the com-
muting and contagion processes. Through theoretical analysis and
extensive computational simulations, we have shown that these het-
erogeneous contact scenarios favor the disease outbreaks and evi-
dently decrease the epidemic threshold of the entire system. This
finding is robust against the changing of system parameters. More
specifically, under the destination-driven scenario, the variance of
disease prevalence exhibits the monotonic dependence of contact
rates, while under the origin-driven scenario the increment of

contact rates unexpectedly reduces the disease prevalence in some
parametric regimes. Compared to the traditional framework, where
the contact pattern in all subpopulations is uniform, the models
presented in this paper demonstrate that the inclusion of these extra
factors raises the risk of infection, mainly due to the presence of
couplings between populations. Therefore, the interventions to limit
the mobility flows, e.g., entry screening, and travel restriction, may
benefit to control the disease invasion. To better understand the
impact of human contact behaviors on the spatial transmission of
infectious disease, more efforts are deserved to deal with more het-
erogeneous networking populations in further studies.

Methods
Algorithm details. The contagion and commuting processes at each time step
proceed as follows:

(i) Contagion process. For the type-I scenario, the probability of a susceptible
staying in subpopulation x to acquire the infection by each of his contacts at time t is
lx(t) 5 b(Ixx(t) 1 Iyx(t))/(Nxx(t) 1 Nyx(t)). Therefore, the force of infection for each
susceptible staying in subgroup Nxx or Nyx is lxx(t) 5 lyx(t) 5 cxlx(t). Similarly, the
force of infection for each susceptible staying in subgroup Nyy or Nxy at time t is lyy(t)
5 lxy(t) 5 cyly(t). At this time step, the number of new infections in subgroup Nxy is
generated from a binomial distribution with probability lxy(t) and the number of
trials Sxy(t). The number of new infections in other subgroups is generated in the same
way. At the same time, any infectious individual recovers and becomes susceptible
again with rate n. The number of recovered individuals in each subgroup is generated
from a binomial distribution with probability n and the number of trials defined by
the number of infectious individuals in that subgroup.

For the type-II scenario, each resident of subpopulation x(y) contacts with c 0x c 0y

� �

other individuals in his current location per unit time. At time t, the probability of a
susceptible presenting in subpopulation y to acquire the infection by each of his

contacts is l0y tð Þ~b c 0xIxy tð Þzc 0yIyy tð Þ
� �.

c 0xNxy tð Þzc 0yNyy tð Þ
� �

. Thus the force of

infection of each susceptible in subgroup Nxy is l0xy tð Þ~c 0xl0y tð Þ, while the force of

infection of each susceptible in subgroup Nyy is l0yy tð Þ~c 0yl0y tð Þ. The forces of
infection of susceptible individuals in other subgroups are obtained similarly. At this
time step, the number of new infections in subgroup Nxy is generated from a binomial
distribution with probability l0xy tð Þ and the number of trials Sxy(t). The number of
new infections in other subgroups is generated in the same way. At each time step, the

Figure 8 | The cx�cy c0x�c0y

� �
phase diagrams of I eq

x

�
N eq

x , I eq
y

.
N eq

y . (a)(b) show the type-I scenario. (c)(d) show the type-II scenario. The white dashed

curve in each panel illustrates the threshold of contact rates leading to the global R0~1.
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number of recovered individuals in each subgroup is generated from a binomial
distribution with probability n and the number of trials defined by the number of
infectious individuals in that subgroup.

(ii) Commuting process. At each time step, after all individuals update the con-
tagion dynamics, the simulation moves to their commuting process. The number of
susceptible travelers departing from their resident subpopulation x(y) per unit time is
generated from a binomial distribution with probability s and the number of trials
Sxx(t)(Syy(t)). The number of susceptible commuters returning to their residence x(y)
per unit time is also generated from a binomial distribution with probability t and the
number of trails Sxy(t)(Syx(t)). The number of infectious individuals leaving from or
returning to their residence is acquired in the same way.
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