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LIF activates several intracellular signaling pathways including
JAK-STAT, PI3K/AKT and MAPK pathways. LIF is an important
cytokine for maintenance of pluripotency and self-renewal of
mouse ES cells. The JAK-STAT signal plays a key role in main-
tenance of the pluripotency of ESCs. Recent evidence shows
that several post-translational modifications regulate activa-
tion or inhibition of intracellular signal transductions. The
JAK-STAT signal is also modulated by several modifications
including phosphorylation, acetylation and ubiquitination. In
this review, we discuss regulation of the LIF-mediated-JAK-
STAT signaling pathway that contributes to self-renewal of
pluripotent ESCs.

Introduction

Embryonic stem cells (ESCs) are pluripotent cells established
from preimplantation embryos.1,2 ESCs are nontransformed
mammalian stem cells that can continuously proliferate in vitro.
Self-renewal of ESCs is maintained by culture with the cytokine
leukemia inhibitory factor (LIF).3-5 LIF inhibits differentiation
and promotes proliferation of undifferentiated cells. Actually, LIF
is always provided to the culture medium of mouse ESCs and the
removal of LIF causes rapid differentiation of mouse ESCs.

Upon binding to the LIF receptor (LIFR), LIF causes
heterodimerization of the low-affinity LIFR and gp130, which
acts as the main receptor for intracellular signal transduction
(Fig. 1).6 Briefly, ligand binding leads to phosphorylation and
activation of Janus kinase (JAK), which is tethered to the
intracellular region of gp130.7-9 Activated JAK phosphorylates

gp130 at four sites of tyrosine, and the phosphorylated tyrosine
interacts with SH2-bearing proteins such as signal transducer and
activator of transcription 3 (STAT3). Then STAT3 is also
tyrosine-phosphorylated by JAK and is homodimerized via its src-
homology-2 (SH2) domains. The dimerized STAT3 translocates
to the nucleus and activates target gene transcription.10

Consequently, activation of several genes by translocated
STAT3 plays a role in suppression of the differentiation of mouse
ESCs.11 JAK-STAT3 activates Klf4, which maintains Oct3/4
expression via Sox2 and Nanog.12 The molecules including
Oct3/4, Sox2 and Nanog are known to be crucial for maintenance
of pluripotency in ESCs. Therefore, STAT3 is one of the main
players in the signaling pathway dependent on LIF in ESCs to
maintain a pluripotent state. Importantly, it has been reported
that activation of STAT3 is regulated by the ubiquitin system and
translocation from the cytosol to the nucleus via molecular
chaperones such as HSP90.13-16

Maintenance of Pluripotency and Self-Renewal
of Mouse ESCs via LIF

LIF-mediated signaling regulates proliferation or differentiation
depending on the cell type or differentiated stage of the cell.17 Past
evidence showed that stage of the cell and uncontrolled secretion
of LIF are associated with pathological conditions.18 LIF is also a
key cytokine for maintaining self-renewal and pluripotency of
mouse ESCs. Therefore, it is important to clarify molecular
mechanism of LIF signaling in mouse ESCs. In contrast to mouse
ESCs, fibroblast growth factor 2 (FGF2), also called basic FGF
(bFGF), and activin A are used to maintain self-renewal in human
ESCs.19,20 Recent studies have shown that human ESCs are
slightly differentiated cells in the “primed state” and that mouse
ESCs are fully undifferentiated cells in the “naïve state,”
suggesting that LIF maintains the “naïve state” of pluripotency
(Fig. 2).21 Actually, transcriptome analyses showed differences in
the expression profiles of genes in mouse and human ESCs,
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indicating that these cells may not be derived from the same
lineages of early embryos and that human ESCs are likely to be
LIF-independent because of the establishment from cell lineages
later than early epiblast.22-25

LIF-Mediated Signaling Pathway in ESCs

The activity of LIF was first identified in 1969 by Ichikawa, and it
was shown that its activity could inhibit proliferation and induce

macrophage differentiation of the M1 leukemic myeloid cell
line.26 This biological activity, called “differentiation factor
(D-factor),” was partially purified from a cell-conditioned medium
prepared from mouse embryos.27 Gearing et al. purified mouse
D-factor/LIF from a Krebs II ascites cell-derived conditioned
medium and isolated a mouse D-factor/LIF cDNA clone.28 Human
LIF and mouse LIF are 180-amino-acid glycoproteins and belong
to the interleukin-6 (IL-6) subfamily.29,30 LIF proteins have at least
three isoforms: a soluble form called LIF-D (soluble form), LIF-i/

Figure 1. Regulation of the LIF-mediated signaling pathway in mouse ESCs. LIF causes heterodimerization of LIFR and gp130. LIF causes phosphorylation
and activation of JAK, which is tethered to the intracellular region of gp130. Activated JAK phosphorylates gp130 and its tyrosine phosphorylations
causes interaction with STAT3. Then STAT3 is also tyrosine-phosphorylated by JAK and is homodimerized via its SH2 domains. The dimerized STAT3
translocates to the nucleus and activates target gene transcription. JAK-STAT3 activates Klf4, which maintains Oct3/4 expression via Nanog. JAK activates
PI3K, which acts as an activator for AKT. AKT then upregulates Tbx3 as another pluripotency gene. The JAK-STAT pathway is negatively regulated by
several inhibitory systems: dephosphorylation by tyrosine phosphatases including SHP and physical inhibition or ubiquitin-mediated degradation of JAK
by SOCS. JAK phosphorylates SHP and then SHP interacts with the Grb2/SOS complex to activate the MAPK pathway, leading to inhibition of Tbx3 and
Nanog. TRIM8 likely negatively regulates Hsp90b-mediated translocation of STAT3 into the nucleus of ESCs. SLIM is an E3 ubiquitin ligase that negatively
regulates the JAK-STAT signal pathway, but SLIM is expressed at a low level in mouse ESCs. P, phosphorylation.
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LIF-T (intracellular form) and LIF-M (a form localized in the
extracellular matrix).31-33 LIF-M and LIF-D are synthesized as
alternative transcripts differing in the first exon. LIF-T is a
truncated isoform because of the initiation of translation at the first
ATG codon of exon 2. LIF knockout mice have been established
and analyzed in detail. Although homozygous LIF−/− mice are
viable, they have many defects including decrease in cell lineages
such as hematopoietic stem cells, primordial germ cells and motor
neurons.34,35 Notably, female LIF−/− mice are fertile, but their
blastocysts cannot implant in the uterine epithelium because of the
absence of LIF secretion as a nidation hormone from the uterus.34

LIF-related cytokines, including LIF, oncostatin M (OSM),
cardiotrophin (CT-1) and ciliary neurotrophic factor (CNTF),
function within a gp130 receptor complex and can sustain ESC
self-renewal.36-39 Furthermore, ESCs can be maintained by using a
combination of interleukin-6 and soluble interleukin-6 receptor
(IL-6/sIL-6R) and their intracellular signaling is engaged via
formation of gp130 homodimers even without LIFR.40,41

Therefore, intracellular signals from gp130 are sufficient for
self-renewal of mouse ESCs. In addition to ESC self-renewal,
activation of gp130 receptor complexes causes differentiation and
growth inhibition in M1 myeloid leukemic cells, survival and
differentiation of neurons, astrocytes and hypertrophy in
cardiomyocytes.37,42-45 An LIFR−/− mouse has already been
established and analyzed. LIFR−/− mice showed decrease in bone
volume (osteopenia), reduction in the numbers of motor neurons
and astrocytes, abnormality of placenta and metabolic liver
diseases.46,47 LIFR−/− mice perinatally die probably due to
developmental disorder of muscles including sucking muscles.
Mice lacking gp130 have also been established. gp130−/− mice die
between 12 to 16 d of embryogenesis, due to hematopoietic,
neuronal and heart disorders.48 These findings suggest that LIFR
and gp130 are critical receptors for early embryogenesis and
organogenesis.

LIF causes heterodimerization of LIFR and gp130 (Fig. 1).6

Ligand-induced dimerization of the receptors leads to phosphor-
ylation at tyrosine 1022 (Y1022) of JAK1 and activation of
associated JAK1.7,8,49,50 Four tyrosine residues (Y765/812/904/

914) of the cytoplasmic domain of gp130 and three tyrosine
residues (Y976/996/1023) of LIFR are phosphorylated by the
activated JAKs. These phosphotyrosine residues then interact with
the SH2 domain of STAT3. JAK then phosphorylates STAT3 at
tyrosine 705 (Y705), leading to homodimerization of STAT3 via
its SH2 domain and its translocation to the nucleus to transcribe
target genes. Homodimerized STAT3 is imported into the
nucleus through interaction with importin-a3 and importin-a6
and binds to the consensus sequence TTCCSGGGAA (S = C or
G) at the promoter or enhancer regions of target genes.51,52 A
previous study showed that dominant interfering mutants of
STAT3 inhibit macrophage differentiation of myeloid M1 cells
after stimulation with LIF.53 Furthermore, studies using knockout
mice have shown that homologous disruption of the STAT3 gene
causes early embryonic lethality, while ESCs in which both
STAT1 genes have been deleted are phenotypically normal.54,55

STAT5 has two genes, STAT5A and STAT5B, that are 96%
identical. STAT5A and STAT5B knockout mice fail to response
to prolactin and growth hormone, respectively. However,
STAT5A/B double knockout mice develop a full complement
of hematopoietic lineages and display subtler defects in embryonic
hematopoietic development. However, homologous disruption of
both STAT5 genes does not cause embryonic lethality.56 These
findings suggest that STAT3 is important for maintenance of ESC
proliferation and pluripotency, whereas STAT1 and STAT5 are
dispensable for maintenance of pluripotency.

Other Regulations in the LIF-Mediated Signaling
Pathway

The JAK-STAT pathway is negatively regulated by several
inhibitory systems: dephosphorylation by tyrosine phosphatases
including SH2-containing tyrosine phosphatase (SHP), protein
tyrosine phosphatase 1b (PTP1B) and protein tyrosine phospha-
tase basophil-like (PTP-BL), inhibition by sumo-1 conjugation
via protein inhibitor of activated STAT (PIAS), and physical
inhibition or ubiquitin-mediated degradation by SOCS3
(Fig. 1).57

Figure 2. Factors required for maintaining self-renewal and pluripotency of mouse and human ESCs. LIF is a key cytokine for maintaining self-renewal
and pluripotency of mouse ESCs. In contrast to mouse ESCs, fibroblast growth factor 2 (FGF2), also called basic FGF (bFGF), and activin A are used to
maintain self-renewal in human ESCs. Human ESCs are likely to be slightly differentiated cells in the “primed state” and mouse ESCs are fully
undifferentiated cells in the “naïve state.”
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As a second signal via LIF, JAK activates phosphoinositide
3-kinase (PI3K) through tyrosine-phosphorylation of the regula-
tory subunit p85, which acts as an activator for AKT (Fig. 1).58

AKT inhibits glycogen synthase kinase 3β (GSK3β) by direct
phosphorylation of GSK3β at serine 9 (S9) and nuclear export of
GSK3β independent of phosphorylation.59,60 Consequently, AKT
suppresses the action of GSK3β, which inhibits Nanog expression.
Hence, a GSK3β inhibitor supports self-renewal of mouse ESCs
in the absence of LIF. Moreover, AKT upregulates Tbx3 as
another pluripotency gene and causes acetylaton of STAT3 at
lysine 686 (K686), which induces more stable homodimer
formation of STAT3, probably followed by the activation of
Klf4 and Oct3/4.61 Actually, a constitutively active form of AKT
is sufficient for self-renewal of mouse ESCs even without feeder
cells and LIF.62

As a third signal via LIF, JAK phosphorylates SHP2 recruited
by binding to tyrosine 757 (Y757) of gp130 and tyrosine 969
(Y969) of LIFR (Fig. 1).63 SHP2 then interacts with the Grb2/
SOS complex and activates the MAPK pathway, leading to
downregulation of Tbx3 and Nanog probably via nuclear
export.64 Therefore, the MEK inhibitor PD98059 inhibits
differentiation of mouse ESCs and promotes ESC self-renewal.65

Ubiquitin-Proteasome System

Ubiquitination is one of the post-translational modifications used
by eukaryotic cells, and the ubiquitin-mediated proteolytic
pathway plays an important role in the degradation of short-
lived regulatory proteins including those that contribute to
cellular signaling, transcriptional regulation, cell cycle, DNA
repair and protein quality control. Ubiquitin modification is
mediated by a ubiquitin-activating enzyme (E1), ubiquitin-
conjugating enzyme (E2) and ubiquitin ligase (E3). E3 is a
scaffold protein that mediates between E2 and the substrate. The
resulting polyubiquitinated conjugates are quickly recognized and
degraded by 26S proteasome. E3 is thought to be the component
of the ubiquitin conjugation system that is most directly
responsible for substrate recognition. On the basis of structural
similarity, E3 enzymes have been classified into two major
families: the HECT (homologous to E6-AP COOH terminus)
family and the RING-finger protein family.66-70

Members of the superfamily of tripartite motif (TRIM)-
containing proteins are defined as E3 ubiquitin ligases by the
presence of a RING-finger domain.71 There are now more than
70 known TRIM proteins in humans and mice. TRIM proteins
are characterized by the presence of a RING-finger domain, one
or two zinc-binding motifs named B-boxes, and an associated
coiled-coil region and are classified in subfamilies I to XI on the
basis of differences in C-terminal domains.72,73 TRIM proteins
exist in invertebrate species as well as vertebrates.74 Comparative
analysis has shown that vertebrates have many TRIM family
proteins with an SPRY domain in the C-terminal region, whereas
invertebrate species have only a small number of TRIM family
proteins with the SPRY domain. So far, TRIM proteins have not
been identified in Arabidopsis thaliana, whereas proteins belong-
ing to the U-box type E3 ligase family, another type of E3

ubiquitin family, have evolutionally been vastly amplified in
A. thaliana genomes.75 However, there are 32 proteins with
N-terminal B-boxes such as COL, STO and STH1/2 in
A. thaliana.76

TRIM family proteins are involved in several biological
processes including cell proliferation/differentiation and diverse
pathological conditions such as cancer, developmental disorders,
neurodegenerative diseases, inflammation and autoimmune dis-
eases.77 Most of the TRIM proteins have roles as E3 ubiquitin
ligases in the ubiquitination process, and several TRIM family
members are involved in various biological processes, such as
transcriptional regulation, cell proliferation and differentiation.

Ubiquitin System in JAK-STAT Signal

The JAK-STAT signal is negatively regulated by several
mechanisms (Fig. 1).78 The SOCS family has eight proteins
(SOCS1~7 and CIS), which are induced by activation via
cytokines, growth factors and hormones, and they were originally
identified as negative molecules that form negative feedback
loops.79,80 All SOCS proteins have SH2 domain that is involved in
binding to phosphorylated tyrosine, and a SOCS-box that
functions as a binding motif for Cullin-2 as a component of E3
ubiquitin ligase. There are three molecular mechanisms to
negatively modulate JAK-STAT activation signals. First, the
N-terminal domain of SOCS likely becomes a pseudosubstrate for
JAK to inhibit activated signals.81 Second, SOCS competes with
downstream signal molecules by binding to tyrosine-phosphory-
lated receptor proteins.82 Third, SOCS proteins form E3
ubiquitin ligase complexes with Cullin-2, Elongin B, Elongin C
and Rbx1 and ubiquitinate JAK and receptor molecules, followed
by their degradation and internalization, respectively. SOCS1
mediates ubiquitination of JAK2 and TEL-JAK2 oncogene
dependent on a SOCS-box.83,84 SOCS3 induces proteasome-
dependent degradation of target receptors including CD33 and
sialic-binding immunoglobulin-like lectin (Siglec) 7.85,86

It has been reported that STAT-interacting LIM protein
(SLIM), which is a nuclear protein with both PDZ and LIM
domains, functions as an E3 ubiquitin ligase for STAT proteins
(Fig. 1).87 SLIM overexpression suppressed STAT1/4-mediated
transcription by degradation of STAT proteins, whereas SLIM
knockout caused increased STAT expression, followed by
enhancement of interferon-c (IFN-c) production from Th1 cells.
These findings suggest that SLIM is a bona fide E3 ubiquitin
ligase that negatively regulates the JAK-STAT signal pathway.
However, based on results of transcriptome analysis, SLIM is
weakly expressed in mouse ESCs, indicating that SLIM may not
be a main negative regulator for mouse ESCs (personal
communications). Further detailed analysis of SLIM expression
in mouse ESCs is needed to clarify the importance of JAK-STAT
signals in ESCs.

Regulation of ESC Pluripotency by TRIM Proteins

TRIM8 is highly expressed in a variety of cancers including
anaplastic oligodendroglioma and its gene maps to human
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chromosome 10q24.3.88 The region has frequent deletions or loss
of heterozygosity in glioblastomas. Hence, TRIM8 is also called
glioblastoma-expressed RING finger protein (GERP). It has been
reported that TRIM8 is induced by IFN-c and acts as a SOCS1-
interacting protein.89 We showed that TRIM8 interacts with
PIAS3, which inhibits IL-6-dependent activation of STAT3.
TRIM8 overexpression suppresses the negative effect of PIAS3 on
STAT3, either by degradation of PIAS3 via the ubiquitin-
proteasome pathway or exclusion of PIAS3 from the nucleus.90

Although we checked more than 30 different types of cancer cell
lines, we failed to detect endogenous TRIM8 in those cell lines.
Finally, we checked ESCs because TRIM8 regulates PIAS3 and
STAT3 is a crucial regulator for the LIF-dependent signaling
pathway. We found that endogenous TRIM8 is highly expressed
in mouse undifferentiated ESCs and that differentiated ESCs
cultured without LIF do not express endogenous TRIM8,
suggesting that TRIM8 is necessary for maintenance of
pluripotency and self-renewal of ESCs. Actually, we showed that
TRIM8 interacts with Hsp90β, which interacts with STAT3 and

selectively downregulates transcription of Nanog in ESCs
(Fig. 1).13,15,16 TRIM8 inhibits translocation of STAT3 into the
nucleus through interaction with Hsp90β and consequently
inhibits transcription of Nanog in ESCs, suggesting that TRIM8
regulates self-renewal or differentiation of ESCs.

Recently, we found that TRIM6, another of the TRIM family
ubiquitin ligases, is also highly expressed in ESCs and binds to c-
Myc and that TRIM6 overexpression causes decrease in c-Myc-
mediated transcription.91 The proto-oncogene product c-Myc is
known to be a master regulator of cell proliferation by specific
binding to the E-box motif in promoter regions of target genes.92

It has also been reported that c-Myc plays an important role in the
proliferation and maintenance of pluripotency of ESCs and that
the transcriptional activity of c-Myc is regulated by several post-
translational modifications including phosphorylation and ubi-
quitination.93 It has been reported that c-Myc overexpression
maintains the pluripotency of mouse ESCs even without LIF, but
sustained activation of c-Myc induces differentiation of human
ESCs, suggesting that c-Myc has different functions in mouse and

Figure 3. Maintenance of self-renewal and pluripotency of mouse ESCs by chemical inhibitors. FGF4 autocrined by ESCs likely causes activation of SHP2-
Ras-MAPK. Activation of the SHP2-Ras-MAPK cascade including MEK induces differentiation of ESCs. Moreover, activation of GSK3b causes
phosphorylation of c-Myc followed by degradation of c-Myc and also inhibits Nanog expression, resulting in the differentiation of ESCs. LIF-mediated AKT
activation causes phosphorylation of GSK3b, followed by inactivation of GSK3b (A). Without LIF, mouse ESCs are differentiated through
unphosphorylated GSK3b and MAPK activated by autocrine FGF4 (B). The combination (2i) of a MEK inhibitor (PD184352/PD325901) and GSK3b inhibitor
(CHIR99021) is sufficient for maintaining self-renewal and pluripotency of mouse ESCs without LIF (C).
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human ESCs.93,94 We showed that TRIM6 overexpression in
mouse ESCs inhibits c-Myc-mediated transcription, resulting in
induction of the differentiation of ESCs (Fig. 1). These findings
suggest that TRIM6 controls the transcriptional activity of c-
Myc for maintaining self-renewal and pluripotency of ESCs. In
addition to ESCs, induced pluripotent stem cells (iPSCs) are
established by the expression of four genes, Oct3/4, Sox2, Klf4
and c-Myc, into several cell lineages of mice and humans.95

However, the carcinogenic potential of c-myc inhibits its use in
iPSCs for clinical application. However, the efficiency of iPSC
establishment without c-Myc expression is very low.96 Therefore,
appropriate regulation of the expression level of c-Myc at an
inducing stage of stem cells should be important to establish
iPSCs. TRIM6 is expressed at higher level in undifferentiated
ESCs than in differentiated cells, and c-Myc expression level is
robustly elevated in TRIM6-knockdown ESCs.91 Once ESCs
enter the differentiation stage, the expression of TRIM6 is
rapidly decreased.91 TRIM6-knockdown ESCs are rapidly
differentiated even in the presence of LIF.91 Taken together,
the findings indicate that TRIM6 may regulate c-Myc expression
level within optimal ranges to maintain pluripotency of ESCs. It
is likely that TRIM6 strictly modulates the expression level or
activity of c-Myc to prevent dysregulation of cell proliferation by
c-Myc in ESCs.

Concluding Remarks

Mouse ESCs are usually maintained by using LIF and feeder cells
to inhibit differentiation. Recently, it has been reported that LIF
can be replaced by chemical compounds to inhibit several
signaling pathways. The cocktail of three inhibitors, a FGF-R
tyrosine kinase inhibitor (SU5402), MEK inhibitor (PD184352)
and GSK3β inhibitor (CHIR99021), is called 3i.97 This cocktail is
sufficient to maintain mouse ESCs even in the absence of LIF. If a
more potent MEK inhibitor (PD325901) is used, the cocktail (2i)
including PD325901 and CHIR99021 is sufficient for maintain-
ing self-renewal of mouse ESCs without LIF (Fig. 3).97 This
recent technology has been established on the basis of results of
studies on the LIF-mediated signal pathway at the detailed
molecular level. Further studies to clarify related molecules and
signal networks should lead to novel technologies for devel-
opmental engineering and tissue engineering.
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