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Abstract: A fluidic gallium-based liquid metal (LM) is an interesting material for producing flexible
and stretchable electronics. A simple and reliable method developed to facilitate the fabrication of a
photodetector based on an LM is presented. A large and thin conductive eutectic gallium indium
(EGaIn) film can be fabricated with compressed EGaIn microdroplets. A solution of LM microdroplets
can be synthesized by ultrasonication after mixing with EGaIn and ethanol and then dried on a PDMS
substrate. In this study, a conductive LM film was obtained after pressing with another substrate.
The film was sufficiently conductive and stretchable, and its electrical conductivity was 2.2 × 106 S/m.
The thin film was patterned by a fiber laser marker, and the minimum line width of the pattern was
approximately 20 µm. Using a sticky PDMS film, a Ga2O3 photo-responsive layer was exfoliated
from the fabricated LM film. With the patterned LM electrode and the transparent photo-responsive
film, a flexible photodetector was fabricated, which yielded photo-response-current ratios of 30.3%,
14.7%, and 16.1% under 254 nm ultraviolet, 365 nm ultraviolet, and visible light, respectively.

Keywords: eutectic gallium indium; EGaIn; liquid metal; gallium alloy; flexible photodetector;
flexible electronics

1. Introduction

A fluidic gallium-based liquid metal (LM) is an interesting material for flexible and stretchable
electronics and has received much attention from researchers owing to its extraordinary electrical
conductivity and outstanding mechanical properties [1–4]. It is known that various materials have been
utilized for manufacturing flexible and stretchable electronics [5–7]. However, these materials are not
flexible and stretchable in the bulk state and need to be treated further. Interestingly, LM has a fluidic
nature at room temperature and thus has potential for various applications in stretchable electronics.
With the rapid development of artificial and flexible applications and systems, such as flexible and
wearable electronics [8,9], electronic skins [10–12], sensors [13,14], and energy harvesting and storage
devices [15–17], LMs can be utilized for various applications in these fields. In particular, gallium-based
LMs, such as eutectic gallium indium (EGaIn, Ga/In 85.8%/14.2%), have been intensively investigated
in recent years because their toxicity is lower than that of mercury. For instance, gallium-based LMs
can be used as high-elasticity droplets [18], self-powered liquid metal machines [12], conductive traces
for circuit boards [19,20], soft electrodes for plasma [21], and reconfigurable antennas [22,23].

The patterning of LM film is another strategy for the fabrication of wearable, flexible, and stretchable
devices. In contrast to other solid metals, manipulation of LM is difficult because of its high surface
tension in the fluidic state and quick oxidation in air. To overcome this, various patterning methods
for gallium-based LM have been developed. LM electrodes with patterned structures have been
developed by many facile and cheap printing methods, including 3D printing [24], direct printing [25],

Materials 2020, 13, 5210; doi:10.3390/ma13225210 www.mdpi.com/journal/materials

http://www.mdpi.com/journal/materials
http://www.mdpi.com
https://orcid.org/0000-0002-4711-2566
https://orcid.org/0000-0001-7071-404X
http://www.mdpi.com/1996-1944/13/22/5210?type=check_update&version=1
http://dx.doi.org/10.3390/ma13225210
http://www.mdpi.com/journal/materials


Materials 2020, 13, 5210 2 of 11

inkjet printing [26], stencil printing [27], photolithography [28], masked deposition [29], microcontact
printing [30], laser patterning [31] and dielectrophoresis [32,33]. One of these methods, laser patterning,
can be used with various materials and is a fast and simple method for fabricating devices [34,35].
Therefore, we tried to fabricate the desired LM patterns by the laser ablation method. It is expected
that a thin LM film can be rapidly patterned by a fiber laser marker without fatal damage to the
polydimethylsiloxane (PDMS) substrate because only metals can absorb energy at a wavelength of
1064 nm, while PDMS cannot.

In addition to the fabrication of conductive LM film, another main area of this work is the
utilization of a newly formed metal oxide layer of LMs during the process. Most LMs based on
gallium alloys are rapidly oxidized in contact with oxygen and form an ultrathin metal oxide layer by
a self-limiting reaction [2,4,36]. It is known that a transparent Ga2O3 film is used as a photo-responsive
film to measure low-density ultraviolet (254 nm and 365 nm) and visible light [37,38]. Furthermore,
it has been reported that the oxidized layer could be exfoliated from the LMs with adhesive materials
that are used as 2D materials for the semiconducting layer [39]. Thus, it is considered that the newly
formed Ga2O3 film in this work can be separated with an adhesive material, and this layer would show
photo-responsive performance.

In this work, we introduce a simple and reliable method to fabricate a flexible and transparent
photodetector based on an LM. A large and thin conductive EGaIn film can be fabricated with
compressed EGaIn microdroplets. The LM film is sufficiently conductive and can be rapidly patterned
by laser ablation. In addition, a photo-responsive gallium oxide layer can also be separated with an
adhesive PDMS substrate from a conductive LM film. A flexible and transparent photodetector was
fabricated by combining the patterned LM electrode and the separated Ga2O3 film.

2. Materials and Methods

2.1. Fabrication of Liquid Metal (LM) Microdroplets

EGaIn (75.5 wt% Ga and 24.5 wt% In, Sigma-Aldrich, St. Louis, MO, USA) was used to prepare
the microdroplets. It consists of Ga and In, and its melting point is 15.7 ◦C. EGaIn (500 mg) was placed
in a 20 mL vial and was filled with ethanol (94.5%, Daejung, Korea). Hereafter, the vial was sonicated
using an ultrasonic cleaner (80 W, 40 KHz) for 30 min. After ultrasonication, a suspension of LM
microdroplets (<10 µm) was formed, as shown in Figure 1a.

2.2. Preparation of Fully and Incompletely Cured PDMS Substrates

The fully-cured PDMS substrate was prepared by the following process: A PDMS (Dow Corning,
Sylgard 184 A/B) mixture with a monomer and a curing agent (at a ratio of 10:1) was prepared and
poured onto a flat Petri dish (SPL, Gyeonggi, Korea). The bubbles arising from the vacuum chamber
were removed after 1 h, post which it was cured in a convection oven for another 1 h at 80 ◦C. For an
incompletely-cured PDMS substrate, a PDMS mixture with a monomer and a curing agent (at a ratio of
11:1) was used. The mixture was poured on a flat Petri dish, and the height of the incompletely-cured
PDMS substrate was 1 mm. It was then cured in an oven for 15 min at 80 ◦C after removing the bubbles.

2.3. Fabrication of Thin Conductive LM Film with Microdroplet Suspension

A suspension of LM microdroplets formed by ultrasonication was dropped on a flat, fully-cured
PDMS substrate and dried at room temperature for 24 h to avoid formation of cracks by rapid solvent
evaporation. Subsequently, another flat, fully-cured PDMS substrate was placed onto the dried LM
film, which was then pressed by a hydraulic press at 15 MPa for 1 s. After removing the pressure,
the upper PDMS substrate was peeled off from the bottom substrate. Finally, thin conductive LM films
were left on both the upper and bottom PDMS substrates.
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Figure 1. (a) Preparation process of EGaIn microdroplets; (b) Illustration of the fabrication process of a
flexible and transparent photodetector.

2.4. Laser-Engraved Conductive Patterns and Circuits

The thin liquid metal (LM) film was patterned by a fiber laser marker (50 W, Dongil laser
technology, Gyeonggi, Korea). The desired circuits and electrodes were fabricated by a subtractive
method at a resolution of 20 µm. The scanning speed of the fiber laser marker was 600 mm/s, and the
power intensity of the laser was 1% of its maximum power. A pattern with an area of 4 cm2 could be
engraved within 5 s by a fiber laser marker.

2.5. Fabrication of a Photodetector Based on Oxidized LM Film

An incompletely-cured thin PDMS film was placed slightly on the surface of a gallium-based
conductive thin film for conformal contact. The gallium oxide (<10 nm) film on the LM was attached
to the incompletely-cured PDMS film, and it was exfoliated from the conductive film after the peeling
off process. After cutting down a part of the transparent gallium oxide film on the PDMS film, it was
then placed onto the laser-patterned EGaIn electrodes. Finally, the photodetector was fabricated with a
transparent gallium oxide film and patterned conductive EGaIn electrodes.

2.6. Characterization

A semiconductor characterization system (Keithley 4200, Beaverton, OR, USA) was used to
analyze the electrical properties of the conductive electrodes. Bending and stretching tests were also
performed. Photo-detective tests under the irradiation of an ultraviolet (UV) lamp (8 W, Vilber Lourmat,
Marne La-Vallee, France) were also carried out at various wavelengths. The tests were also done
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under a tungsten–halogen lamp (FOK-100 W, Fiber Optic Korea, Cheonan, Korea). Atomic force
microscopy (AFM) and scanning electron microscopy (SEM) images were obtained using a multimode
AFM (Nanoscope IIIa, Digital Instruments, Bresso, Italy) and FE-SEM (JSM-7500F, Jeol, Tokyo,
Japan), respectively.

3. Results

LM based on gallium alloys (EGaIn) was used for the device. In Figure 1a, the preparation process
of EGaIn microdroplets is shown. A suspension of LM microdroplets was formed by ultrasonication
in ethanol. The inner core of the droplet is EGaIn and is surrounded by gallium oxide with an outer
carbon shell [40–42]. In Figure 1b, a schematic illustration of the entire process is shown. The solution
was dropped on a flat, fully-cured PDMS substrate and dried at room temperature for 24 h to avoid the
formation of cracks by rapid solvent evaporation during the drying process.

LM droplets by ultrasonication were distributed on the PDMS substrate after solvent evaporation,
as shown in Figure 2a. EGaIn microdroplets synthesized by ultrasonication were distributed uniformly
on the PDMS substrate, and the size of the droplets was smaller than 3 µm, as shown in Figure 2b.
Round droplets were observed, and the droplets were wrapped with oxidized gallium material.
The film with stacked LM droplets itself is not conductive because it is difficult for an electron to move
a long distance through the nonconductive oxidized layers from one droplet to another. The advantage
of using the droplets formed by ultrasonication is that it is possible to fabricate a thinner and more
uniform LM film when the droplets are used. With bulk EGaIn, it is difficult to create a thin film
because the high surface tension of a bulk LM makes it difficult to manage the LM.Materials 2020, 13, x FOR PEER REVIEW 5 of 11 
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Figure 2. (a) Liquid metal microdroplets distributed on a PDMS substrate; (b) SEM image of the liquid
metal (LM) microdroplets; (c) Image of a thin conductive LM film after peeling off process; (d) SEM
image of the continuous conductive LM film on a PDMS substrate; (e) The transparent gallium oxide
film attached on a PDMS after peeling off from the LM film; (f) Magnified optical image; (g) SEM image
of the transparent film of (e); (h) a piece of the thin tore transparent film on a PDMS substrate; (i) The
thickness and (j) the roughness of transparent gallium oxide film (boxed area) by AFM; (k) XRD pattern
of the exfoliated film on a PDMS substrate.
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Subsequently, another flat, fully-cured PDMS substrate was placed onto the dried microdroplet
film, which was then pressed by a hydraulic press at a pressure of 15 MPa. The droplets were
squashed out and connected to each other by pressure after breaking the oxidized layers of the droplets.
The oxidized parts remained in the film inside. However, the connected droplets formed a large
conductive thin film, as shown in Figure 2c,d. The amount of oxidized material is much lower than
that of the conductive part, and the film is sufficiently conductive for use in electric devices. The top
PDMS substrate on the sandwiched LM film was then peeled off. After that, half of the LM remained
on the bottom substrate, and another half was transferred onto the top substrate. As a result of the
peeling process, two conductive LM sheets were obtained on the top and bottom PDMS substrates.
The LM film was formed on the flat PDMS substrate over the entire area. It is difficult to fabricate a
very thin LM film from bulk LM because of its high surface tension. However, this difficulty has been
overcome by using LM microdroplets. In this work, one of the LM-coated sheets (bottom) was used as
a conductive electrode, and another (top) was used for utilizing a photo-responsive layer.

Moreover, an extremely thin oxidized layer could be separated from the LM films by peeling off with
a sticky PDMS film. The incompletely-cured PDMS film with strong adhesion was designed to peel off

the oxidized layer from the surface of the LM thin film for large-area fabrication. The incompletely-cured
PDMS film was placed and covered on the surface of the LM thin film, and it was brought into contact
with the oxidized layer of the LM, forming a conformal contact. Hereafter, the transparent oxidized
layer was sliced out from the LM film, at the time of peeling off the uncured PDMS film. The optical
image of the separated gallium oxide film from the LM film is shown in Figure 2e. The film is very
thin and transparent. As shown in Figure 2f,g, small LM spots (<10 µm) remained on the transparent
film. However, all the spots were surrounded by gallium oxide film and isolated from each other.
Thus, the separated gallium oxide film is laterally nonconductive. The transparent nonconductive
film was analyzed by grazing incidence X-ray diffraction (GIXRD). The oxidized sample was prepared
on a PDMS substrate, and the graph obtained by GIXRD is shown in Figure 2k. The baseline was
similar to reported GIXRD data of bare PDMS [43], and a broad peak was observed around 35◦. It is
known that GIXRD peaks are also observed at 34◦ and 36◦ for a gallium oxide material. Thus, it is
concluded that the transparent film is gallium oxide, since the peaks of gallium oxide appear on the
graph, and the material was also responsive to UV light in this work. Finally, the separated transparent
film was used for fabricating a photodetector because the oxidized thin film is a material mainly
based on gallium oxide and it shows high photo-detective property, as reported previously [37,38].
The separated oxidized film on a PDMS substrate could be easily cut using a scissor. Then, it was
placed on the substrate between the cathode and anode to fabricate a photodetector. After placing the
gallium oxide on the PDMS film between the electrodes, the photodetector with transparent film and
flexible LM electrodes was completed, as shown in Figure 1b.

In addition, to fabricate a desirable pattern for a flexible and stretchable device, a fiber laser
marker (λ ~ 1064 nm) was used for designing the patterns on a conductive LM film. The fabricated
conductive films are shown in Figure 3a. A laser engraving method is an efficient way to establish
flexible electrodes and patterns for devices. The SEM images in Figure 3b show the pattern with
various sizes based on EGaIn by a fiber laser marker. The advantages of using a fiber laser marker for
the patterning process are fine pattern resolution and less damage to transparent substrates, such as
PDMS or glass, during the patterning process. In fact, buckling of the PDMS substrate due to heat
was observed when LM was blazed out. The method can establish a sub-100 µm pattern, and the
minimum line was approximately ~20 µm in the experiment. Furthermore, better resolution can be
achieved using the laser blazing method if highly qualified equipment is used for patterning [44]. In a
previous report, a CO2 laser, not a fiber laser, was used for cutting the LM electrode inside the PDMS
substrate [31]. Actually, the CO2 laser blazed out the PDMS, and not the LM, in the experiment. In this
work, different mechanisms were used. It is known that metal substrates absorb only a small amount
of energy from the CO2 laser, and most of the energy from the CO2 laser is reflected [45]. In contrast,
a metal can absorb the energy of a fiber laser. Thus, the fiber laser is suitable for patterning thin LM
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films. It could easily remove a thin LM film (<1 µm) quickly. Complex patterns with a resolution
below 100 µm (~20 µm) could be made using a fiber laser in this work.
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Figure 3. (a) Images of a conductive EGaIn film patterned by a fiber laser marker; (b) SEM images of
conductive EGaIn film patterned by a fiber laser marker, showing a maximum resolution of the pattern
of approximately 20 µm; (c) Resistance of the EGaln electrode under bending and stretching.

After peeling off the top PDMS substrate, half of the LM remained on the bottom substrate and
another half was transferred to the top substrate, as shown in Figure 1b. As a result of the peeling
process, two conductive LM sheets were obtained. Resistance measurement during the stretching
test was also performed with an LM electrode (5 mm long and 80 µm wide). It was measured by
a semiconductor parameter analyzer, and the characteristic performances of the flexible electrodes
are shown in Figure 3c. Resistance of the EGaIn film is between 19.7 Ω and 41.7 Ω; this increases
slightly when the film is stretched to 170% of its initial length. The electrical conductivity of the
EGaIn film in this work was 2.2 × 106 S/m. The value is approximately two-thirds of its known value
(pure EGaIn, ~3.4 × 106 S/m) and was measured using a resistivity meter (Loresta-GX MCP-T700,
Mitsubishi Chemical Analytech, Yamato, Japan) with a four-pin probe to overcome the effect of contact
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resistance. According to the results, the film is sufficiently conductive to be used as an electrode in
the circuit. Here, one of the LM sheets was used as a conductive electrode and the other was used
for a photo-responsive layer. The thickness of the LM films measured by AFM was approximately
600 nm. It is known that it is difficult to fabricate a very thin LM film because of its high surface tension.
However, we could overcome this difficulty by using LM droplets and making a thin (< 1 µm) LM film
on the substrate.

4. Discussion

4.1. Fabrication of the Photodetector

In Figure 2b, a conductive LM thin film and a transparent gallium oxide film that is separated
from the LM film are shown. All films were fabricated on a large PDMS substrate (5 × 5 cm). As shown
in Figure 2d, the morphology of the conductive LM film was not smooth because LM was immediately
oxidized and solidified when exposed to air after the peeling-off process. The thickness of the
conductive LM film measured by AFM was approximately 600 nm. To measure the thickness of the
exfoliated gallium oxide layer, the transparent film on the PDMS substrate was transferred onto a
silicon substrate. The measured thickness of the exfoliated metal oxide film by AFM was 8.7 nm,
as shown in Figure 2i, and the surface roughness (RMS roughness) of the exfoliated 2D Ga2O3 layer
for a flat area was 2.254 nm, as shown in Figure 2j. It is assumed that the measured value of the
gallium oxide layer is thicker than the known value (~3 nm) because there is further oxidation during
the separation process. In this work, the separated transparent film was used as an active layer in a
photodetector because the oxidized film based on the gallium oxide is highly photo-detective.

4.2. Device Characterization

A photo-sensitive device was fabricated with flexible electrodes and a transparent gallium oxide
film based on LM(EGaIn), as shown in Figure 4a. The black rectangular areas on the right side of the
figure are the LM electrodes patterned by a fiber laser, and the transparent area is a gallium oxide
film beneath the PDMS substrate. The center image in Figure 4a shows the bird’s-eye view of the full
structure of the device.

It is known that Ga2O3 has a wide bandgap (4.5~4.9 eV) at room temperature [46,47]. As a result,
the device is used to measure ultraviolet and visible light as a high-range photodetector. As shown
in Figure 4b, the characteristics show an obvious photo-responsive performance under periodic
illumination. Photo-responsive tests were also performed with light of three different wavelengths.
The devices were illuminated by light periodically at intervals of 30 s with three wavelengths: 254
nm, 365 nm, and visible light. The rise/decay times of the device under illumination of 254 nm, 365
nm, and visible light were 28.2 s/26.7 s, 18.3 s/21.9 s, and 29.1 s/23.6 s, respectively. The responsivities
(R) under illumination of 254 nm, 365 nm, and the visible light at 1 V were 2.8 × 10−2 A/W, 3.3 × 10−3

A/W, and 2.6 × 10−6 A/W, respectively. As shown in Figure 4c, the device based on EGaIn shows a
photo-response-current ratio (∆I/I0) of 30.3% under 254 nm ultraviolet light with an intensity of 0.1
mW/cm2. It also shows photo-response–current ratios of approximately 14.7% and 16.1% under the
illumination of a 365 nm ultraviolet and an ordinary visible light, respectively.
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Figure 4. (a) Images of the photodetector combined with the conductive electrode and photo-responsive
film; (b) Time-dependent photo-response curves and (c) photo-response-current ratios of the
photodetector under illumination with ultraviolet light (λ~254 nm and 365 nm) and visible light.
The bias voltage was 0.1 V, and the on/off time of lights was 30 s/30 s.

5. Conclusions

This work describes a new type of flexible photodetector based on a liquid gallium alloy. A simple
and reliable method was introduced to fabricate a flexible and transparent photodetector based on
LMs. The photodetector was fabricated with a material, EGaIn. Both a conductive electrode and
a photo-responsive layer could be obtained from the material and fabricated on PDMS substrates.
The fabrication process of a conductive film based on LM microdroplets is an efficient method to
fabricate a large-area (5 × 5 cm), flexible, and stretchable LM film. The laser ablation method was
also used to fabricate flexible and stretchable electrodes, and the width of the patterned electrodes
could be controlled at a level of 20 µm. A photo-responsive layer (~8.7 nm) was exfoliated with
an incompletely-cured PDMS by peeling off from the surface of the oxidized LM film. Finally,
the photodetector could be made by combining the patterned electrodes and the photo-responsive film.
It shows 30.3%, 14.7%, and 16.1% of the photo-response–current ratio under wavelengths of 254 nm
and 365 nm in the ultraviolet band, and ordinary visible light, respectively.

The key contribution of this method is that a photosensitive device was fabricated with one
material. The semiconducting active layer was exfoliated from conductive materials, and both layers
were used in the same device. The laser ablation method shows high performance of controllable,
accurate, and efficient patterning. It is expected that the results with LM and various techniques in this
work will contribute to advances in the fields of flexible and stretchable sensors.
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