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The adrenal cortex is a major site of steroid hormone production. Two hormones are 
of particular importance: aldosterone, which is produced in the zona glomerulosa in 
response to volume depletion and hyperkalemia, and cortisol, which is produced in the 
zona fasciculata in response to stress. In both cases, acute stimulation leads to increased 
hormone production, and chronic stimulation causes hyperplasia of the respective zone. 
Aldosterone- and cortisol-producing adenomas (APAs and CPAs) are benign tumors of 
the adrenal cortex that cause excess hormone production, leading to primary aldoste-
ronism and Cushing’s syndrome, respectively. About 40% of the APAs carry somatic 
heterozygous gain-of-function mutations in the K+ channel KCNJ5. These mutations 
lead to sodium permeability, depolarization, activation of voltage-gated Ca2+ channels, 
and Ca2+ influx. Mutations in the Na+/K+-ATPase subunit ATP1A1 and the plasma mem-
brane Ca2+-ATPase ATP2B3 similarly cause Na+ or H+ permeability and depolarization, 
whereas mutations in the Ca2+ channel CACNA1D directly lead to increased calcium 
influx. One in three CPAs carries a recurrent gain-of-function mutation (L206R) in the 
PRKACA gene, encoding the catalytic subunit of PKA. This mutation causes constitutive 
PKA activity by abolishing the binding of the inhibitory regulatory subunit to the catalytic 
subunit. These mutations activate pathways that are relatively specific to the respective 
cell type (glomerulosa versus fasciculata), and there is little overlap in mutation spectrum 
between APAs and CPAs, but co-secretion of both hormones can occur. Mutations in 
CTNNB1 (beta-catenin) and GNAS (Gsα) are exceptions, as they can cause both APAs 
and CPAs through pathways that are incompletely understood.

Keywords: KCNJ5, CACNA1D, ATP1A1, ATP2B3, CTNNB1

inTRODUCTiOn

Adrenal masses are common tumors in humans. Adrenal incidentalomas may be found in more 
than 4% of computed tomography series (1), and about 7% are malignant (2). Among hormone-
producing lesions, besides pheochromocytomas, cortisol-producing and aldosterone-producing 
adenomas (CPAs and APAs) of the adrenal cortex are frequently diagnosed (2). Aldosterone and 
cortisol are physiologically synthesized in the two outer layers of the adrenal cortex (zonae glomeru-
losa and fasciculata, respectively) from their common precursor cholesterol. The two main stimuli 
of aldosterone production are angiotensin II (ATII) and hyperkalemia. ATII levels rise in states of 
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FiGURe 1 | Signaling pathways affected by mutations in APAs and CPAs. In zona glomerulosa, binding of angiotensin II (AngII) to its receptor inhibits 
potassium channels via G protein signaling. This leads to depolarization and opening of voltage-gated calcium channels. Increased intracellular calcium results in the 
activation of Ca2+/calmodulin-dependent protein kinase (CAMK) and the activation of transcription factors, such as NURR1/NGFIB, CREB, and ATF-1. As a 
consequence, genes involved in proliferation and aldosterone production (e.g., aldosterone synthase, CYP11B2) are activated (5). Mutations in KCNJ5, ATP1A1, 
and ATP2B3 lead to abnormal permeability for sodium or protons, which causes cellular depolarization and activation of the same pathways. Similarly, mutations in 
the calcium channel gene CACNA1D lead to increased calcium influx. In the zona fasciculata, binding of corticotropin (ACTH) to the melanocortin receptor (MC2R) 
causes activation of adenylate cyclase (AC) by the Gαs subunit (encoded by GNAS). Binding of cAMP to the regulatory subunit (“R”) of protein kinase A (PKA) leads 
to release of the catalytic subunit (“C,” encoded by PRKACA) from the complex. Transcription factors CREB, ATF-1, and Erk 1/2 cause increased expression of 
genes involved in proliferation and cortisol production, such as 11β-hydroxylase (CYP11B1). Hypercortisolism can occur due to activating mutations in GNAS and 
PRKACA. Activating mutations in β-catenin (CTNNB1) are found in both APAs and CPAs; the underlying mechanisms are incompletely understood.
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volume depletion, via activation of the renin–angiotensin system. 
Binding of ATII to the AT1 receptor, a G protein-coupled receptor 
in the glomerulosa membrane, leads to the inhibition of potas-
sium channels, depolarization and activation of voltage-gated 
calcium channels, and the release of calcium from intracellular 
stores (Figure  1). Other factors that physiologically regulate 
aldosterone release in concert with ATII and K+ are corticotropin 
(ACTH, stimulatory) and atrial natriuretic peptide (ANP, inhibi-
tory) (3). Binding of aldosterone to the mineralocorticoid recep-
tor leads to the increased activity of downstream effectors, such as 
the Na+/K+-ATPase or the epithelial sodium channel (ENaC) (4). 
The increased activity of these pumps and channels in kidney and 
intestine causes increased sodium and water reabsorption and an 
increase in systemic blood pressure.

Cortisol is released from the zona fasciculata upon stimula-
tion by pituitary ACTH, in response to stress. ACTH binds 
to the melanocortin receptor 2, a G protein-coupled receptor, 
which activates adenylate cyclase (6). As a result, cAMP is pro-
duced, which binds to the regulatory subunit of protein kinase 
A (PKA), causing release of its catalytic subunit. The catalytic 
subunit then phosphorylates target proteins, such as CREB and 
ATF, which lead to cortisol production and proliferation (7) 
(Figure 1).

Cortisol influences a variety of biological processes, including 
skeletal growth, immune response, glucose and lipid metabolism, 
cognition, and reproduction (8–10).

Cortisol-producing adenomas and APAs feature the compel-
ling combination of both hormone production and proliferation, 
suggesting that they carry genetic changes that activate both 
processes. Such changes have been identified over the past 
5 years through exome sequencing. Comparing DNA sequences 
from tumor specimens and corresponding normal tissue (such 
as blood or adjacent tissue) can reveal tumor-specific (somatic) 
mutations, which are candidates for disease causation (11). This 
review will discuss recent genetic discoveries in APAs and CPAs 
and the underlying pathways.

KCNJ5 MUTATiOnS in PRiMARY 
ALDOSTeROniSM

Primary aldosteronism (PA) features autonomous production of 
aldosterone from the adrenal gland and accounts for about 10% 
of hypertension in referral centers. The two most common causes 
are APAs and bilateral adrenal hyperplasia. Other causes, such as 
unilateral hyperplasia, malignant tumors, or familial hyperaldo-
steronism, are rare (12–16).
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TABLe 1 | Mutation frequencies in APAs, A/CPAs, and CPAs.

Reference N APA A/CPA CPA

CACNA1D KCNJ5 ATP2B3 ATP1A1 GNAS CTNNB1 KCNJ5 GNAS GNAS PRKACA CTNNB1

Beuschlein et al. (66) 99 – – – – – – – – N/A 22.2 N/A
Goh et al. (69) 55 – – – – – – – – 5.5 23.6 16.4
Cao et al. (67) 87 – – – – – – – – N/A 65.5 N/A
Sato et al. (68) 65 – – – – – – – – 16.9 52.3 N/A
Di Dalmazi et al. (71) 100 – – – – – – – – N/A 22.0 N/A
Thiel et al. (41) 52 – – – – – – – – 7.7 23.1 25.0
Thiel et al. (41) 4 – – – – – – 50.0 NA – – –
Yamada et al. (40) 3 – – – – – – 66.7 NA – – –
Nakajima et al. (42) 10 – – – – – – 60.0 20.0 – – –
Xekouki et al. (84) 53 N/A 30.2 N/A N/A N/A N/A – – – – –
Taguchi et al. (28) 23 N/A 65.2 N/A N/A N/A N/A – – – – –
Kitamoto et al. (85) 108 1.9 69.4 2.8 N/A N/A – – – – –
Boulkroun et al. (86) 380 N/A 33.9 N/A N/A N/A N/A – – – – –
Azizan et al. (87) 73 N/A 41.1 N/A N/A N/A N/A – – – – –
Cheng et al. (88) 69 N/A 37.7 N/A N/A N/A N/A – – – – –
Kuppusamy et al. (89) 195 N/A 24.6 N/A N/A N/A N/A – – – – –
Zheng et al. (27) 168 0.6 76.8 0.6 2.4 N/A N/A – – – – –
Scholl et al. (36) 97 10.3 37.1 3.1 8.2 N/A 2.1 – – – – –
Scholl et al. (45) 64 7.8 32.8 3.1 1.6 N/A 3.1 – – – – –
Nakajima et al. (42) 33 N/A 72.3 N/A N/A 6.1 N/A – – – – –
Beuschlein et al. (47) 308 N/A 38.3 1.6 5.2 N/A N/A – – – – –
Williams et al. (24) 112 N/A 39.3 0.9 6.3 N/A N/A – – – – –
Akerstrom et al. (22) 348 N/A 45.1 N/A N/A N/A N/A – – – – –
Fernandes-Rosa et al. (23) 474 9.3 38.0 1.7 5.3 N/A N/A – – – – –
Akerstrom et al. (83) 198 1.5 46.5 1.5 3.0 N/A 5.1 – – – – –
Hong et al. (29) 66 0.0 71.2 0.0 0.0 N/A N/A – – – – –
Wu et al. (25) 148 0.0 59.5 0.7 1.4 N/A N/A – – – – –

N, number of study subjects; N/A, not available.
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In the first exome sequencing study of APAs, Choi et  al. 
analyzed four tumors and corresponding blood samples (11). 
This revealed only two to three somatic mutations per tumor. 
One gene (KCNJ5) was mutated in two tumors, with one tumor 
carrying a heterozygous G151R mutation, and the second carry-
ing a heterozygous L168R mutation. By Sanger sequencing, these 
two mutations were found in 6 of 18 additional APAs. KCNJ5 
encodes an inward rectifier potassium channel, Kir3.4, or GIRK4. 
The G151 and L168 residues are located within or close to the 
selectivity filter of the channel (17), which allows only potassium, 
but not the smaller sodium ions, to pass through the channel. 
This suggested an effect of the variants on potassium selectivity. 
Accordingly, by electrophysiology, mutant channels were found 
to be permeable to sodium and cause cellular depolarization. 
These effects were inferred to contribute to aldosterone produc-
tion and proliferation through the activation of voltage-gated 
calcium channels and calcium entry (3, 11) (Figure 1). Additional 
support for the notion that KCNJ5 mutations are sufficient to 
cause aldosterone production and proliferation came from the 
discovery of heterozygous germ line KCNJ5 mutations in families 
with early-onset PA and massive bilateral adrenal hyperplasia (11, 
18–20). The high frequency of KCNJ5 mutations in APAs (about 
35% in European cohorts, more than 60% in Asian cohorts) 
has subsequently been confirmed in large cohorts (21–29) 
(Table 1). A higher prevalence in Asian cohorts may be due to 
selection bias; individuals with KCNJ5 mutations tend to have a 
more florid presentation at least in some cohorts. Interestingly, 

KCNJ5 mutations are more prevalent in females than in males, 
which could account for the higher overall prevalence of APAs 
in females, a finding that remains unexplained. In vitro studies 
in the aldosterone-producing human adrenocortical cancer cell 
line HAC15 have demonstrated that gain-of-function mutations 
in KCNJ5 lead to increased expression of aldosterone synthase 
and increased aldosterone production (30–32). Lastly, a recent 
study confirmed the role of CYP11B2 transcriptional regulators 
NURR1 and ATF2 in mutant KCNJ5-induced aldosterone pro-
duction (33) (Figure 1).

KCNJ5 MUTATiOnS AnD 
GLUCOCORTiCOiDS

Interestingly, tumors with KCNJ5 mutations tend to be larger than 
other tumors and have fasciculata-like features by histopathol-
ogy and gene expression analysis, which may have implications 
for the radiological diagnosis of these tumors (34–36). Another 
line of evidence pointing to a more fasciculata-like or mixed 
 glomerulosa–fasciculata phenotype of KCNJ5-positive APAs is the 
finding that heterologous expression of a KCNJ5 variant in HAC15 
cells causes not only upregulation of CYP11B2 expression but also 
increased expression of CYP11B1 and synthesis of hybrid steroids 
18-hydroxycorticsol and 18-oxocortisol, as well as corticoster-
one (31, 33). This raises the question whether KCNJ5-positive 
APAs produce clinically relevant amounts of glucocorticoids. 
Interestingly, hypersecretion of cortisol and aldosterone are not 
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mutually exclusive in adrenal adenomas, and cases of  aldosterone 
and cortisol co-secreting adenomas (A/CPAs) have been 
reported (37–40). This phenotype may be underdiagnosed due to 
incomplete screening for subclinical Cushing’s syndrome (CS) in 
patients with APAs; many of these patients will not receive dexa-
methasone suppression tests. Yamada et al. reported three female 
patients with hypertension and hypokalemia who were diagnosed 
with A/CPAs. Two had KCNJ5 mutations (G151R and L168R) 
(40). Thiel et al. reported KCNJ5 mutations (G151R and L168R) 
in two of four A/CPAs, and no mutations in PRKACA, ATP1A1, 
ATP2B3, and CACNA1D were found (41). Lastly, Nakajima et al. 
demonstrated KCNJ5 mutations in 6 of 10 A/CPAs (42). This sug-
gests that KCNJ5 mutations may cause excess secretion of not only 
aldosterone but also glucocorticoids, leading to PA with discrete 
features of CS. Potential explanations include the overlapping role 
of transcriptional regulators CREB and ATF in the regulation of 
both aldosterone and cortisol production (Figure 1) as well as a 
potential role of Ca2+ in cAMP formation (43).

In summary, KCNJ5 mutations have been extensively studied 
in the context of PA. However, the physiological role of KCNJ5 in 
human adrenal glomerulosa remains largely undetermined, and 
animal studies have been hampered by extremely low or absent 
expression of KCNJ5 in rodents (44).

CACNA1D MUTATiOnS in 
PRiMARY ALDOSTeROniSM

The gene with the second highest somatic mutation burden in 
APAs is CACNA1D, with frequencies of about 8–11% described 
in the initial exome sequencing studies and similar findings in 
a large follow-up study (23, 35, 45) (Table 1). Similar to KCNJ5 
mutations, CACNA1D mutations are heterozygous. However, 
mutations are more scattered throughout the protein. CACNA1D 
encodes an L-type voltage-gated calcium channel (CaV1.3). 
Mutant CACNA1D channels show activation at more hyperpolar-
ized membrane potentials and, in some cases, reduced channel 
inactivation compared to wild-type channels (45). In line with 
the notion that these effects will lead to increased calcium entry, 
expression of mutant CACNA1D channels causes increased aldos-
terone production in the adrenocortical cancer cell line H295R 
(46). Again, similar to KCNJ5 variants, additional evidence for 
a role of CACNA1D in PA came from the discovery of germ line 
variants at the same positions found to be mutated in tumors (45). 
Among 100 unrelated subjects with early-onset PA and hyperten-
sion, two carried de novo mutations in CACNA1D. Interestingly, 
these subjects had a multi-organ phenotype, including primary 
aldosteronism, seizures, and neurologic abnormalities (PASNA) 
(45). The discovery of mutations in calcium channels as a cause 
of PA may suggest that specific calcium channel blockers could 
be useful in patients carrying such mutations (46).

ATPase MUTATiOnS in 
PRiMARY ALDOSTeROniSM

Additional somatic mutations in APAs without corresponding 
germ line mutations have been identified. Beuschlein et al. first 

described heterozygous or hemizygous somatic mutations in the 
ATP1A1 and ATP2B3 genes in 5.2 and 1.6% of APAs, respectively. 
ATP1A1 encodes a sodium/potassium ATPase subunit, whereas 
ATP2B3 encodes the plasma membrane calcium ATPase. 
Mutations in both ATPases cluster within the M4 helix, again 
suggesting a gain-of-function mechanism (47). Azizan et  al. 
subsequently demonstrated that ATP1A1 mutations cause an 
ouabain-sensitive, voltage-dependent inward Na+ or H+ current, 
respectively. Heterologous expression of mutant ATP1A1 in 
human adrenocortical H295R cells led to increased aldosterone 
production and CYP11B2 expression levels (35), consistent with 
a role of mutant ATP1A1 in cellular depolarization and activa-
tion of voltage-gated calcium channels, as with mutated KCNJ5. 
Similarly, a mutation in ATP2B3 was shown to induce a patho-
logical Na+ permeability, with increased intracellular Ca2+ levels 
and aldosterone production in H295R cells (48).

SPeCiFiC FeATUReS AnD ORiGin OF 
CACNA1D- AnD ATPase-MUTAnT APAs

Azizan and colleagues first suggested an association of CACNA1D 
and ATP1A1 mutations with a glomerulosa-like phenotype (35), 
whereas other groups reported mixed histological phenotypes 
(23, 36). Glomerulosa-like features in CACNA1D and ATP1A1-
positive tumors could suggest that these tumors are derived from 
zona glomerulosa cells. Indeed, Nishimoto et al. recently studied 
42 normal adrenal glands from kidney donors and identified 
so-called aldosterone-producing cell clusters (APCCs), nests of 
cells just below the adrenal capsule that feature high expression 
of aldosterone synthase and protrude into cortisol-producing 
cells (49). Remarkably, targeted next-generation sequencing 
of DNA from 23 APCCs identified known somatic CACNA1D 
mutations in six cases and known somatic ATP1A1 mutations 
in two cases, suggesting that APCCs may represent precursors 
of a subtype of APAs. These results also support the presence of 
APCCs and potentially subclinical PA in a substantial number 
of apparently healthy individuals, which is interesting, given 
that prior clinical studies identified a higher risk of developing 
hypertension in individuals with increased aldosterone levels 
within the physiologic range (50). No somatic KCNJ5 mutations 
were identified in APCCs, suggesting that APAs carrying such 
mutations may arise from cells of the zona fasciculata or may 
grow more rapidly, with precursors evading detection in appar-
ently healthy individuals.

inveSTiGATiOnS OF 
MULTinODULAR TUMORS

Even though the classical presentation of aldosterone-producing 
adenoma is that of a uninodular lesion, many cases feature 
associated hyperplasia or multiple secondary nodules, many 
of which do not show increased expression of aldosterone 
synthase. Investigations of individual nodules revealed the 
presence of characteristic APA mutations in aldosterone-
producing nodules, whereas non-producing nodules do not 
carry such mutations (51). Some individuals carry different 
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aldosterone-driver mutations in different nodules, suggesting 
that independent mutation events account for the development 
of multiple nodules (52, 53). Whether germ line susceptibility 
variants promote the formation of multiple tumors remain 
to be determined. Interestingly, some adenomas appear to 
show intra-tumoral heterogeneity, indicating that the somatic 
events underlying APA formation can also occur in the context 
of preexisting nodules (53). This has led to the proposal of a 
two-hit model of adenoma development, with one hit being 
responsible for proliferation and another hit causing hormone 
production (54). However, the rarity of such findings and the 
absence of second hits explaining proliferation in the exomes of 
tumors carrying aldosterone-driver mutations suggest that APA 
driver mutations alone are sufficient to cause proliferation and 
hormone production in the majority of APAs.

CACNA1H MUTATiOnS in FAMiLiAL 
HYPeRALDOSTeROniSM

One additional ion channel gene implicated in PA to date has 
been found to be mutated in the germ line only, but not in APAs. 
A novel germ line heterozygous variant in the CACNA1H gene 
(M1549V) was found in 5 of 40 unrelated subjects with PA and 
hypertension diagnosed at age 10 or below (55). Microscopic 
glomerulosa hyperplasia without macroscopic enlargement 
was demonstrated in one subject who had undergone unilateral 
adrenalectomy, suggesting a limited proliferative effect of the 
variant. CACNA1H encodes the low-voltage-activated T-type 
calcium channel CaV3.2 (56). CaV3.2 has been hypothesized to be 
responsible for fine adjustments in the aldosterone production 
when activated by small changes in potassium or ATII levels and 
appears to be necessary for glomerulosa membrane potential 
oscillations (55, 57, 58). The observed M1549V variant causes 
impaired channel inactivation and a slight shift of activation 
to more hyperpolarized potentials (55), as well as increased 
CYP11B2 expression (59), suggesting a pathophysiology similar 
to that of CACNA1D variants.

SOMATiC MUTATiOnS in ADRenAL 
CUSHinG’S SYnDROMe

Cushing’s syndrome features hypercortisolism and is associated 
with a plethora of signs and symptoms, including weight gain, 
hypertension, diabetes mellitus, lethargy, acne, depression, hir-
sutism, and increased mortality (60, 61). CPAs are less frequent 
than ACTH-secreting pituitary tumors (62), but still account for 
up to 10% of endogenous CS (60, 63, 64). Somatic PRKAR1A 
loss-of-function mutations were identified as a cause of sporadic 
CPAs in a hypothesis-driven approach (65).

Following the description of somatic mutations in PA, using 
exome sequencing, four groups independently identified somatic 
mutations in the PRKACA gene as a cause of CS (66–69). PRKACA 
encodes the catalytic subunit of protein kinase A involved in the 
regulation of adrenal cortisol production (see Introduction and 
Figure  1). Beuschlein and colleagues sequenced the exomes 
of 10 CPAs and identified heterozygous somatic PRKACA 

mutations in eight, with a frequency of 37% in the entire cohort 
of CPAs associated with overt CS. No PRKACA variants were 
found in CPAs associated with subclinical CS, APAs, or inactive 
adenomas, and the presence of PRKACA variants was associated 
with a more severe phenotype (66). All but one tumor carried 
a single variant, L206R, suggesting a gain-of-function effect. 
L206 is located in the highly conserved interaction site between 
the regulatory and the catalytic subunits of PKA, and binding 
of the regulatory subunit at this position prevents substrate 
phosphorylation. Molecular modeling and functional analysis 
of PKA activity suggested that the L206R mutation would lead 
to a steric hindrance and prevent inhibition of catalytic activity 
by the regulatory subunit (70). Somatic PRKACA variants other 
than L206R are exceedingly rare (71). Further support for the 
causative role of increased PKA activity in CS came from the 
discovery of germ line PRKACA duplications in subjects with 
bilateral adrenal hyperplasia and CS (66).

These results were confirmed in independent cohorts. Cao 
et al. reported an L205R variant (equivalent to L206R in the initial 
report) in the PRKACA gene in 27 of 39 CPAs. Further, two GNAS 
(Gαs) mutations and a CTNNB1 (β-catenin) mutation were found 
(see below) (67). Sato et al. screened tumors of 65 patients with 
ACTH-independent CS. They identified PRKACAL206R mutations 
in 52.3% and GNAS mutations in 16.9% of the tumors. In addi-
tion, they provided evidence of an association of PRKACAL206R 
with smaller tumor size and a more severe phenotype (68). 
Lastly, Goh et  al. reported a PRKACAL206R mutation in 24% of 
CPAs (35% of cases with overt CS). They also reported CTNNB1 
mutations in 16% and GNAS mutations in 6% of tumors (69). 
Similar results were found in additional cohorts (39, 41, 71) 
(Table 1). Functionally, L206R has been shown to enhance the 
phosphorylation of PKA downstream effectors CREB and ATF in 
cell culture and tumor tissue samples (69) (Figure 1).

MUTATiOnS in GNAS AnD CTNNB1 in 
CUSHinG’S SYnDROMe AnD PRiMARY 
ALDOSTeROniSM

Mutations in GNAS have long been known to inhibit GTPase 
activity of the Gαs subunit and thereby cause constitutive Gαs 
activation, abnormal cAMP signaling, endocrine hyperfunc-
tion, and tumor formation; postzygotic GNAS mutations are 
found in McCune–Albright syndrome, which can be associated 
with CS (72, 73). The discovery of mutually exclusive somatic 
gain-of-function mutations of PRKACA and GNAS in CPAs (see 
above) has further demonstrated that increased cAMP signaling 
is sufficient to cause tumorigenesis and cortisol hypersecretion. 
However, somewhat unexpectedly, given the absence of PRKACA 
mutations in APAs, GNAS variants were also reported in A/CPAs 
in two instances (42). On a molecular level, given the accessory 
role of ACTH in stimulating aldosterone secretion, increased 
cAMP signaling may play a role.

CTNNB1 encodes β-catenin of the Wnt/β–catenin pathway, 
which is known to play an important role in adrenocortical 
development and cancer (74). Activating mutations are not only 
found in benign and malignant adrenal tumors (75) but also 
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in tumors of other organs. Such mutations prevent β-catenin 
degradation and cause proliferation. Even though such events 
have been shown to trigger benign aldosterone-secreting and 
cortisol-secreting tumor development as well as malignancy in 
a mouse model and human tissue samples (36, 45, 69, 75–77), 
the exact mechanisms underlying hormone secretion in CTNNB1 
positive tumors remain to be determined.

In this context, a common pathway of PRKACA, GNAS, and 
CTNNB1 has been suggested (78). However, it has been shown 
that GNAS and CTNNB1 mutations are not always mutually 
exclusive in CPAs, and that mutations of CTNNB1 are also present 
in non-secreting adrenal tumors (79). A recent study described 
an association with pregnancy in two of three cases with APAs 
and CTNNB1 mutations and suggested that the manifestation 
may be mediated by CTNNB1-induced LHCGR expression and 
increased LH levels in pregnancy (80). However, the absence of an 
association with pregnancy in previously described female cases 
(81), the high prevalence of LHCGR overexpression in APAs (82), 
and the finding of CTNNB1 mutations in male individuals with 
APAs (83) suggest a role of additional factors.

COnCLUSiOn AnD OPen QUeSTiOnS

Taken together, the recent findings on the genetic causes of APAs 
and CPAs suggest that both result from gain-of-function muta-
tions that concurrently lead to excess hormone hypersecretion 
and increased proliferation. In most cases, a single mutation 
is apparently sufficient for tumor formation and hormone 
hypersecretion. There is little overlap between CPAs and APAs 

in terms of the mutational spectrum. While CPAs often carry 
mutations that lead to increased intracellular cAMP levels, muta-
tions known to cause APAs mostly affect intracellular calcium 
signaling. Overlapping roles in the function of transcription fac-
tors ATF and CREB in glomerulosa and fasciculata function, as 
well as overlapping roles of signaling downstream of ACTH and 
calcium in cortisol and aldosterone synthesis, may explain the 
presence of KCNJ5 and GNAS mutations in tumors secreting both 
cortisol and aldosterone (Figure 1). Open questions include the 
determinants of the histological phenotype of APAs with certain 
mutations, the molecular pathways involved in proliferation 
of both APAs and CPAs, potential additional factors that drive 
hormone production in tumors with CTNNB1 mutations, and 
the pathogenesis of tumors without mutations in known driver 
genes. In summary, despite significant progress over the past few 
years, the pathophysiology behind CPAs and APAs has not been 
fully unraveled. Distinct and common molecular switches appear 
to exist in both disorders.
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