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Evolutionary prediction is of deep practical and philosophical
importance. Here we show, using a simple computational protein
model, that protein evolution remains unpredictable, even if one
knows the effects of all mutations in an ancestral protein back-
ground. We performed a virtual deep mutational scan—revealing
the individual and pairwise epistatic effects of every mutation to
our model protein—and then used this information to predict evo-
lutionary trajectories. Our predictions were poor. This is a con-
sequence of statistical thermodynamics. Proteins exist as ensem-
bles of similar conformations. The effect of a mutation depends
on the relative probabilities of conformations in the ensemble,
which in turn, depend on the exact amino acid sequence of the
protein. Accumulating substitutions alter the relative probabilities
of conformations, thereby changing the effects of future muta-
tions. This manifests itself as subtle but pervasive high-order epis-
tasis. Uncertainty in the effect of each mutation accumulates and
undermines prediction. Because conformational ensembles are an
inevitable feature of proteins, this is likely universal.
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Is evolution predictable? This is a fundamental question in
evolutionary biology both for philosophical (1–4) and for prac-

tical reasons (5, 6). Deep mutational scanning experiments pro-
vide an intriguing new avenue to think about evolutionary pre-
diction. These experiments reveal the effects of huge numbers of
mutations and thus, provide rich information about local adap-
tive landscapes (7–9). This leads to a simple question: if we know
the effect of every mutation in an ancestral genotype, can we pre-
dict future evolutionary trajectories? If not, what limits our abil-
ity to make predictions?

To pose this question, we attempted to predict the evolution of
a simple physical protein model given a virtual deep mutational
scan. In this context, prediction is knowing which mutations
would accumulate, in what order, given knowledge of the effects
of the mutations in the ancestral background. We attempted an
“easy” prediction, reasoning that it could act as a starting point
for more difficult scenarios involving more complex evolutionary
processes. To maximize predictive success, we studied adaptive
trajectories in which the environment was stable, there was con-
sistent directional selection, and mutations were fixed by selec-
tion rather than drift.

We studied the evolution of improved thermodynamic
stability—a shared feature of all folded proteins and a target
of natural selection in many contexts (10–12). This is a useful
phenotype for a number of reasons. First, because stability is a
thermodynamic quantity, studying it may reveal features com-
mon to the evolution of other thermodynamic properties, such
as allostery and ligand binding. Second, biological systems—
from molecules to ecosystems—are ultimately physical; there-
fore, insights at the physical level may provide insights for higher
levels of biological organization (13).

Surprisingly, we found that our predictions were quite poor.
We even added all pairwise epistatic effects of mutations to
our predictive model, requiring a massive virtual deep muta-
tional scan of all possible pairs of mutations. Even this did
not allow robust predictions of evolutionary trajectories. We
find that the unpredictability arises directly from the thermody-
namic ensemble of conformations populated by macromolecules,

revealing a profound link between protein physics and the evolu-
tionary process.

Results
We set out to predict trajectories that increased the stability of
a lattice protein. Lattice models have been used extensively in
studies of protein folding and evolution (13–17). A lattice model
captures the fact that the weak interactions that define the struc-
ture of a protein stochastically break and form under cellular
conditions, causing proteins to fluctuate between multiple con-
formations (18–20). These structural ensembles are critical to
functions, such as allostery (20, 21), enzyme activity (19), com-
plex assembly (22), and regulation (23).

A lattice model describes a protein ensemble as a collection
of conformations on a grid. Some conformations will be favored,
and others will be disfavored. The favorability of each confor-
mation is quantified by its internal energy (Ec), which depends
on the contacts between amino acids in that conformation. Con-
formations with more favorable contacts are more likely than
those with fewer contacts. The overall stability of the protein is
described by the free energy of the native conformation (∆G◦N ),
which quantifies the population of the native conformation rela-
tive to all other conformations in the ensemble (Fig. 1A). Using
reduced temperature units, this is given by

∆G◦N = EN + ln

(
−e−EN +

C∑
i=1

e−Ei

)
, [1]
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clude that detailed evolutionary predictions are not possible
given the chemistry of macromolecules.
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Fig. 1. Evolution is unpredictable in protein lattice models. A shows the
meaning of ∆G◦N using five lattice model conformations of the many thou-
sands possible. Each conformation is a single nonintersecting chain on a 2D
grid. Amino acids are shown as circles colored by position in the sequence
from black to white. Peptide bonds are dark bars. Noncovalent interactions
are red stars. The strength of each noncovalent interaction depends on the
identities of the interacting amino acids. The contact energy of each con-
formation is shown as a dark line; the Boltzmann-weighted average of the
nonnative conformations is shown as a dashed line. (B) Relative probabil-
ities of evolutionary trajectories starting from an ancestral genotype (cen-
ter). Circles indicate genotypes; lines indicate mutational steps. The size of
each circle and the width of each line indicate its probability. Dashed gray
lines indicate increasing number of sequence differences from the ancestor.
The orange trajectory is the highest probability trajectory. (C) Predicted tra-
jectories using an additive predictive model. C, Left is colored the same as
B. The genotypes visited in the actual trajectories but not the predicted tra-
jectories are shown as purple×, with sizes proportional to their probability.
C, Right shows the difference between the predicted and actual trajecto-
ries. Red lines indicate trajectories missed in the prediction; blue lines indi-
cate trajectories incorrectly added by the prediction. (D) Predicted trajecto-
ries using a pairwise epistatic predictive model; colors are the same as in C.
(E) Divergence between predicted and actual trajectories for 1,000 starting
genotypes as a function of number of mutations. Gray points are individ-
ual simulations. Red bars are the means for all genotypes after that number
of steps.

where EN is the internal energy of the native conformation,
and the sum on the right goes over all C conformations in the
ensemble.

We studied evolution in a strong selection, weak mutation
regime (24). This assumes that the population size is large
and that mutations fix sequentially—a reasonable assumption
for a single gene for which recombination is rare. This also
removes uncertainty caused by drift. We defined fitness as pro-
portional to the fraction of the molecules in the native conforma-
tion, w = 1/[1 + exp(∆G◦N )], because the fraction of molecules
folded—not the free energy—is under selection in most biologi-
cal contexts (11).

We generated a random 12-amino acid protein sequence with
w ≈ 0.7 as our starting point (Materials and Methods). We calcu-
lated w for all genotypes differing by a single mutation relative to
the ancestor and then determined the relative fixation probability
for all point mutants. We then stepped out to all accessible geno-
types and repeated the protocol. Any mutation with a nonzero

fixation probability was considered accessible. Iterating this pro-
cedure generates a branching set of trajectories that improve the
stability of the original native conformation. By comparing the
relative fixation probabilities for each mutation along each tra-
jectory, we can calculate the total probability flux through each
possible trajectory (Materials and Methods).

We started by calculating ground truth evolutionary trajecto-
ries against which to compare our predictions (Fig. 1B). For the
sequence in Fig. 1B, we found one main evolutionary trajectory
(shown in orange in Fig. 1B) leading to a fitness peak six muta-
tions away. There were also several lower probability trajectories
accessible (shown in gray in Fig. 1B).

We next set out to predict these trajectories using informa-
tion extracted from a virtual deep mutational scanning exper-
iment. We calculated the change in ∆G◦N for all 228 possible
point mutants to the ancestral genotype. Using this information,
we could then predict ∆G◦N for any genotype as the free energy
of the ancestor plus the sum of the effects of all mutations in the
genotype. Finally, we could use these predicted ∆G◦N values to
calculate probable evolutionary trajectories.

These predictions were quite poor (Fig. 1C). While the first
move is correctly identified, the next move is incorrect. For the
sequence shown in Fig. 1C, our predicted trajectories are limited
to a peak directly adjacent to the ancestral genotype rather than
the actual peak six mutations away.

This result is unsurprising: we did not include any epista-
sis in our predictions. Like real proteins, residues in a lattice
model form direct contacts with each other. We would, there-
fore, expect to see pairwise epistasis—a difference in ∆G◦N when
mutations are introduced together versus separately. We, there-
fore, reran our predictions of trajectories accounting for both the
individual effects of mutations and pairwise epistasis between
them. Practically, this involved another, larger, virtual deep
mutational scanning experiment: we calculated ∆G◦N for all 228
possible single mutants and all 22, 836 possible double mutants.
By comparing the effects of each mutation together and in
pairs, we could build a more sophisticated prediction model that
accounts for pairwise interactions between mutations (Materials
and Methods).

Addition of pairwise epistasis improved our predictions rela-
tive to the additive model, but we still performed quite poorly
(Fig. 1D). Although the addition of pairwise epistasis allows the
trajectories to escape the local region of the ancestral genotype,
the predicted and actual trajectories diverge after the second
step. Many genotypes are visited that were not seen in the actual
trajectories, while many genotypes in the actual trajectories were
missed (purple crosses in Fig. 1D). This includes the actual fit-
ness peak.

To verify that this was a robust feature of lattice proteins, we
then repeated our pairwise epistasis predictions for 1,000 differ-
ent random starting sequences. To characterize the quality of
our predictions, we calculated the difference in the probabilities
of matched trajectories between our predicted and actual maps
(θ). This metric ranges from 0.0 (no difference) to 1.0 (complete
difference) (Materials and Methods and SI Appendix) (25). We
then calculated θ as a function of the number of steps from the
ancestral genotype for all 1,000 spaces (Fig. 1E). In all spaces,
we correctly predict the first two moves. (This is because we built
the prediction model using the fitness of these genotypes—hardly
a difficult prediction.) Addition of the third mutation, however,
causes immediate divergence between the predicted and actual
trajectories. This divergence continues until, by the seventh step,
the predicted and actual maps have an average divergence of 0.9.

Ensembles Induce Epistasis. Our predictions accounted for all
pairwise epistasis but still failed. It follows that there must be
three-way (or greater) epistatic interactions between mutations.
This is surprising, as lattice models are built from pairwise
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contacts alone. What is the source of this “high-order” epistasis?
We know that these interactions must be indirect at a structural
level, as the only direct interactions are pairwise. We, therefore,
searched for mechanisms that would lead to indirect interactions
between mutations.

Allostery, where binding at one site indirectly affects activ-
ity at a distant site, is a useful analog of this problem. One
way that allostery can arise is through a conformational ensem-
ble (20, 21). Binding at one site perturbs the relative popu-
lations of different structures in the conformational ensemble.
This can, indirectly, change activity at another site. We hypoth-
esized that a similar phenomenon was leading to evolutionary
unpredictability.

Fig. 2 shows a highly simplified lattice model that illustrates
indirect, “ensemble-induced” epistasis between a pair of muta-
tions. (The logic can be extended to indirect multiway interac-
tions between mutations, but visualization of the phenomenon is
much easier for pairwise epistasis.) In this example, we have a
6-amino acid protein, where each site can be either hydropho-
bic (H) or polar (P). We will consider introducing two mutations
that do not contact one another in the structure: H2P (Fig. 2,
orange) and H4P (Fig. 2, purple). We start with the nonepistatic
case (Fig. 2A). This ensemble has only two conformations: A and
B . ∆G◦A is simply the difference in the contact energy between
conformation A and conformation B (Fig. 2A and Table 1). H2P

Fig. 2. Conformational ensembles induce epistasis. The panels show how
epistasis arises from the conformational ensemble of a simple, six-residue
lattice protein. In this model, residues can be either H (white circles) or
P (filled circles). Favorable H-H contacts are worth −1 and are denoted
by a red star. Colors denote mutations: H2P (orange) and H4P (purple).
Solid red lines indicate the contact energies of each conformation. Geno-
types are denoted above each subpanel. The thermodynamic stability of
state A is shown for each genotype (for example, ∆G◦A, WT ). The informa-

tion used to calculate ∆G◦ predicted
A, H2P/H4P is shown along the bottom of A and

B. (A) In the two-state system, the effects of H2P and H4P sum in the
H2P/H4P mutant; therefore, ∆G◦ predicted

A, H2P/H4P is correct (green check mark). In
B, we see that addition of a third state in the ensemble leads to epista-
sis. ∆G◦A for each genotype is now the difference in the contact energy of
conformation A and the Boltzmann-weighted sum of the contact energies
of conformations B and C (dashed red line). Because of this nonlinearity,
∆G◦A, WT + ∆∆G◦A, H2P + ∆∆G◦A, H4P 6= ∆G◦A, H2P/H4P (red ×).

Table 1. Mathematical formulation of lattice phenotypes

Ensemble complexity Phenotype

Two state EN − EU

Three state EN + ln
(

e−EU + e−E
U′
)

Full ensemble EN + ln
(
−e−EN +

C∑
i=1

e−Ei

)

destabilizes conformation A, and H4P indirectly stabilizes con-
formation A by destabilizing conformation B . If we sum the
effects of the mutations, we obtain the correct stability of the
double mutant.

What if we add a third conformation (C ) to the thermo-
dynamic ensemble? This is shown in Fig. 2B. ∆G◦A is now
the difference between the contact energy of A and the log
of the Boltzmann-weighted sum of the contact energies of B
and C (Fig. 2B and Table 1). The mutations now no longer
behave additively. In the WT background, H2P is destabilizing
by 0.6 (reduced energy units). In the H4P background, H2P
is destabilizing by only 0.4. This is indirect, ensemble-induced
epistasis. In the WT background, H2P destabilizes conforma-
tion A, such that it has the same contact energy as conforma-
tion B . These states strongly compete with one another, caus-
ing H2P to have a relatively large effect (0.6). H4P alters this
effect by destabilizing conformation B . This means that, when
H2P is introduced, conformation B does not compete effec-
tively with conformation A. As a result, H2P has a more mild
effect (0.4).

The presence of the third state in the ensemble leads to epis-
tasis between these mutations and an incorrect prediction of
the double-mutant stability. Predicting the effect of a muta-
tion in a future genetic background, therefore, requires know-
ing its effect on every member of the ensemble, not simply its
aggregate effect on the entire population of states. This is, in
practice, impossible to measure. Ensemble-induced epistasis is
directly analogous to ensemble-induced allostery (20, 21); how-
ever, we have now substituted mutations for binding events and
binding sites.

Evolutionary Trajectories Exhibit Extensive Ensemble-Induced Epista-
sis. From our reasoning above, we would predict that ensemble-
induced epistasis would arise for any conformational ensem-
ble with more than two states and that it could lead to epista-
sis of any order. We, therefore, set out to quantify the epistasis
present in our evolutionary trajectories. Quantitatively, epista-
sis accounts for variation not accounted for by lower ordered
effects of mutations. Pairwise epistasis is the difference in the
effects of two mutations introduced together versus separately.
Three-way epistasis is the difference in ∆G◦N for a triple mutant
versus the predicted ∆G◦N from the individual and pairwise
epistatic coefficients. In thermodynamic terms, individual effects
are ∆∆G◦N , pairwise interactions are ∆∆∆G◦N , and three-way
interactions are ∆∆∆∆G◦N . This can be extended to any order
of interaction (26–28).

Measuring an Lth-order interaction requires characterizing 2L

combinations of mutations. To access a collection of 2L geno-
types, we constructed binary genotype–phenotype maps con-
taining all possible combinations of the mutations between the
ancestral genotypes and their highest probability genotype six
mutations away (e.g., between the ancestor and the peak in Fig.
1B). We decomposed epistasis in ∆G◦N using a linear model cap-
turing the individual effects of mutations and any interactions
between them (26–28) using the ancestral genotype as the refer-
ence state (27).

We detected high-order epistasis in every calculated tra-
jectory. Fig. 3A shows the average magnitude of epistatic
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Fig. 3. Ensemble-induced epistasis leads to unpredictability. A–C are jitter
plots that show the average magnitude of epistasis |ε| observed for increas-
ing orders of epistasis in 1,000 maps generated from full (A), two-state (B),
and three-state (C) ensembles. Gray points represent the average magni-
tude of the epistatic coefficients at a given order for a single map. Red bars
indicate the means. D–F show divergence between the “true” trajectories
and predicted trajectories for full (D), two-state (E), and three-state maps
(F). For clarity, D reproduces the data in Fig. 1E.

coefficients of increasing order for all spaces. The magnitude
decays with increasing order but is still detectable up to the sixth
order in all spaces.

If the ensemble is, indeed, the source of this epistasis, we pre-
dicted that it would disappear if we removed the ensemble. We,
therefore, generated truncated lattice models that had only two
or three conformations in their ensemble. The two-state ensem-
ble had the native state and the lowest energy nonnative con-
formation (N and U ). The three-state ensemble had the native
state and the two lowest energy nonnative conformations (N , U ,
and U ′).

We predicted that the two-state model would exhibit only pair-
wise epistasis, while the three-state model would exhibit higher
ordered epistasis. This can be understood from the energy func-
tion for each ensemble. ∆G◦N for the two-state model is linear
with respect to contact energy (Table 1). The only epistasis that
arises is via direct interactions encoded in the contact energy. In
a three-state (or higher) ensemble, ∆G◦N no longer reduces to a
linear difference in contact energies (Table 1). This means that
mutations have nonlinear effects on the probabilities of confor-
mations within the ensemble, leading to ensemble-induced epis-
tasis (Fig. 2).

To investigate epistasis in these reduced ensembles, we gen-
erated binary maps as before: we used either a two-state or
three-state ensemble to calculate ∆G◦N for each genotype, cal-
culated evolutionary trajectories, and then built binary maps
between the ancestor and most probable final genotype. We
then decomposed these maps to extract epistasis. As predicted,
the two-state ensembles exhibited only pairwise epistasis (Fig.
3B). In contrast, the three-state ensemble exhibited exten-
sive high-order epistasis (Fig. 3C)—just like the full ensemble
(Fig. 3A).

We next asked whether reducing the ensembles altered pre-
dictability. If the unpredictability that we initially observed arises
from epistasis induced by the ensemble, we would predict high
predictability for two-state ensemble but poor predictability
for the three-state ensemble. We observed precisely this pat-
tern. A pairwise prediction model was able to perfectly pre-
dict evolutionary trajectories for two-state ensemble (Fig. 3E)

but failed to predict evolutionary trajectories for the three-state
ensemble (Fig. 3F). The unpredictability observed for the three-
state ensemble is directly comparable with the unpredictability
observed for the full ensemble (Fig. 3D).

Predictions Fail Even When High-Order Epistasis Is Included. If
molecular ensembles lead to epistasis, which undermines evo-
lutionary prediction, an obvious solution is to characterize even
higher orders of epistasis. What if we knew all three-way inter-
actions? Or four-way interactions? Is there some order of epis-
tasis that, when characterized, allows long-range evolutionary
predictions?

We cannot ask this question for open-ended evolutionary tra-
jectories, as it rapidly becomes intractable. (Even for our 12-
site lattice protein, quantifying all possible three-way interac-
tions would require characterizing 1,533,034 genotypes.) Instead,
we chose to try to predict trajectories from ancestral to derived
genotype through the binary maps above, each containing 26

genotypes. We built increasingly complex epistatic models rang-
ing from first order (constructed from characterization of six
point mutants in the ancestral background) to sixth order (con-
structed from characterization of all combinations of point
mutants in the ancestral background).

We found that incorporation of high-order epistasis led to lit-
tle improvement in our predictions. Fig. 4 shows the deviation
between our predicted and actual trajectories for models incor-
porating increasingly higher orders of epistasis. Fig. 4A shows
predictions using the full ensemble. The additive model begins to
deviate from the actual trajectories after the first step, the pair-
wise model begins to deviate after the second step, and the three-
way model begins to deviate after the third step. As soon as the
model has to make a prediction beyond the phenotypes that were
used to build the model, trajectories begin to deviate. Even our
fifth-order model—which required knowing the phenotypes of
63 of 64 genotypes in the space–does not always correctly predict
the final step (Fig. 4, purple curve).

This unpredictability arises from the thermodynamic ensem-
ble. Fig. 4 B and C shows the same analysis for the two-state
and three-state ensembles, respectively. For the two-state ensem-
ble, we were able to predict trajectories perfectly with the addi-
tion of pairwise epistasis. For the three-state model, we see
similar behavior to the full ensemble: inclusion of high-order
epistasis does not improve predictions. This is because the epis-
tasis does not capture specific interactions but instead, reveals
that the ensemble is changing quantitatively and nonlinearly as
mutations accumulate. No matter what order of epistasis is char-
acterized, the future remains obscure.

Discussion
Our work shows that the physical properties of proteins can
lead to profound evolutionary unpredictability. Because each

Fig. 4. Addition of high-order epistasis does not lead to predictability.
The panels show the deviation between predicted and actual trajectories
through binary genotype–phenotype maps using predictive models with
increasing orders of epistasis: additive (red), pairwise (orange), three way
(green), four way (blue), five way (purple), and six way (pink). The panels
correspond to maps using a full ensemble (A), a two-state ensemble (B), and
a three-state ensemble (C) maps. Each curve is averaged over 1,000 maps.
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mutation alters the relative probabilities of all conformations
of a protein, the quantitative effect of a mutation is different
in every genetic background. As a result, the effect of a muta-
tion early in a trajectory does not predict its effect later, and
evolutionary trajectories become unpredictable. Because ther-
modynamic ensembles are a natural aspect of molecular archi-
tecture and ubiquitous for function, we expect that this is a
universal link between the biochemistry of macromolecules and
their evolution.

A key point from our work is that unpredictability can arise
even in this extraordinary simple system. The problem of predict-
ing evolution will only become harder as the complexity and real-
ism of the models increase. Using a larger protein, for example,
would increase the number of possible options and degeneracy
of trajectories, making predictions more challenging. Likewise,
constructing a more realistic evolutionary model—incorporating
drift for example—increases the number of available trajecto-
ries and makes evolutionary prediction more challenging than
the strong selection case (SI Appendix).

Ensemble-Induced Epistasis Is Likely Common. Our work suggests
that any macromolecule that populates three or more conforma-
tions can exhibit ensemble-induced epistasis. This is an extraordi-
narily common set of conditions, as most macromolecular func-
tions require populating multiple states (18–21). For example,
consider an allosterically inhibited enzyme that takes two con-
formations: E (inactive) and E∗ (active). An inhibitor I binds
to E , shifting the population from E∗ to E . The fraction of the
enzyme in the active form given [I ] is

E · I � I + E � E∗

factive =
[E∗]

[E∗] + [E ] + [E · I ]
.

This protein has three distinct states—E∗, E , and E · I—that
have different structures and would, thus, respond differentially
to mutations. We would, therefore, expect ensemble-induced
epistasis in factive .

In addition to theoretical considerations, there is experimen-
tal evidence that ensemble-induced epistasis shapes evolution
(29, 30). The most direct is an engineered evolutionary trajec-
tory that converts a protein from one fold to another (13, 29).
Midway through the trajectory, a single mutation switches the
fold. If introduced earlier in the trajectory, the mutation does not
have the same effect. The fold-switching mutation has its singular
effect, because other mutations have prestabilized the alternate
fold. This is ensemble-induced epistasis: mutations perturb the
relative stability of a nonnative conformation, opening up a new
evolutionary trajectory.

Another observation is the presence of high-order epista-
sis in every combinatorial protein genotype–phenotype studied
(28, 31). The phenotypes studied are diverse, including binding
affinity, spectroscopic properties, and enzyme activity. Although
there is no direct evidence that the high-order epistasis in these
maps arises from underlying ensembles, ensemble-induced epis-
tasis provides a simple, universal explanation that unites these
disparate observations of high-order epistasis.

One question that remains is how our observations in lat-
tice models map quantitatively to real proteins. What is the
magnitude of ensemble-induced epistasis in real systems? How
many steps can be predicted before real evolutionary predic-
tions diverge? This will depend on the details of the sequence
and its associated ensemble. Our results suggest, however,
that ensemble-induced epistasis will eventually lead to diver-
gence between predicted and actual trajectories in any protein
genotype–phenotype map.

It also remains to be seen if something analogous to ensemble-
induced epistasis exists on a larger scale, such as in a signaling

network. Such networks do exhibit ensemble-like behavior, pop-
ulating a collection of different configurations that rearrange in
response to stimuli and sometimes even exhibiting stable three-
state character (32, 33) We might, therefore, be able to explain
high-order epistasis in such systems using an ensemble frame-
work (28, 31).

Interpreting Epistasis. Our analysis also sheds light on the ques-
tion of the origin and interpretation of high-order epistasis. First,
our work shows that it is relatively easy to create a system with
irreducible high-order epistasis, even with a very simple lattice
protein. There is no simple scale that reduces the epistasis (28,
34): it is an integral part of the system.

Second, our work shows that there is no mechanistic interpre-
tation for epistatic coefficients that arise by such a process. The
epistasis is fundamentally statistical rather than biological (34).
The ensemble effectively encrypts the interactions that give rise
to the epistasis. A three-way interaction cannot be interpreted
in a direct physical manner or in a way to predict which confor-
mations changed. It quantifies the effect of the mutation, inte-
grated over its effect on all conformations in the ensemble. In
our view, the best interpretation of epistasis in macroevolution-
ary trajectories is as a means to quantify uncertainty in future
predictions—not necessarily as a way to gain mechanistic insight
into the system.

Evolution Is Unpredictable. Epistasis makes a relatively small con-
tribution to variation in our lattice models (Fig. 3A) as well
as real datasets (28, 31). This allows prediction of pheno-
types with relatively high accuracy, as has been noted before
in lattice models (17). Approximate phenotypes are, however,
insufficient for predicting trajectories. Because evolutionary tra-
jectories are a contingent series of steps, small uncertainties
in phenotypes are amplified into large uncertainties in tra-
jectories (25). Practically, this means that you can predict a
multimutation phenotype from a deep mutational scanning
experiment but likely not its evolutionary accessibility from the
ancestral state.

Many previous discussions of unpredictability have revolved
around robustness of trajectories to external factors, such as
environmental perturbation (2), genetic drift (4), or a change in
the nature of selection (35). The unpredictability that we observe
arises from the architecture of protein systems themselves. Our
work indicates that the physical architecture of biomolecules nat-
urally leads to ensemble-induced epistasis. Accumulating muta-
tions thus alter the effects of future mutations, making evolution
unpredictable given information about the effects of mutations
in the ancestral state.

Materials and Methods
All of our analyses are contained in Python scripts and Jupyter
notebooks available on Github (https://github.com/harmslab/notebooks-
epistasis-ensembles). Full details are given in SI Appendix.

For the protein lattice model simulations, we extended the lattice
proteins package originally written by Jesse Bloom (https://github.com/
harmslab/latticeproteins) (17) using Miyazawa and Jernigan contact ener-
gies (from table V in ref. 36) and reduced temperature units (36). We ran-
domly generated 12-site protein sequences and then evolved each sequence
until the fraction folded was≈ 0.7. We calculated the probability of a given
evolutionary trajectory as a series of independent, sequential fixation events
using a strong selection, weak mutation model (37). In this model, the fixa-
tion probability for going from genotype x to x + 1 is

πx→x+1 = 1− e
−
( wx+1

wx−1

)
,

where wx and wx+1 are the relative fitness rates of the x and x+1 genotypes
(SI Appendix).

To quantify the difference between the predicted and actual trajectories,
we calculated the magnitude of the difference in probability of all observed
trajectories through each space (SI Appendix) (25).
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We predicted the ∆G◦N for each genotype and then used this to predict
evolutionary trajectories. For the additive model, the predicted stability of
a genotype with a set of {M} mutations was

∆Ĝ◦N, {M} = ∆G◦N, anc +
∑

i∈{M}

∆∆G◦N, i ,

where ∆G◦N, anc is the stability of the ancestor and ∆∆G◦N, i is the effect
of the ith mutation in the ancestral background. For the pairwise epistatic
model, we added epistatic coefficients:

∆Ĝ◦N, {M} = ∆G◦N, anc +
∑

i∈{M}

∆∆G◦N, i +
∑

i<j∈{M}

∆∆∆G◦N, ij ,

where ∆∆∆G◦N, ij accounts for any pairwise epistasis between the mutations
i and j. We quantified this epistasis by introducing mutations i, j, and then,
i and j together. We then took the difference:

∆∆∆G◦N, ij = ∆G◦N, ij −
(

∆G◦N, anc + ∆∆G◦N, i + ∆∆G◦N, j

)
,

where ∆∆G◦N, i and ∆∆G◦N, j are the individual effects of mutations i and j,
respectively, in the ancestral background and ∆G◦N, ij is the stability of the ij
double mutant.

To extract high-order epistasis, we used the epistasis package
(https://github.com/harmslab/epistasis) (28). A genotype with L mutations is
described by 2L hierarchical epistatic coefficients (26–28, 31). We generated
all 26 binary combinations of the substitutions that accumulated between
the ancestor and most probable final sequence, calculating ∆G◦N for all 64
mutants. Because we were doing predictions starting from the ancestral
state, we used the so-called “biochemical model” that uses the ancestral
genotype as the reference state (27). SI Appendix has additional details.

ACKNOWLEDGMENTS. We thank Luke Wheeler, Tyler Starr, and Joe
Thornton as well as members of the laboratory of M.J.H. for fruitful dis-
cussions when developing these ideas. This work was funded by funds from
the University of Oregon (to Z.R.S.) and Alfred P. Sloan Fellowship FG-2015-
65336 (to M.J.H.).

1. Monod J (1974) On chance and necessity. Studies in the Philosophy of Biology, eds
Ayala FJ, Dobzhansky T (Macmillan Education, London), pp 357–375.

2. Gould SJ (1989) Wonderful Life: The Burgess Shale and the Nature of Life (Norton,
New York).

3. Morris SC (2010) Evolution: Like any other science it is predictable. Philos Trans R Soc
Lond B Biol Sci 365:133–145.

4. Harms MJ, Thornton JW (2014) Historical contingency and its biophysical basis in glu-
cocorticoid receptor evolution. Nature 512:203–207.

5. Miton CM, Tokuriki N (2016) How mutational epistasis impairs predictability in pro-
tein evolution and design. Protein Sci 25:1260–1272.
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