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Abstract
Background and purpose  We developed a machine learning model to allow early functional outcome prediction for patients 
presenting with posterior circulation (pc)-stroke based on CT-imaging and clinical data at admission. The proposed algo-
rithm utilizes quantitative information from automated multidimensional assessments of posterior circulation Acute Stroke 
Prognosis Early CT-Score (pc-ASPECTS) regions. Discriminatory power was compared to predictions based on conventional 
pc-ASPECTS ratings.
Methods  We retrospectively analyzed non-contrast CTs and clinical data of 172 pc-stroke patients. 90 days outcome was 
dichotomized into good and poor using modified Rankin Scale (mRS) cut-offs. Predictive performance was assessed for out-
come differentiation at mRS 2, 3, 4 and survival prediction (mRS ≤ 5) using random forest algorithms. Results were compared 
to conventional pc-ASPECTS and clinical parameters. Models were evaluated in a nested fivefold cross-validation approach.
Results  Receiver operating characteristic areas under the curves (ROC-AUCs) of the test sets using conventionally rated 
pc-ASPECTS reached 0.63 for mRS ≤ 4 to 0.68 for mRS ≤ 5 and 0.73 for mRS ≤ 5 to 0.85 for mRS ≤ 2 if clinical data were 
considered. Pure imaging-based machine learning classifier ROC-AUCs were lowest for mRS ≤ 4 (0.81) and highest for 
mRS ≤ 5 (0.87). The combined clinical data and machine learning-based model had the highest predictive performance with 
ROC-AUCs reaching 0.90 for mRS ≤ 2.
Conclusion  Machine learning-based evaluation of pc-ASPECTS regions predicts functional outcome of pc-stroke patients 
with higher accuracy than conventional assessments. This could optimize triage for additional diagnostics and allocation 
of best possible medical care and might allow required arrangements of the social environment at an early point of time.
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Introduction

Posterior circulation (pc) strokes are frequently associated 
with poor outcome [8, 17]. Recently reported results from 
the Basilar artery international cooperation study (BASICS) 
indicate that functional outcome may still, to a large extent, 
be dependent on the initial clinical presentation and imaging 
findings, and, to a lesser extent, on the specific therapeutic 
strategies [14, 32]. Predicting functional outcome based on 
the initial clinical and imaging findings might therefore (1) 
allow for a prognosis of the patient’s long-term functional 
status (2) optimize triage for additional MR imaging diag-
nostics and allocation of best possible medical care [36] 
and (3) facilitate required adaptations in the patient’s social 
environment including arrangements of long-term care at an 
early point of time.
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Binary quantification of early ischemic changes using the 
posterior circulation Acute Stroke Prognosis Early CT Score 
(pc-ASPECTS) was shown to predict functional outcome 
in patients with suspected pc ischemia [27, 30]. However, 
conventional binary classifications of pc-ASPECTS regions 
do not consider all information available from the imag-
ing data: prognostic value carried by changes in texture 
and small shifts of grey level distributions remains unused. 
The accuracy of conventional pc-ASPECTS ratings is also 
affected by the limited sensitivity of the human eye for sub-
tle early ischemic changes. Moreover, visual assessments 
of non-contrast CT (NCCT) images suffers from inter- and 
intra-reader variability and are often interfered by beam-
hardening artifacts in the posterior fossa [9, 27, 33].

The integration of clinical data, mainly the baseline 
National Institute of Health Stroke Scale (NIHSS) was 
shown to improve discriminatory power [16]. However, 
although being the most widely used scoring system in 
patients with acute ischemic stroke, NIHSS has weaknesses 
when applied to pc strokes partly because deficits such as 
truncal ataxia, dysphagia and diplopia—that are typical for 
pc strokes—are not assessed. This explains why patients 
with pc stroke can have a high probability of an unfavora-
ble outcome at 90 days despite relatively low NIHSS scores 
at admission [31] and underlines the need of a combined 
approach of imaging evaluation and clinical scoring [16].

We therefore propose a machine learning (ML)-based 
evaluation of multidimensional quantitative image features 
from pc-ASPECTS regions in admission NCCTs combined 
with clinical data to predict functional outcomes in patients 
with acute pc strokes.

Materials and methods

The anonymized data used for training and validation of 
algorithms that support the findings of this study are avail-
able from the corresponding author upon reasonable request.

This multi-center retrospective study was approved by 
the Ethics Committee of the University of Hamburg and the 
Hamburg Chamber of Physicians, Hamburg, Germany, and 
the Ethics Committee of the University of Muenster and the 
Westfalian Chamber of Physicians, Muenster, Germany, and 
written informed consent was waived by the institutional 
review boards. All study protocols and procedures were 
conducted in accordance with the Declaration of Helsinki.

Patient characteristics

The study cohort includes consecutive patients with sus-
pected posterior circulation ischemia admitted between 
April 1, 2010, and February 28, 2019 at two tertiary care 
stroke centers. Inclusion criteria for this study were (1) 

documented occlusion of the basilar or intracranial verte-
bral artery; (2) NCCT performed on admission within 6 h 
of symptom onset; (3) availability of modified Rankin Scale 
(mRS) after 90 days (mRS90). Patients were excluded in 
case of poor imaging quality (artifacts from movement and 
implants). In total, 172 patients met the inclusion criteria 
and were selected for the imaging-based analysis. Complete 
clinical data including NIHSS at admission were available 
for 149 patients that were selected for all models employing 
clinical data at admission.

Image acquisition

NCCT scans with head images obtained from the vertex to 
the skull base were acquired on a 128-slice dual-source CT 
scanner (Somatom Definition Flash; Siemens Healthcare 
GmbH) with tube voltage 120 kV, tube current 340 mA, 
5.0 mm slice reconstruction, < 0.5 mm in-plane resolution, 
as well as on an iCT 256™ scanner (Philips Healthcare, 
Best, The Netherlands) with tube voltage 120 kV, tube cur-
rent 300 mA, 4.0 mm slice reconstruction and < 0.5 mm in-
plane resolution.

Visual pc‑ASPECTS rating

For all admission NCCT scans, pc-ASPECTS was conven-
tionally assessed by two Neuroradiologists in a consensus 
rating approach (UH, PS: 8 years of clinical experience in 
diagnostic neuroradiology in acute care full-service hospi-
tals). pc-ASPECTS allots the posterior circulation 10 points. 
One point each is subtracted for early ischemic changes on 
NCCT in left or right thalamus, cerebellum, or posterior cer-
ebral artery territory, respectively, and two points each for 
early ischemic changes in any part of the midbrain or pons. 
A pc-ASPECTS score of 10 indicates absence of visible 
posterior circulation ischemia, a score of 0 indicates early 
ischemic changes in all pc-ASPECTS territories [7, 27].

Image pre‑processing and pc‑ASPECTS feature 
extraction

To (1) extract information from standardized pc-ASPECTS 
maps and (2) reduce potential bias in quantitative texture 
analysis, all NCCT images were registered to a custom MNI 
(Montreal Neurological Institute)-152 CT reference atlas 
[10] using two-step affine algorithms. Registration success 
was visually verified by two Neuroradiologists (UH, PS). 
Standardized pc-ASPECTS area maps (thalamus left/right 
(l/r), pons, midbrain, territory of the posterior cerebral artery 
(PCA) l/r, cerebellum l/r) were derived as follows: First, an 
experienced Neuroradiologist (UH) performed manual seg-
mentations of the respective regions on the original NCCT 
images of 63 healthy subjects using Analyze 11.0 Software 
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(Biomedical Imaging Resource, Mayo Clinic, Rochester, 
MN) [3]. Second, manual segmentations were transformed 
into standard space by utilizing transformation matrices 
obtained from image registration to the custom MNI-152 
CT reference atlas [10]. Third, all segmentations were added 
and final standard maps were defined by applying 50% cut-
off points.

Quantitative image features were extracted using the 
PyRadiomics Python package v2.1.0 [35], proposed default 
settings were used for the analysis. Extracted features 
comprised 252 first-order features (18 based on unfiltered 
images, 144 wavelet decompositions, 90 log-sigma Lapla-
cian of Gaussian filtered images) and 966 texture features 
(82 based on unfiltered images, 544 wavelet decompositions, 
340 log-sigma Laplacian of Gaussian filtered images). In 
total, 1218 quantitative image features were extracted from 
each of the 1376 included pc-ASPECTS areas.

Statistical analysis

Univariate logistic regression analysis was conducted based 
on the entire dataset to investigate conventional odds ratios 
of the clinical predictors (NIHSS at admission, pc-ASPECTS 
and age) for good outcome (mRS90 ≤ 2). Using fivefold 
cross validation, univariate (conventional pc-ASPECTS rat-
ings) and multivariate logistic regression models (conven-
tional pc-ASPECTS ratings, NIHSS at admission and age) 
were trained to predict functional outcome at dichotomized 
mRS90 levels of ≤ 2, ≤ 3, ≤ 4 and ≤ 5 (survival).

Imaging-based machine learning prediction of dichoto-
mized mRS90 levels was evaluated using Random Forest 
algorithms (Python scikit-learn environment v0.20.3 [24]) 
in a fivefold nested cross validation approach [15]. Random 
forest classifiers have a comparably low tendency to overfit 
[4] and support classification tasks also for data sets com-
prising numerous and heterogeneous predictors. For each 
study patient, quantitative image features of the eight pc-
ASPECTS regions were evaluated for their ability to predict 
functional outcome (9744 image feature in total per patient). 
Hyperparameter tuning of the random forest classifiers (total 
number of features, number of trees, maximum depth of the 
tree, minimum number of samples to split an internal node, 
number of features considered for splitting (mtry), minimum 
number of samples at leaf node) was conducted using grid 
search algorithms on each training data set within the nested 
cross-validation layers. Parameters at initiation were set to 
scikit-learn default values. Selection of features with the 
highest predictive value was conducted separately for each 
training data set of the fivefold cross-validation sample split 
according to Gini impurity measures [18]. For the integrated 
model, predicted probabilities for good outcome of the logis-
tic regression model using clinical data and of the imaging-
based machine learning classifier were averaged.

Receiver operating characteristic (ROC) curves were 
used to determine the optimal cut-off values according to 
Youden’s index. For predictive models, ROC curves were 
generated from results of all cross-validation sets. Confi-
dence intervals (CI) for sensitivities and specificities were 
bootstrapped (2000 replicates, pROC v1.15 R-package [29]). 
Bonferroni adjustments were applied to control for alpha 
error inflation. Furthermore, the classifiers were analyzed 
using sensitivity, specificity, accuracy, maximum Youden 
Index, positive predictive value, negative predictive value 
(ThresholdROC v2.8 R-package) and Matthews correlation 
coefficient (MCC) [20] metrics (psychometric v.2.2. R-pack-
age). MCC evaluates all fields of the confusion matrix and 
is considered as a favorable measure for unbiased compar-
isons of binary classifiers [25]. Due to the relatively low 
class imbalance for all mRS90 cut-off values (event rates 
for mRS90 ≤ 2: 33%; ≤ 3: 40%; ≤ 4: 56%; ≤ 5: 74%), no addi-
tional data augmentation for reducing bias from class imbal-
ance was performed.

A graphical flow chart of the proposed ML-based algo-
rithm for prediction of the clinical outcome is depicted in 
Fig. 1.

Results

Our analysis included NCCT images of 1376 pc-ASPECTS 
regions extracted from 172 patients (77 females, median age 
74 years, interquartile range (IQR): 61–79 years) with acute 
stroke in the posterior circulation. NIHSS assessments were 
available for 149 patients. Median NIHSS score at admission 
was 15 (IQR 5–42), 94 patients (54.7%) underwent success-
ful recanalization with TICI (thrombolysis in cerebral infarc-
tions) score ≥ 2b, 79 patients (45.9%) were treated with intra-
venous thrombolysis (Table 1). 57 patients (33.1%) reached 
a favorable outcome of mRS ≤ 2 at day 90.

Logistic regression analysis

Logistic regression for mRS ≤ 2 (good outcome) of the con-
ventional predictors (conventional pc-ASPECTS, NIHSS 
at admission and age) on the entire dataset showed signifi-
cant coefficients for pc-ASPECTS and NIHSS at admission 
(P-value < 0.05), age was not significantly associated with 
good outcome (Table 2). Optimal cut-off values (Youden’s 
index) indicate that patients with pc-ASPECTS ≥ 8 have a 
significantly higher probability to achieve mRS ≤ 2 with 
odds ratio of 11.07 (95% CI [2.55; 48.02]). Also patients 
with NIHSS at admission < 10 have a significantly higher 
chance of good outcome with odds ratio of 16.17 (95% CI 
[7.01; 37.32]).
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Predictive models for functional outcome

Areas under the receiver operating characteristic curves 
(ROC AUCs) of the test sets using conventionally rated 
pc-ASPECTS in an univariate logistic regression reached 
0.63 (95% CI [0.59; 0.67]) for mRS ≤ 4 to 0.68 (95% CI 

[0.63; 0.72]) for mRS ≤ 5. Pure imaging-based machine 
learning classifier ROC AUCs were lowest for mRS ≤ 4 
with 0.81 (95% CI [0.78; 0.84]) and highest for mRS ≤ 5 
with 0.87 (95% CI [0.85; 0.90]). Employing multidimen-
sional conventional predictors (conventional pc-ASPECTS, 
NIHSS at admission and age) yielded ROC AUCs of 0.73 

Fig. 1   Schematic overview of proposed imaging-based outcome prediction pipeline. CV cross validation set, mRS modified Rankin Scale, pc-
ASPECTS posterior circulation Acute Stroke Prognosis Early CT Score, ROC receiver-operating-characteristic

Table 1   Patient characteristics

Demographic and clinical characteristics of the study cohort
IQR interquartile range, mRS modified Rankin Scale, NIHSS National Institute of Health Stroke Scale, pc-ASPECTS posterior circulation Acute 
Stroke Prognosis Early CT Score, TICI thrombolysis in cerebral infarctions

Total number of 
patients n = 172

mRS at 90 days ≤ 2 
n = 57 (33%)

mRS at 90 days > 2 
n = 115 (67%)

p value

Age in years, median (IQR) 74 (61–79) 72 (60–78) 74 (62–80) 0.271
Female sex, n (%) 77 (44.77%) 19 (33.33%) 58 (50.43%) 0.031
Hypertension, n (%) 122 (70.93%) 36 (63.16%) 86 (74.78%) 0.218
Diabetes mellitus, n (%) 44 (25.58%) 13 (22.81%) 31 (26.96%) 0,691
Hyperlipidemia, n (%) 46 (26.74%) 18 (31.58%) 28 (24.35%) 0.266
Atrial fibrillation, n (%) 62 (36.01%) 22 (38.60%) 40 (34.78%) 0.512
Intravenous thrombolysis, n (%) 79 (45.93%) 21 (36.84%) 58 (50.43%) 0.064
Mechanical thrombectomy mTICI 2b/3, n (%) 94 (54.65%) 27 (47.37%) 67 (58.26%) 0.001
Admission NIHSS, median (IQR) n = 23 missings 15 (5–42) 3 (2–10) 30 (13–42) < 0.001
NIHSS at 24 h, median (IQR) n = 23 missings 6 (2–42) 2 (1–4) 36 (15–42) < 0.001
Discharge NIHSS, median (IQR) n = 23 missings 3 (2–17) 2 (1–3) 17 (10–29) < 0.001
mRS at 90 days, median (IQR) 4 (1–6) 1 (0–1) 5 (4–6) < 0.001
pc-ASPECTS, median (IQR) 9 (8–10) 9 (9–10) 9 (7–9) < 0.001
TICI, median (IQR) 3 (2–3) 3 (2–3) 2 (2–3) < 0.001
Time from onset to imaging in hours, median (IQR) 4 (1.45–10) 6 (1.75–19) 3.20 (1.40–6) 0.024
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(95% CI [0.69; 0.77]) for mRS ≤ 5 (lowest) to 0.85 (95% 
CI [0.82; 0.88]) for mRS ≤ 2. Overall, highest predictive 
performance was observed for the combined clinical data 
and machine learning-based model with ROC AUCs of 0.83 
(95% CI [0.80; 0.87]) for mRS ≤ 5 (lowest) to 0.90 (95% 

CI [0.88; 0.92]) for mRS ≤ 2 (highest) (Figs. 2 and 3 and 
Table 3). Results show that the predictive performance of 
machine learning-based evaluation of quantitative image 
features was higher compared to the predictive value of 
conventional pc-ASPECTS metrics (p values < 0.05). If 

Table 2   Logistic regression of conventional predictors for mRS90 ≤ 2 (good outcome)

Logistic regression of conventional clinical information for mRS 90 days ≤ 2 (good outcome). Optimal cut-off values were determined using 
Receiver-Operating-Characteristic curve analysis Youden’s index. Results are based on 149 patients from 2 different centers.
mRS modified Rankin Scale, NIHSS National Institute of Health Stroke Scale, pc-ASPECTS posterior circulation Acute Stroke Prognosis Early 
CT Score

Regression coef-
ficient

Standard error P-value Odds ratio 95% CI lower 95% CI upper

pc-ASPECTS 0.48 0.14 < 0.001 1.62 1.23 2.14
Intercept − 4.87 1.27 < 0.001 0.01
pc-ASPECTS ≥ 8 2.40 0.75 < 0.001 11.07 2.55 48.02
Intercept − 2.80 0.73 < 0.001 0.06
NIHSS at admission − 0.10 0.02 < 0.001 0.90 0.87 0.94
Intercept 1.07 0.31 < 0.001 2.91
NIHSS at admission < 10 2.78 0.43 < 0.001 16.17 7.01 37.32
Intercept − 1.71 0.28 < 0.001 0.18
Age − 0.01 0.01 0.38 0.99 0.97 1.01
Intercept − 0.04 0.77 0.96 0.96

Fig. 2   Imaging-based prediction of outcome in patients with posterior 
circulation stroke at admission. ROC curves, AUCs and maximum 
Youden index at different mRS cut-off values for respective binary 
classification tasks. A Univariate logistic regression models employ-
ing conventional pc-ASPECTS ratings; B pure imaging-based ran-
dom forest machine learning algorithms. Results are based on nested 

5-fold cross validation of 172 patients from 2 different centers. Bon-
ferroni corrections have been applied to account for alpha spending 
error. CI confidence interval, d days, mRS modified Rankin Scale, 
pc-ASPECTS posterior circulation Acute Stroke Prognosis Early CT 
Score, ROC AUC​ receiver-operating-characteristic area-under-the-
curve
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combined with additional clinical data (NIHSS at admis-
sion and age), the conventional prediction model achieved 
slightly better metrics for differentiating lower mRS values 
(≤ 2 and ≤ 3), however, these differences were not signifi-
cant. For the mRS ≤ 4 and ≤ 5 classification tasks, quan-
titative image features-based algorithms reached higher 
performance with significant differences in all metrics for 
mRS ≤ 5 (survival). The integrated model employing infor-
mation from conventional pc-ASPECTS ratings, clinical 
data and machine learning-based evaluation of quantitative 
image features showed superior results versus conventional 
pc-ASPECTS and clinical data by trend for all mRS cut-
offs. Improvements were observed for ROC AUC in mRS ≤ 2 
prediction (ROC AUC = 0.90 vs. 0.85, p value < 0.05) and 
for all metrics in mRS ≤ 5 prediction (ROC AUC = 0.83 vs. 
0.73, p value < 0.05). Feature importance analyses of the 
mean top 300 predictors of all training data sets show that 
pc-ASPECTS regions with the highest predictive power are 
cerebellum (30%), midbrain (29%) and thalamus (27%). The 
largest share of predictive value was mainly derived from 
wavelet (40%) and log-sigma (38%) filtered images. Unfil-
tered original images contributed 22% to total predictive 

power (Fig. 4). Within feature classes, texture metrics and 
first order statistics were used at equal proportions.

Discussion

In this study, we developed a machine learning approach 
for predicting functional outcome of patients with poste-
rior circulation stroke based on multidimensional quantita-
tive image analysis of pc-ASPECTS regions in admission 
NCCTs and basic clinical data available at admission. The 
study is based on a cohort of 172 patients, of which 57 
(33.1%) achieved a favorable outcome of mRS ≤ 2 at day 
90. This corresponds to the results of the BASIC trial with 
a recently reported total share of 32.7% for mRS ≤ 2 at day 
90 (35.1% in the intervention arm vs. 30.1% in the control 
arm) in patients with basilar artery occlusions [32].

Conventional logistic regression and cut-off point opti-
mization confirmed that high pc-ASPECTS (optimal cut-
off at pc-ASPECTS ≥ 8) and low NIHSS at admission (opti-
mal cut-off at NIHSS < 10) are significant and independent 

Fig. 3   Imaging and clinical data-based prediction of outcome in 
patients with posterior circulation stroke at admission. ROC curves, 
AUCs and maximum Youden index at different mRS cut-off values 
for respective binary classification tasks. A Multivariate logistic 
regression models employing conventional predictors of outcome 
(conventional pc-ASPECTS ratings, NIHSS at admission, age) and 
B Combined models utilizing information derived from conventional 
predictors and machine learning-based image analysis. Bonferroni 

corrections have been applied to account for alpha spending error. 
Results are based on nested five-fold cross validation of 149 patients 
from two different centers. CI confidence interval, d days, mRS modi-
fied Rankin Scale, NIHSS National Institutes of Health Stroke Scale, 
pc-ASPECTS posterior circulation Acute Stroke Prognosis Early CT 
Score, ROC AUC​ receiver-operating-characteristic area under the 
curve
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predictors of good outcome. These results are in line with 
the findings of other studies [2, 12].

The proposed ML-approach employing quantitative 
image features provided high discriminatory accuracy 
between good and poor functional outcome at different mRS 
thresholds; observed performance metrics were superior or 
equal to conventional clinical and imaging-based assess-
ments. For predicting mRS ≤ 2, ROC AUC, sensitivity 
and specificity were 0.90, 81% and 85% for the integrated 
machine learning classifier; 0.85, 80% and 83% for conven-
tional pc-ASPECTS with clinical data and 0.64, 68% and 
57% for conventional pc-ASPECTS alone. Our analysis also 
showed that employing multidimensional clinical predictors 

(conventional pc-ASPECTS, NIHSS at admission and age) 
improved accuracy with a statistically significant increase in 
ROC AUC compared to using conventional pc-ASPECTS 
alone. However, even the solely imaging-based machine 
learning approach achieved higher discriminatory power 
than conventional pc-ASPECTS.

Earlier studies have investigated the predictive power 
of conventional pc-ASPECTS ratings based on different 
imaging modalities and clinical parameters [2, 16, 19, 21, 
30]. Lin et al. [16] report ROC AUC for pc-ASPECTS and 
NIHSS at admission of 0.69 and of 0.77 if both parameters 
are combined. Other works focused on outcome prediction 
after endovascular therapy and show ROC AUC of 0.74 

Table 3   Classification performance of imaging-based outcome prediction

Prediction of outcome in patients with posterior circulation stroke at admission: mRS cut-off values for classification tasks, number of patients 
with respective outcome (positive class) and performance metrics of logistic regression models employing conventional pc-ASPETCS ratings, 
pure imaging-based machine learning algorithms, multivariate logistic regression models employing conventional predictors of outcome (con-
ventional pc-ASPECTS ratings, NIHSS at admission, age) and combined models utilizing information derived from conventional predictors and 
machine learning-based image analysis. Metrics are shown at Youden index maximum cut-off points. Results are based on nested fivefold cross 
validation of 172 (149) patients from two different centers. Bonferroni corrections have been applied to account for alpha spending error
CI confidence interval, MCC Matthews correlation coefficient, mRS modified Rankin Scale, pc-ASPECTS posterior circulation Acute Stroke 
Prognosis Early CT Score, ROC AUC​ receiver-operating-characteristic area under the curve
*p value combined model vs. pc-ASPECTS and clinical data model < 0.05
† p value imaging-based machine learning vs. pc-ASPECTS and clinical data model < 0.05

Prediction mRS Patients (n; %) Classifier model ROC AUC [95% CI] MCC maximum 
[95% CI]

Youden index [95% 
CI]

Accuracy [95% CI]

mRS ≤ 2 57/172 (33%) pc-ASPECTS log 
reg

0.64 [0.60; 0.68] 0.21 [0.18; 0.24] 26% [18%; 33%] 65% [62%; 68%]

57/172 (33%) Img-based ML 0.83 [0.80; 0.86] 0.52 [0.47; 0.58] 52% [46%; 58%] 76% [73%; 79%]
53/149 (31%) pc-ASPECTS and 

clin. data log reg
0.85 [0.82; 0.88] 0.62 [0.57; 0.66] 63% [57%; 69%] 82% [79%; 85%]

53/149 (31%) Img-based and clin. 
data ML

0.90* [0.88; 0.92] 0.65 [0.60; 0.69] 66% [60%; 72%] 83% [81%; 86%]

mRS ≤ 3 69/172 (40%) pc-ASPECTS log 
reg

0.65 [0.61; 0.68] 0.36 [0.23; 0.30] 29% [23%; 35%] 62% [58%; 65%]

69/172 (40%) Img-based ML 0.82 [0.79; 0.85] 0.52 [0.46; 0.56] 52% [47%; 58%] 76% [73%; 79%]
65/149 (38%) pc-ASPECTS and 

clin. data log reg
0.84 [0.81; 0.87] 0.60 [0.55; 0.65] 60% [54%; 66%] 80% [77%; 83%]

65/149 (38%) Img-based and clin. 
data ML

0.88 [0.85; 0.91] 0.63 [0.59; 0.67] 64% [58%; 69%] 82% [79%; 84%]

mRS ≤ 4 96/172 (56%) pc-ASPECTS log 
reg

0.63 [0.59; 0.67] 0.25 [0.18; 0.31] 23% [16%; 29%] 62% [59%; 65%]

96/172 (56%) Img-based ML 0.81 [0.78; 0.84] 0.48 [0.42; 0.53] 48% [42%; 54%] 74% [71%; 77%]
87/149 (51%) pc-ASPECTS and 

clin. data log reg
0.78 [0.75; 0.81] 0.41 [0.35; 0.46] 42% [35%; 48%] 71% [67%; 74%]

87/149 (51%) Img-based and clin. 
data ML

0.84* [0.81; 0.87] 0.51* [0.46; 0.56] 51% [45%; 57%] 75% [72%; 78%]

mRS ≤ 5 127/172 (74%) pc-ASPECTS log 
reg

0.68 [0.63; 0.72] 0.3 [0.24; 0.36] 33% [26%; 40%] 69% [65%; 72%]

127/172 (74%) Img-based ML 0.87† [0.85; 0.90] 0.56† [0.51; 0.60] 61%† [55%; 67%] 80%† [77%; 82%]
115/149 (67%) pc-ASPECTS and 

clin. data log reg
0.73 [0.69; 0.77] 0.28 [0.21; 0.35] 34% [26%; 41%] 64% [60%; 67%]

115/149 (67%) Img-based and clin. 
data ML

0.83* [0.80; 0.87] 0.49* [0.43; 0.54] 50%* [42%; 57%] 75%* [72%; 78%]
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for NIHSS at admission and 0.72 for pc-ASPECTS [21]. 
Based on CT perfusion imaging parameters, pc-ASPECTS 
ROC AUC was reported to achieve 0.64 (mean transit time) 
to 0.82 (cerebral blood volume) [2]. pc-ASPECTS based 
on DWI was shown to be a predictor of clinical outcome 
with ROC AUC of 0.82 [19]. To date, all published stud-
ies employ conventional regression analysis. None of the 
published analyses investigated the discriminatory power of 
ML-based quantitative image assessment in a train, valida-
tion and test approach.

Our study has the following limitations: first, general-
izability might be limited due to the retrospective nature 
with inherent selection bias and its relatively small sample 
size. An expansion of sample size in a prospective study 
design would certainly contribute to further improving 
generalizability of results. However, low variability of 
results across different validation sets suggests sufficient 
robustness for assessing general feasibility and limita-
tions of the approach. Second, differences in recanaliza-
tion treatment possibly have influenced patients´ outcome. 
However, our results were confirmed throughout the whole 
patient collective despite different recanalization results 
even though our approach did include only variables avail-
able at admission. This observation indicates that clinical 
and imaging data at admission might already include infor-
mation regarding probabilities of specific treatment strate-
gies (e.g., decision for mechanical thrombectomy based 
on age, NIHSS, pc-ASPECTS). Furthermore, our findings 
are supported by the results of the BASICS trial that did 
not report a significant difference in functional outcome 
for patients treated with endovascular therapy plus best 
medical management vs. best medical management alone 
[32]. Third, limitations typically associated with quantita-
tive radiomics-based image analysis and classification may 
compromise generalizability of the results [1, 5, 6, 11, 13]. 

These limitations include differences in image acquisition 
settings, for example size of the field of view or gantry tilt, 
and under- or overfitting of machine learning algorithms. 
Bias of these factors was minimized through employment 
of standardized NCCT scans and the application of Ran-
dom Forest algorithms that are comparably stable with 
regards to overfitting. The risk of overfitting was also 
reduced by evaluating multiple different models in a nested 
cross-validation approach. Due to standardized and cali-
brated quantitative imaging parameters and signal inten-
sity processing of CT scanners we assume neglectable bias 
on classifier performance in a generalized setting. Fourth, 
with NCCT being the most widely performed brain-imag-
ing technique in acute pc stroke settings [9], our analysis 
did not integrate CT angiography, CT perfusion or MR 
imaging. An extension to these imaging modalities could 
have further improved the results [22, 26–28] as NCCT 
images only offer limited sensitivity for detecting ischemia 
compared to e.g. diffusion-weighted imaging [34]. How-
ever, both scores—conventional ASPECTS (Alberta 
Stroke Program Early CT Score) for anterior circulation 
and pc-ASPECTS—are originally based on evaluations of 
acute NCCT scans. NCCT scans at admission are fast and 
the technique is available in most hospitals. Furthermore, 
NCCT imaging is a fundamental part of most standard-
of-care stroke protocols. Fifth, the acquisition resolution 
of NCCT scans was limited to < 5 mm in slice thickness. 
The utilization of higher resolution images could improve 
classification performance. Sixth, the manual definition 
of pc-ASPECTS areas still implies a certain degree of 
observer-dependence within the machine learning process. 
To minimize its influence, we derived standard maps from 
delineations obtained from 63 healthy subjects. Further, 
it was shown that radiomic features are comparably stable 
with regards to variations in segmentations [23, 37].

Fig. 4   Predictive value of quantitative image features. Pie charts show regional distribution of features and applied filters in utilized top-300 pre-
dictors. Results are based on nested five-fold cross validation of 172 patients from two different centers. PCA: Posterior cerebral artery
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Conclusion

We developed a machine-learning based classifier that pre-
dicts functional outcome of acute posterior circulation stroke 
patients based on quantitative multidimensional analysis of 
pc-ASPECTS regions. We observed higher classification 
performance metrics than achieved in conventional clini-
cal and imaging-based assessments. The proposed algo-
rithm might therefore (1) allow for an early prognosis of the 
patient’s long-term functional status (2) optimize triage for 
additional MR imaging diagnostics and allocation of best 
possible medical care [36] and (3) could facilitate required 
arrangements of the patient’s social environment at an early 
point of time.
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