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Abstract

Background: Massively parallel sequencing studies have led to the identification of a large number of mutations
present in a minority of cancers of a given site. Hence, methods to identify the likely pathogenic mutations that are
worth exploring experimentally and clinically are required. We sought to compare the performance of 15 mutation
effect prediction algorithms and their agreement. As a hypothesis-generating aim, we sought to define whether
combinations of prediction algorithms would improve the functional effect predictions of specific mutations.

Results: Literature and database mining of single nucleotide variants (SNVs) affecting 15 cancer genes was
performed to identify mutations supported by functional evidence or hereditary disease association to be classified
either as non-neutral (n = 849) or neutral (n = 140) with respect to their impact on protein function. These SNVs
were employed to test the performance of 15 mutation effect prediction algorithms. The accuracy of the prediction
algorithms varies considerably. Although all algorithms perform consistently well in terms of positive predictive
value, their negative predictive value varies substantially. Cancer-specific mutation effect predictors display
no-to-almost perfect agreement in their predictions of these SNVs, whereas the non-cancer-specific predictors
showed no-to-moderate agreement. Combinations of predictors modestly improve accuracy and significantly
improve negative predictive values.

Conclusions: The information provided by mutation effect predictors is not equivalent. No algorithm is able to
predict sufficiently accurately SNVs that should be taken forward for experimental or clinical testing. Combining
algorithms aggregates orthogonal information and may result in improvements in the negative predictive value of
mutation effect predictions.
Background
Massively parallel sequencing studies have demonstrated
that tumors can be regarded as genetically heterogeneous
populations of individual clones that accumulate muta-
tions during the process of tumorigenesis and tumor pro-
gression [1]. These mutations, likely the result of genetic
instability, may confer a selective growth advantage and
be causally implicated in carcinogenesis (that is, driver
mutations), or are either selectively neutral (that is,
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passenger mutations) or deleterious for the cancer cells
and eventually purged [2,3].
Recent advances in nucleic acid sequencing technolo-

gies now provide the means to explore whole genomes
at base-pair resolution [4]. The Cancer Genome Atlas
(TCGA), the International Cancer Genome Consortium
(ICGC) and endeavors led by individual investigators
have demonstrated that the repertoire of genes affected
by highly recurrent mutations is limited and that there is
a large collection of genes affected by mutations in 1%
to 2% of cancers from a given anatomical site [2,4,5]. Al-
though defining driver mutations based on the presence
of hotspot mutations and recurrence rates has resulted
in the identification of bona fide oncogenes and tumor
suppressor genes (TSGs) and a partial repertoire of genes
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significantly mutated in cancer [6-8], this strategy cannot
be readily applied to the study of the genes affected by
mutations in a minority of tumors of a given anatomical
site. In fact, recent studies have demonstrated that some
of these mutations are of functional significance and likely
constitute bona fide drivers, therapeutic targets, or mecha-
nisms of therapy resistance (for example, ERBB2 and
ESR1 activating mutations in breast cancer) [9-12].
Defining whether a non-hotspot mutation is biologic-

ally and/or clinically relevant is by no means a trivial
task, in particular for missense mutations, and often la-
borious functional assays need to be performed [9-12].
Given the vast number of mutations being identified by
massively parallel sequencing efforts, finding ways to
prioritize which mutations should be subjected to func-
tional analysis is crucial. Computational methods to dis-
cern which somatic mutations likely result in amino acid
changes that could have biologic implications have been
developed [13]. Most of these algorithms rely on the as-
sumption that protein sequences derived from existing
living organisms have survived natural selection [14],
and many also utilize sequence, structural information,
and/or protein annotation (that is, whether a mutation
affects an active site, ligand binding domain, disulfide
bridges, or protein-protein interactions) to differentiate
mutations that result in no or negligible impact on protein
function from those that are likely pathogenic. Prediction
is feasible because mutations that affect protein function
tend to occur at evolutionarily conserved sites [15]. Ex-
amples of such computational prediction methods
(Additional file 1) are Sorted Intolerant From Tolerant
(SIFT) [16], PolyPhen-2 [17], Mutation Assessor [18],
CONsensus DELeteriousness score of missense muta-
tions (Condel) [19], Cancer-specific High-throughput
Annotation of Somatic Mutations (CHASM) [20], Protein
Variation Effect Analyzer (PROVEAN) [14], Functional
Analysis Through Hidden Markov Models (FATHMM)
[21], Variant Effect Scoring Tool (VEST) [22], Mutation-
Taster [23], Cancer Driver Annotation (CanDrA) [24],
and others [25]. Additionally, CHASM, FATHMM, and
CanDrA were developed explicitly to differentiate muta-
tions that are likely to constitute cancer drivers from pas-
sengers. In particular, FATHMM is a species-independent
method, which incorporates pathogenicity weights and is
capable of recognizing protein domains (species-inde-
pendent/evolutionary units) sensitive to missense muta-
tions [21]. CHASM [20] is a machine-learning system
trained using the information from the Catalogue Of
Somatic Mutations In Cancer (COSMIC) [26] and other
cancer-related databases, and utilizes a set of 49 predictive
features, including the frequency of a given missense
change type in COSMIC. Cancer-Related Analysis of
VAriants Toolkit (CRAVAT) is a web-based application
for CHASM that provides a simple interface to prioritize
genes and variants important for specific cancer tissue
types [22]. CanDrA is a support vector machine method
that renders predictions from a set of 95 features and
scores computed by 10 other prediction algorithms [24].
While most of these predictors are single/independent
predictors, Condel and CanDrA make use of scores gener-
ated by other algorithms and, therefore, can be considered
meta-predictors (Additional file 1).
These predictors provide a fast and inexpensive way to

define functional annotation and to predict the effects of
mutations, and could theoretically be employed to assist
in the selection of mutations that would be worth ex-
ploring experimentally and clinically. Different predic-
tors have been designed based on different algorithms
(Additional file 1) and, most importantly, were trained
using different sets of functional and neutral mutations.
As a consequence of the differences in the underlying
methodology, these predictors often return dissimilar or
even contradictory results [27]. Therefore, we sought to
benchmark the performance of 15 mutation effect pre-
diction algorithms comprehensively using a set of mis-
sense mutations whose functional effects have been
experimentally validated and/or that have been shown to
result in early onset breast and ovarian cancer syndrome,
Li-Fraumeni syndrome or Li-Fraumeni-like syndrome. To
generate a list of neutral and non-neutral mutations, we
rigorously compiled a set of mutations in bona fide onco-
genes, recently described cancer genes and bona fideTSGs
by mining the literature and mutation databases (see
Methods) [28-30]. As a hypothesis-generating aim and
using our ‘gold standard’ list of validated mutations, we
sought to define whether the mutation effect predictions
made by combinations of algorithms would outperform
those made by individual predictors or meta-predictors.

Results
Categorization of mutations based on functional evidence
We included known missense mutations in six bona fide
oncogenes (BRAF, KIT, PIK3CA, KRAS, EGFR, ERRB2), six
recently described cancer genes (ESR1, DICER1, MYOD1,
IDH1, IDH2, SF3B1) and three bona fide TSGs (TP53,
BRCA1, BRCA2) in this study. We next performed an ex-
haustive search in the literature and/or existing databases
to gather functional evidence for each of the 3,706 muta-
tions compiled for the 15 genes (see Methods; Additional
file 2). Given that PolyPhen-2, MutationTaster, CanDrA,
and Condel can only define the potential functional impact
of single nucleotide variants (SNVs), dinucleotide and tri-
nucleotide changes were excluded from this study. The
final dataset employed consists of 3,591 SNVs (Table 1;
Additional file 2).
SNVs with experimentally validated effects on the target

protein function or proven to be causative of Li-Fraumeni
syndrome, Li-Fraumeni-like syndrome, or early onset breast



Table 1 Single nucleotide variants included in this study
stratified according to the evidence supporting their
impact on protein function

Functional categories

Gene Total SNVs (n) Neutral (n) Non-neutral (n) Uncertain (n)

BRAF 54 0 23 31

BRCA1 505 61 20 424

BRCA2 837 50 12 775

DICER1 81 0 11 70

EGFR 131 0 33 98

ERBB2 75 5 33 37

ESR1 31 0 7 24

IDH1 19 0 1 18

IDH2 15 0 3 12

KIT 89 1 24 64

KRAS 41 0 25 16

MYOD1 11 0 1 10

PIK3CA 139 1 31 107

SF3B1 53 0 7 46

TP53 1,510 22 618 870

Total 3,591 140 849 2,602

A total of 3,591 single nucleotide variants (SNVs) in six bona fide oncogenes,
six new cancer genes and three bona fide tumor suppressor genes were
assessed for the evidence supporting a functional role for each of the
mutations. These SNVs were classified as non-neutral, neutral or uncertain
based on direct experimental/functional data in the literature and/or on the
basis of causation of Li-Fraumeni syndrome and Li-Fraumeni-like syndrome
(for TP53) or early onset breast and ovarian cancer syndrome (for BRCA1 and
BRCA2), as recorded in dedicated mutation databases [28-30]. For a detailed
list, see Additional file 2.
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and ovarian cancer syndrome were considered non-neutral,
those that have been experimentally validated as non-
functional or proven not to be causative of Li-Fraumeni
syndrome, Li-Fraumeni-like syndrome, and early onset
breast and ovarian cancer syndrome as neutral, and
those without definitive experimental validation or con-
sidered germline variants of unknown significance were
considered uncertain (see Methods).
Using these criteria, 849 SNVs were categorized as non-

neutral, 140 SNVs were assigned to the neutral category,
and the remaining 2,602 were regarded as uncertain
(Table 1; Additional file 2). Of the neutral and non-neutral
mutations (n = 989), we collected a median of 28.5 SNVs
(range, 23 to 38) for the bona fide oncogenes, a median of
five SNVs (range, 1 to 11) for the new cancer genes, and a
median of 81 SNVs (range, 62 to 640) for the bona fide
TSGs (Table 1).

Agreement between mutation effect prediction algorithms
We evaluated 11 single/independent prediction algorithms,
namely CHASM (breast), CHASM (lung), CHASM (melan-
oma) [20], FATHMM (cancer), FATHMM (missense) [21],
Mutation Assessor [18], MutationTaster [23], PolyPhen-2
[17], PROVEAN [14], SIFT [16], and VEST [22], and four
meta-predictors, namely CanDrA (breast), CanDrA (lung),
CanDrA (melanoma) [24], and Condel [19] using the
3,591 SNVs compiled (Additional files 1 and 2). These
15 algorithms returned predictions that were strikingly
distinct from one another (Table 2). For instance, VEST
predicted 2,465 SNVs to be ‘functional’ and 1,126 to be
‘neutral’, whereas PROVEAN predicted that 1,630 SNVs
would be ‘deleterious’ and 1,961 would be ‘neutral’;
these discrepancies were also observed when the other
mutation effect prediction algorithms were employed. It
should be noted that CanDrA appears to be gene- and
tissue-specific, as all but one TP53 SNVs were predicted
to be ‘Drivers’ by all CanDrA algorithms (that is, CanDrA
breast/lung/melanoma), whereas all BRCA1 and BRCA2
SNVs were predicted to be ‘Drivers’ by CanDrA (breast)
but almost exclusively ‘Passengers/No-call’ by CanDrA
(lung/melanoma) (Additional file 2). To allow comparison
between predictors, we converted the calls made by each
predictor into ‘neutral’ or ‘non-neutral’ (see Methods).
To evaluate the inter-rater agreement between predic-

tion methods, we performed unsupervised clustering of
the calls made for all 3,591 SNVs by each predictor and
calculated pairwise unweighted Cohen’s Kappa coefficients
for each pair of predictors. Unsupervised clustering of the
results of the mutation effect prediction algorithms re-
vealed two main groups with an additional outlier CanDrA
(breast) (Figure 1A). One of the clusters (referred to as
‘Cluster 1’) contained all but one of the cancer-specific
predictors, namely CHASM (breast), CHASM (lung),
CHASM (melanoma), FATHMM (cancer), CanDrA (lung)
and CanDrA (melanoma), and the non-cancer-specific
predictor FATHMM (missense) and its related meta-
predictor Condel (Figure 1A; Additional file 1). Their
pairwise unweighted Kappa coefficients showed fair-to-
almost perfect agreement (median unweighted κ = 0.5679,
range κ = 0.3861 to 0.9004; Figure 1B; Additional file 3).
CanDrA (breast) was the sole cancer-specific predictor
that did not belong to this cluster. The best agreement
within this group was between CHASM (breast) and
CHASM (lung) (κ = 0.9004), which is not surprising con-
sidering that they share the underlying prediction engine.
The second cluster (referred to as ‘Cluster 2’) was com-
posed of non-cancer-specific mutation effect prediction
algorithms, namely Mutation Assessor, MutationTaster,
PolyPhen-2, PROVEAN, SIFT, and VEST (Figure 1A).
The pairwise agreement between these predictors ranged
from fair to moderate (median unweighted κ = 0.4347,
range κ = 0.3355 to 0.5662, Figure 1B; Additional file 3).
The modest agreement between these predictors was
surprising, given that conservation is a feature employed
by all algorithms (Additional file 1), and the sole feature
employed by Mutation Assessor and SIFT [27]. Overall,
the agreement between predictors from distinct clusters



Table 2 Predictions of 3,591 functionally validated single nucleotide variants by 15 mutation effect prediction
algorithms

Prediction algorithm Prediction class Functional categories Total

Neutral Non-neutral Uncertain

(n = 140) (n = 849) (n = 2,602) (n = 3,591)

CHASM (breast) Driver 27 764 1,085 1,876

Passenger 113 85 1,517 1,715

CHASM (lung) Driver 32 783 1,155 1,970

Passenger 108 66 1,447 1,621

CHASM (melanoma) Driver 48 795 1,440 2,283

Passenger 92 54 1,162 1,308

FATHMM (cancer) CANCER 71 831 1,655 2,557

PASSENGER/OTHER 69 18 947 1,034

FATHMM (missense) Damaging 69 745 1,416 2,230

Tolerated 71 104 1,167 1,342

No weights 0 0 19 19

Mutation Assessor High 2 71 97 170

Medium 50 579 1,053 1,682

Low 51 129 919 1,099

Neutral 37 69 527 633

N/A 0 1 6 7

MutationTaster Disease_causing 34 740 1,313 2,087

Disease_causing_automatic 1 31 4 36

Polymorphism 99 78 1,285 1,462

Polymorphism_automatic 6 0 0 6

PolyPhen-2 Probably damaging 40 600 920 1,560

Possibly damaging 26 115 478 619

Benign 74 134 1,204 1,412

PROVEAN Deleterious 43 632 955 1,630

Neutral 97 217 1,647 1,961

SIFT Damaging 70 731 1,469 2,270

Tolerated 70 118 1,133 1,321

VEST Functional 100 702 1,663 2,465

Neutral 40 147 939 1,126

CanDrA (breast) Driver 140 805 2,423 3,368

Passenger 0 39 140 179

No-call 0 5 39 44

CanDrA (lung) Driver 24 767 1,150 1,941

Passenger 102 59 1,282 1,443

No-call 14 23 170 207

CanDrA (melanoma) Driver 28 734 1,147 1,909

Passenger 97 75 1,260 1,432

No-call 15 40 195 250

Condel Deleterious 77 786 1,741 2,604

Neutral 63 63 861 987

Single nucleotide variants (SNVs) were classified as non-neutral, neutral or uncertain based on functional/experimental data from the literature or mutation
databases [28-30]. Each SNV was classified by each of the mutation effect prediction algorithms independently.
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Figure 1 Inter-rater agreement between 15 mutation effect prediction algorithms. Hierarchical clustering of the calls made by 15 mutation
effect prediction algorithms using (A) all 3,591 single nucleotide variants (SNVs) included in this study, and (C) the 1,699 SNVs not present in the
COSMIC database. The unweighted Cohen’s Kappa coefficient was computed for each pair of predictors using (B) all 3,591 SNVs and (D) the
1,699 SNVs not present in the COSMIC database. The ranges of unweighted Kappa values and their corresponding colors are indicated in the
color key.
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ranged from no to fair agreement (median unweighted
κ = 0.2062, range κ = -0.0520 to 0.4216, Figure 1B;
Additional file 3). CanDrA (breast) was an outlier and
displayed no-to-slight agreement with each of the other
predictors (Figure 1B; Additional file 3). We repeated
the same comparisons employing only the 989 SNVs
considered to be non-neutral or neutral on the basis of
functional analyses, which revealed similar results, with
the exception of CanDrA (breast), which now belongs
to Cluster 1 (Additional files 4 and 5).
As the cancer-specific CanDrA, CHASM, and FATHMM

(cancer) are all trained using training sets consisting of ca-
nonical somatic SNVs and their frequencies, we evaluated
the inter-rater agreement of all predictors after excluding
from our dataset the SNVs found in the COSMIC database
(v68). Of the 3,591 SNVs, 1,699 (47.3%) were not present in
COSMIC, of which 297 were experimentally validated as ei-
ther non-neutral or neutral (Additional files 6 and 7). Akin
to the analysis including all SNVs, unsupervised clustering
of the predictions made for non-COSMIC SNVs demon-
strated that the two main clusters and their compositions
were largely maintained (Figure 1C). In this analysis, not
only CanDrA (breast) but also VEST emerged as outliers,
clustering separately from the two main clusters (Figure 1C).
Compared to the Kappa values obtained using all SNVs,
when employing only non-COSMIC SNVs, we observed
that median Kappa coefficients in Cluster 2 remained
largely unchanged, whereas the median unweighted Kappa
scores within Cluster 1 decreased from κ = 0.5679 to
0.4558 (Figure 1D; Additional file 3). These data provide
evidence to suggest that the agreement between predictors
in Cluster 1 is reduced when SNVs present in the COSMIC
database were removed given that some mutation effect
predictors from Cluster 1 were trained using SNVs in-
cluded in COSMIC.
It could be hypothesized that the discrepancies in the

predictions made by different mutation effect prediction
algorithms would predominantly affect SNVs whose
classifications are based on predictions of relatively poor
confidence. CanDrA (breast), CanDrA (lung), CanDrA
(melanoma), PolyPhen-2, and Mutation Assessor have
pre-specified categories that identify SNVs whose predic-
tions are based on limited confidence. For the other pre-
dictors, we employed a heuristic approach based on the
original description of each predictor and additional online
sources to define a category of SNVs whose predictions
were of poor confidence (see Methods). We classified the
3,591 SNVs included in this study into non-neutral, neu-
tral, and low confidence categories (Additional file 8), and
observed that a median of 437 (range, 44 to 1,298) SNVs
were classified as of low confidence. CanDrA (breast) clas-
sified only 44 SNVs as of low confidence, whereas
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PROVEAN classified 1,298 in this category. These marked
differences may be a mere reflection of the different cutoffs
chosen; however, when only the predictors that have a pre-
defined low confidence category (that is, CanDrA (breast),
CanDrA (lung), CanDrA (melanoma), PolyPhen-2, and
Mutation Assessor) were assessed, the number of SNVs
classified as such ranged from 44 (CanDrA (breast)) to
1,099 (Mutation Assessor). In fact, only 27 SNVs had a
majority vote of low confidence (that is, eight or more
predictors classifying a given SNV as of low confidence;
Additional file 9). Hierarchical clustering of the predic-
tions for the 3,591 SNVs including a low confidence
category revealed a cluster structure similar to that
obtained with only non-neutral and neutral categories
(that is, Cluster 1 enriched for cancer-specific predictors
and Cluster 2 exclusively composed of non-cancer-
specific predictors), however PROVEAN clustered in a
separate branch from Cluster 2. Noteworthy, the Cohen’s
Kappa coefficients were lower than those observed when
SNVs were classified into two categories only (that is, as
neutral or non-neutral; Additional files 10 and 11). When
these analyses were repeated including only the non-
COSMIC SNVs, the results of the clustering analysis were
similar, however the agreement between predictors was
reduced even further (Additional files 10 and 11). By fo-
cusing only on the 989 SNVs with functional evidence to
classify them as neutral or non-neutral, the addition of a
low confidence category resulted again in a similar cluster
structure, however PROVEAN was an outlier. This obser-
vation was likely due to the fact that 132 of the 989
(13.3%) SNVs were classified as of low confidence by
PROVEAN only (Additional file 12). As compared to
the Cohen’s Kappa coefficients obtained with two cat-
egories, the analysis of agreement between predictors
for the classification of these 989 SNVs was generally
lower when the low confidence category was included
(Additional file 13). Similar results were obtained when
the subset of 297 non-COSMIC SNVs were analyzed
(Additional files 12 and 13).

Performance of 15 commonly used mutation effect
prediction algorithms
Among the SNVs included in this study, 989 had sufficient
functional evidence to support their classification as either
non-neutral (n = 849) or neutral (n = 140) with respect to
an effect on protein function (Table 1). Hence, the per-
formance of the predictors was assessed using these
validated SNVs. Accuracy, specificity, sensitivity, positive
predictive value (PPV), negative predictive value (NPV),
and composite score were calculated to evaluate the per-
formance of each predictor (see Methods). This analysis
revealed that the proportion of SNVs correctly classified
by the different predictors varied considerably (median,
85.84%; range, 73.71% to 91.28%; Figure 2A, Table 3).
Of the single predictors, FATHMM (cancer) was the
most accurate (91.00%, 95% confidence interval (CI)
89.18-92.62%), while PROVEAN was the least accurate
(73.71%, 95% CI 70.88-76.64%; Figure 2A, Table 3). The
meta-predictors with the highest accuracy (Figure 2A,
Table 3) were CanDrA (lung; 91.28%, 95% CI 89.54-93.04%)
and CanDrA (melanoma; 88.97%, 95% CI 87.02-90.91%),
though their accuracy was not statistically different from
that of the best single predictor FATHMM (cancer) in this
set of SNVs (P >0.05).
The sensitivity and specificity of the algorithms varied

substantially (median, 90.73%; range, 74.44% to 97.88%;
median, 62.86%; range, 0% to 80.95%, respectively;
Figure 2A, Table 3). The most sensitive single predictor
was FATHMM (cancer; 97.88%, 95% CI 96.87-98.82%),
which was statistically more sensitive than the most sensi-
tive meta-predictor CanDrA (breast) in this mutation set
(95.38%, 95% CI 93.85-96.81%, Figure 2A, Table 3; P <0.05).
Of the single predictors, CHASM (breast) was the most
specific (80.71%, 95% CI 73.33-87.12%) and the most spe-
cific meta-predictor was CanDrA (lung; 80.95%, 95% CI
73.64-87.32%), though no statistically significant differences
between these were observed in this mutation set (P >0.05).
Noteworthy, CanDrA (breast) had 0% specificity with the
set of SNVs tested, while the other CanDrA predictors
(lung/melanoma) achieved >75% specificity, which suggests
that the predictions made by CanDrA have a strong de-
pendency on tissue of origin. Although all 15 predictors
performed consistently well in terms of PPV (median,
92.59%; range, 85.19% to 96.97%), a dramatic difference
in NPV was observed (median, 50.00%; range, 0.00% to
79.31%; Figure 2A, Table 3). In particular, FATHMM
(cancer; 79.31%, 95% CI 70.59-87.66%) significantly out-
performed all single predictors (P <0.05) but CHASM
(melanoma; 63.01%, 95% CI 55.40-70.92%) in the set of
SNVs tested, and its NPV did not significantly differ from
that of the best meta-predictor CanDrA (lung; 63.35%,
95% CI 56.10-71.01%; P >0.05; Figure 2A, Table 3).
Intuitively, the best algorithm would have high and bal-

anced values for each of the performance statistics. With
this rationale, we calculated a ‘composite score’, ranging
from 0 to 4, by summing up the sensitivity, specificity,
PPV, and NPV of each predictor as an overall performance
indicator for each predictor. The median composite score
was 2.7866 (range, 1.8056 to 3.3413; Figure 2A, Table 3).
Using this parameter, the best-performing single predictor
was CHASM (lung; 3.2751, 95% CI 3.1418-3.3988) but
it was not significantly different from the best meta-
predictor CanDrA (lung) in this set of SNVs (3.3413,
95% CI 3.2103-3.4747, P >0.05, Figure 2A, Table 3).
We next performed the same analysis using only the

297 SNVs not included in the COSMIC database. In
this analysis, the median accuracy and sensitivity were
76.77% (range, 54.88% to 84.70%) and 79.26% (range,
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Figure 2 Performance statistics of mutation effect prediction algorithms. Based on the prediction results of (A) the non-neutral (n = 849)
and neutral (n = 140) single nucleotide variants (SNVs) included in this study and (B) the non-neutral (n = 188) and neutral (n = 109) SNVs
not present in the COSMIC database, the accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and
composite score for each predictor are plotted. Error bars represent the 95% CIs generated by bootstrapping. Single/independent predictors are
shown in blue bars, and meta-predictors are shown in orange bars.
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51.06% to 97.85%), respectively (Figure 2B, Table 4).
The most accurate single and meta-predictors in this con-
text were MutationTaster (84.51%, 95% CI 80.13-88.55%)
and CanDrA (lung; 84.70%, 95% CI 80.50-88.65%), re-
spectively (Figure 2B, Table 4). As compared to the ana-
lysis including all SNVs, when excluding SNVs present in
the COSMIC database, the accuracy of all predictors but
Mutation Assessor and MutationTaster were statistically
significantly reduced (P <0.05). Furthermore, eight of 15
mutation effect prediction algorithms showed statistically
significant reduction in sensitivity and 10 of 15 showed
a statistically significant reduction in PPV (Figure 2B;
Table 4).
To assess whether the mutation effect prediction algo-

rithms would have different performances when SNVs in
bona fide oncogenes, bona fide TSGs or new cancer genes
were considered, we selected from the set of 989 SNVs
those found in bona fide oncogenes, bona fide TSGs or
new cancer genes (n = 176, n = 783 or n = 30 SNVs, re-
spectively; Additional file 14). When only SNVs in onco-
genes were assessed, FATHMM (cancer) remained the
most accurate single predictor (96.59%, 95% CI 93.75-
98.86%; Additional files 15 and 16) and CanDrA (lung)
remained the most accurate meta-predictor (95.00%, 95%
CI 91.36-98.15%; Additional files 15 and 16). When only
SNVs affecting TSGs were tested, CHASM (lung) was the
most accurate single predictor (92.98%, 95% CI 91.19-
94.76%) and CanDrA (melanoma) was the most accurate
meta-predictor (93.46%, 95% CI 91.74-95.15%, Additional
files 15 and 16). Interestingly, six predictors, namely
CHASM (breast), CHASM (melanoma), FATHMM (mis-
sense), Mutation Assessor, CanDrA (melanoma), and
Condel performed significantly better for SNVs in TSGs
as compared to SNVs in oncogenes (P <0.05; Additional



Table 3 Performance statistics of mutation effect prediction algorithms using all single nucleotide variants tested functionally (n = 989)

Prediction algorithm Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) Composite (95% CI)

CHASM (breast) 88.68% (86.55-90.70%) 89.99% (87.81-91.92%) 80.71% (73.33-87.12%) 96.59% (95.20-97.73%) 57.07% (50.23-64.58%) 3.2436 (3.1127-3.3669)

CHASM (lung) 90.09% (88.27-91.81%) 92.23% (90.40-94.04%) 77.14% (69.93-83.58%) 96.07% (94.74-97.31%) 62.07% (54.72-69.38%) 3.2751 (3.1418-3.3988)

CHASM (melanoma) 89.69% (87.77-91.51%) 93.64% (92.00-95.37%) 65.71% (57.35-73.51%) 94.31% (92.67-95.76%) 63.01% (55.40-70.92%) 3.1667 (3.0181-3.3079)

FATHMM (cancer) 91.00% (89.18-92.62%) 97.88% (96.87-98.82%) 49.29% (41.08-57.24%) 92.13% (90.26-93.72%) 79.31% (70.59-87.66%) 3.1860 (3.0326-3.3292)

FATHMM (missense) 82.51% (79.98-84.73%) 87.75% (85.46-89.94%) 50.71% (42.98-58.27%) 91.52% (89.53-93.23%) 40.57% (33.53-47.72%) 2.7056 (2.5576-2.8521)

Mutation Assessor 74.70% (71.89-77.51%) 76.65% (73.87-79.65%) 62.86% (54.61-71.21%) 92.59% (90.35-94.55%) 30.77% (25.69-36.70%) 2.6287 (2.4835-2.7842)

MutationTaster 88.57% (86.65-90.60%) 90.81% (88.94-92.84%) 75.00% (66.91-82.00%) 95.66% (94.10-97.00%) 57.38% (50.00-65.14%) 3.1885 (3.0502-3.3300)

PolyPhen-2 79.78% (77.05-82.11%) 84.22% (81.83-86.61%) 52.86% (44.51-61.15%) 91.55% (89.45-93.40%) 35.58% (29.44-42.16%) 2.6420 (2.4895-2.7915)

PROVEAN 73.71% (70.88-76.64%) 74.44% (71.51-77.43%) 69.29% (61.72-76.06%) 93.63% (91.82-95.31%) 30.89% (25.93-36.56%) 2.6825 (2.5505-2.8088)

SIFT 80.99% (78.26-83.42%) 86.10% (83.89-88.45%) 50.00% (41.93-58.40%) 91.26% (89.08-93.15%) 37.23% (30.34-44.28%) 2.6460 (2.4895-2.7968)

VEST 75.03% (72.50-77.76%) 82.69% (80.28-85.24%) 28.57% (21.01-35.40%) 87.53% (85.12-89.75%) 21.39% (15.91-27.57%) 2.2018 (2.0568-2.3395)

CanDrA (breast) 81.81% (79.23-84.26%) 95.38% (93.85-96.81%) 0% (0-0%) 85.19% (82.83-87.30%) 0% (0-0%) 1.8056 (1.7765-1.8340)

CanDrA (lung) 91.28% (89.54-93.04%) 92.86% (91.05-94.62%) 80.95% (73.64-87.32%) 96.97% (95.75-98.03%) 63.35% (56.10-71.01%) 3.3413 (3.2103-3.4747)

CanDrA (melanoma) 88.97% (87.02-90.91%) 90.73% (88.69-92.81%) 77.60% (69.57-84.40%) 96.33% (94.89-97.53%) 56.40% (48.77-63.74%) 3.2105 (3.0705-3.3507)

Condel 85.84% (83.42-88.17%) 92.58% (90.81-94.28%) 45.00% (37.06-53.72%) 91.08% (89.16-92.94%) 50.00% (41.43-59.06%) 2.7866 (2.6222-2.9552)

Based on the prediction results of all non-neutral and neutral single nucleotide variants included in this study, the accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and
composite score for each predictor were computed. The 95% confidence intervals (CI) generated by bootstrapping are shown in parentheses.
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Table 4 Performance statistics of mutation effect prediction algorithms using only functionally tested single nucleotide variants not present in the COSMIC
database (n = 297)

Prediction algorithm Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI) Composite (95% CI)

CHASM (breast) 80.13% (75.42-84.18%) 72.34% (65.70-78.34%) 93.58% (88.89-97.96%) 95.10% (91.27-98.47%) 66.23% (58.62-73.42%) 3.2726 (3.1090-3.4151)

CHASM (lung) 82.49% (78.11-86.53%) 79.26% (73.26-84.95%) 88.07% (81.98-94.18%) 91.98% (87.58-96.20%) 71.11% (63.57-78.74%) 3.3042 (3.1370-3.4665)

CHASM (melanoma) 81.82% (77.44-86.20%) 86.17% (80.93-90.96%) 74.31% (65.71-82.46%) 85.26% (80.21-90.00%) 75.70% (67.29-83.91%) 3.2145 (3.0259-3.3971)

FATHMM (cancer) 80.13% (75.42-84.51%) 92.02% (87.98-95.83%) 59.63% (50.43-69.00%) 79.72% (74.21-84.82%) 81.25% (72.06-89.22%) 3.1263 (2.9242-3.3078)

FATHMM (missense) 75.42% (70.71-79.80%) 86.70% (81.82-91.37%) 55.96% (46.29-64.82%) 77.25% (71.67-82.33%) 70.93% (60.92-80.23%) 2.9085 (2.7014-3.1033)

Mutation Assessor 68.69% (63.64-73.40%) 71.28% (64.77-77.25%) 64.22% (54.46-72.81%) 77.46% (71.26-82.93%) 56.45% (47.82-64.87%) 2.6941 (2.4757-2.8892)

MutationTaster 84.51% (80.13-88.55%) 84.04% (78.53-89.25%) 85.32% (78.18-91.75%) 90.80% (86.05-95.00%) 75.61% (67.42-82.88%) 3.3578 (3.1879-3.5244)

PolyPhen-2 69.36% (64.31-74.41%) 78.72% (73.16-84.53%) 53.21% (43.59-62.50%) 74.37% (68.08-80.21%) 59.18% (49.47-69.01%) 2.6549 (2.4296-2.8672)

PROVEAN 58.59% (52.86-63.64%) 51.06% (43.78-57.73%) 71.56% (62.83-80.00%) 75.59% (68.61-82.81%) 45.88% (38.61-53.76%) 2.4410 (2.2263-2.6521)

SIFT 69.70% (64.65-74.75%) 81.91% (76.09-87.57%) 48.62% (38.89-58.62%) 73.33% (67.31-78.92%) 60.92% (51.14-71.64%) 2.6479 (2.4175-2.8681)

VEST 54.88% (49.49-60.27%) 71.81% (65.80-77.89%) 25.69% (18.01-34.19%) 62.50% (56.34-68.78%) 34.57% (24.99-45.21%) 1.9456 (1.7302-2.1701)

CanDrA (breast) 61.69% (55.89-66.78%) 97.85% (95.50-99.48%) 0% (0-0%) 62.54% (57.04-67.82%) 0% (0-0%) 1.6039 (1.5437-1.6593)

CanDrA (lung) 84.70% (80.50-88.65%) 79.12% (73.21-84.57%) 94.95% (89.81-98.94%) 96.64% (93.29-99.31%) 71.21% (63.41-78.30%) 3.4193 (3.2675-3.5628)

CanDrA (melanoma) 82.61% (77.94-86.64%) 78.09% (71.43-83.82%) 90.82% (85.06-96.00%) 93.92% (89.86-97.33%) 69.53% (61.10-77.05%) 3.3236 (3.1491-3.4780)

Condel 76.77% (72.05-81.48%) 93.09% (89.36-96.32%) 48.62% (39.62-58.33%) 75.76% (70.38-81.03%) 80.30% (70.58-89.55%) 2.9777 (2.7814-3.1877)

Based on the prediction results of non-neutral and neutral single nucleotide variants not present in the COSMIC database, the accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value
(NPV), and composite score for each predictor were computed. The 95% confidence intervals (CI) generated by bootstrapping are shown in parentheses.
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files 15 and 16). On the other hand, FATHMM (cancer),
MutationTaster, PolyPhen-2, PROVEAN, and VEST per-
formed better for SNVs in oncogenes than in TSGs
(P <0.05). These results suggest that some of the predic-
tors showed preferential performance towards SNVs in
either oncogenes or TSGs; alternatively, these differ-
ences in performance may stem from the fact that there
was a statistically significant difference in the proportion of
neutral SNVs in oncogenes as compared to TSGs (Fisher’s
exact test, two-tailed, P <0.0001). The same comparisons
could not be performed for SNVs affecting new cancer
genes, as no evidence to support a neutral classification for
SNVs affecting these genes was obtained in the literature
search, reflecting the relative novelty of these SNVs.
Taken together, these results demonstrate that muta-

tion effect prediction algorithms are not equivalent for
the classification of individual SNVs, that the predictions
from some algorithms may be tumor tissue dependent,
and that some may have a better performance for the
identification of neutral than non-neutral SNVs.

Combination of mutation effect prediction algorithms
To evaluate whether combinations of single predictors
would result in an improvement of the predictions made
in this dataset, we generated 11,253 combinations by
using n (n =2, 3, … 11) single predictors at a time, with
a given mutation being considered non-neutral if at least
p (p =1, 2, … 11) predictors called it non-neutral for all
combinations of n and p. We computed the performance
statistics and their confidence intervals for each of these
combinations from 1,000 random subsets comprising
two-thirds and one-third of the total dataset (referred to
as ‘subset 1’ and ‘subset 2’, respectively; Additional file
17). We ranked the combinations based on mean accur-
acy or based on mean composite score for subsets 1 and
2 separately, and compared their performance to the best-
performing single and meta-predictors, respectively. Fur-
thermore, as excluding SNVs not present in the COSMIC
database had a significant impact on the performance of
many predictors and their pairwise agreement, we also
performed the same experiment using only non-COSMIC
SNVs (Additional file 18).
Of the 11,253 possible single predictor combinations

we evaluated using all SNVs, 1,854 predictor combina-
tions were found to have a numerically higher mean ac-
curacy in subsets 1 and 2 than the most accurate single
predictor (that is, FATHMM (cancer)). Six of these
combinations were concurrently significantly more ac-
curate than the most accurate single predictor (that is,
FATHMM (cancer)) in both subsets (Additional files 19,
20, and 21). When ranking the predictor combinations ac-
cording to composite score, 1,483 combinations had nu-
merically higher mean composite scores in subsets 1 and
2 than the composite score of the best single predictor
(that is, CHASM (lung)); five of these showed statistically
significantly higher composite scores than those of
CHASM (lung) in both subsets (Figure 3, Additional
files 19 and 21). The mutation effect prediction algo-
rithm combination that resulted in a significant increase
in both accuracy and composite score as compared to
the best single predictor and meta-predictor in both
subsets was CHASM (breast) and MutationTaster. This
predictor combination called a given SNV non-neutral
if at least one of CHASM (breast) and MutationTaster
called it non-neutral, and it was ranked first in terms of
both accuracy and composite score in subsets 1 and 2
independently (in subset 1: 95.46%, 95% CI 94.54-96.51%
and 3.6255, 95% CI 3.5584-3.6982; in subset 2: 95.43%,
95% CI 93.33-97.27%, and 3.6236, 95% CI 3.4841-3.7573,
respectively; Additional file 21). Similar observations were
made when SNVs found in the COSMIC database were
excluded. Only the CHASM (breast) and MutationTaster
predictor combination outperformed the most accurate
single predictor MutationTaster consistently in both sub-
sets (Figure 3; Additional files 19, 20, and 22).
Although mutation effect prediction algorithm combi-

nations had a relatively limited impact on accuracy and
composite score, some predictor combinations signifi-
cantly improved the NPV as compared to the best single
and meta-predictor (Figure 3, Additional files 20, 21, and
22). Again, the CHASM (breast) and MutationTaster pre-
dictor combination resulted in a significant improvement
in NPV as compared to the NPV of the best single pre-
dictor or the best meta-predictor in all subsets. When ana-
lyzing the top 10, top 20, top 50, and top 100 combinations
of mutation effect prediction algorithms, we noted that
MutationTaster, CHASM (breast), and CHASM (lung)
were consistently present in the top performing predictor
combinations in subsets 1 and 2 using the 989 functionally
validated SNVs, irrespective of whether the combination
predictor performance was ranked according to accuracy
or composite score (Figure 4; Additional file 23). When
only the non-COSMIC SNVs were included in the ana-
lysis, the same mutation effect prediction algorithms
were consistently present in the best performing muta-
tion effect prediction algorithm combinations (Figure 4;
Additional file 23).
While the most consistently accurate predictor com-

bination called a given mutation non-neutral in this
dataset if at least one of CHASM (breast) and Mutation-
Taster called it non-neutral, we also evaluated whether
there were optimal combinations of n and p. In both
subsets, for any given n (1 ≤ n ≤4), the highest accuracy
was achieved when p ≈ 2n (Additional files 24 and 25 for
subset 1; data for subset 2 not shown). Similarly, for any
given p (3≤ p ≤11), the optimal n was approximately p/2
(Additional files 24 and 25 for subset 1; data for subset 2
not shown). Similar observations could be made for the
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Figure 3 (See legend on next page.)
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Figure 3 Performance statistics of the top five mutation effect prediction algorithm combinations as ranked by composite scores.
Prediction results of the non-neutral (n = 849) and neutral (n = 140) single nucleotide variants (SNVs) in the entire dataset (A, B) and the non-neutral
(n = 188) and neutral (n = 109) SNVs not present in the COSMIC dataset (C, D) are shown. Results are ranked according to the composite scores of
each mutation effect prediction algorithm combination, and the corresponding accuracy, sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and composite score of the top five prediction algorithm combinations in subset 1 (A, C) and subset 2 (B, D) are plotted. Error
bars represent the 95% CIs generated by 1,000 random samples of subsets 1 and 2. Red bars represent predictor combinations, blue bars single/
independent predictors, and orange bars meta-predictors. Blue stars: statistically significant improvement in composite score as compared to that of
the best performing single/independent predictor; orange stars: statistically significant improvement in composite score as compared to that
of the best performing meta-predictor; blue triangles: statistically significant improvement in NPV as compared to that of the best performing
single/independent predictor; orange triangles: statistically significant improvement in NPV as compared to that of the best performing meta-predictor.
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results generated by using only the non-COSMIC SNVs
(Additional files 26 and 27 for subset 1; data for subset 2
not shown).
Taken together, the combination of mutation effect pre-

diction algorithms resulted in a modest but significant im-
provement in accuracy and composite score. It should be
noted, however, that selected combinations of mutation
effect prediction algorithms significantly improved NPV.
This information can be instrumental in ruling out SNVs
that should not be followed up experimentally and/or
clinically, given that SNVs considered neutral by these
combinations have a higher probability of being genuinely
neutral than those called neutral by single predictors or
meta-predictors individually.

Discussion
Here we demonstrated, by using a set of extensively cu-
rated, ‘gold-standard’ list of mutations, that mutation effect
prediction algorithms are not equivalent for the classifica-
tion of individual mutations, and that the agreement be-
tween predictors is modest and dependent on the set of
mutations and mutation effect type. The agreement be-
tween cancer-specific prediction algorithms, which define
driver versus passenger mutations, was more consistent
than that of non-cancer-specific predictors, which differen-
tiate pathogenic versus non-pathogenic mutations. Fur-
thermore, we observed that the predictions made by some
algorithms may be tumor tissue dependent, and that others
may have a better performance for the identification of
neutral than non-neutral mutations.
A comparative analysis of the functional predictions of

15 commonly used mutation effect prediction algorithms
revealed distinct sensitivities, specificities, PPVs and NPVs
when a dataset of functionally/experimentally assessed mu-
tations from six bona fide oncogenes, six new cancer genes,
and three bona fide TSGs was tested. For instance, while
FATHMM (cancer) had the highest sensitivity (97.88%,
95% CI 96.87-98.82%) in the dataset analyzed, its specificity
was limited (49.29%, 95% CI 41.08-57.24%). On the other
hand, CHASM (breast) had good specificity (80.71%,
95% CI 73.33-87.12%) but limited NPV (57.07%, 95% CI
50.23-64.58%).
Most of the single predictors and meta-predictors dis-
played very good PPVs, however their NPVs were found
to be relatively low. Using a combination of single pre-
diction algorithms, the combination of CHASM (breast)
and MutationTaster resulted in a significant improve-
ment in accuracy as compared to the accuracy obtained
with the best single predictor and meta-predictor in the
SNV dataset studied, however this increase was mod-
est. Importantly, however, by using mutation effect pre-
dictor algorithm combinations, we achieved substantial
statistically significant improvements in NPV. Different
combinations of individual predictors including CHASM
(breast) and MutationTaster were repeatedly found to have
a significantly higher NPV than the best single predictor
and the best meta-predictor in this dataset, while at least
maintaining equivalent accuracy and composite score. In
the effort to sift through lists of mutations to identify bio-
logically interesting candidates to take forward for func-
tional experiments, NPV is an often-overlooked measure.
A high NPV allows for the exclusion of passenger or neu-
tral alterations with greater confidence, without the risk of
losing truly pathogenic mutations called neutral/passenger
by a given algorithm.
Our analysis further revealed that some mutation ef-

fect prediction algorithms are dependent on the type of
gene altered. In particular for the case of CanDrA meta-
predictor, as all but one TP53 SNVs were predicted to be
‘drivers’ by all CanDrA algorithms (that is, CanDrA breast/
lung/melanoma), whereas all BRCA1 and BRCA2 muta-
tions were predicted to be ‘drivers’ by CanDrA (breast) but
almost exclusively ‘passengers/no-call’ by CanDrA (lung/
melanoma). This suggests that some predictors are highly
tissue-specific and users ought to employ predictors appro-
priate for the tumor tissue type analyzed.
Our study has several limitations, despite using a set

of curated mutations in bona fide oncogenes, new cancer
genes, and bona fide TSGs. First, the dataset we employed
has a limited size, and neutral mutations were largely de-
rived from TSGs, in particular BRCA1 and BRCA2, which
may have caused biases in the estimation of specificity and
NPV. Importantly, however, unlike previous comparisons
of mutation effect prediction algorithms, this study has
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Figure 4 Recurrence of individual mutation effect prediction algorithms in the top performing mutation effect prediction algorithm
combinations ranked by composite score. The top 10, top 20, top 50, and top 100 combinations of prediction algorithms were defined
using the non-neutral (n = 849) and neutral (n = 140) single nucleotide variants (SNVs) included in the entire dataset and ranked according to
composite score. The frequency of each single mutation effect predictor present in these top combinations was determined in subset 1 and
subset 2 (A). The top 10, top 20, top 50, and top 100 combinations of prediction algorithms were defined using the non-neutral (n = 188) and
neutral (n = 109) SNVs not present in the COSMIC database and ranked according to composite score. The frequency of each single mutation
effect predictor present in these top combinations was determined in subset 1 and subset 2 (B).
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employed rather rigorous standards to define the mutation
set to be analyzed, by leveraging functional evidence from
an extensive literature search and database mining. Sec-
ond, mutations may be context-dependent, in that they
would only elicit a phenotype under particular circum-
stances, such as genetic background. Hence, the number
of mutations considered of unknown or indeterminate sig-
nificance was high. Third, a substantial number of neutral
and non-neutral mutations was obtained from datasets re-
lated to the impact of germline mutations. The actual im-
pact of those mutations when they are found as somatic
genetic alterations would require further investigation.
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Fourth, given that some predictors display distinct perfor-
mances according to the tumor tissue type and that some
SNVs included in this dataset are preferentially found in
specific tumor types (for example, BRCA1 and BRCA2
mutations are more frequently found in breast and
ovarian cancers), this dataset could theoretically favor
mutation effect prediction algorithms that are breast
cancer-specific. This was not observed, however, given
that the best performing single predictors and meta-
predictors were not breast cancer-specific. Fifth, the
agreement between mutation effect prediction algo-
rithms employing a low confidence category in addition
to the neutral and non-neutral categories of SNVs is
dependent on the cut-points chosen to define predictions
of low confidence. It should be noted, however, that similar
results for prediction algorithms with a pre-defined low
confidence category were observed as compared to those
where a low confidence category was defined employing
a heuristic approach based on the original descriptions
and online sources of the predictors. Sixth, CHASM
(breast/lung/melanoma), FATHMM (cancer/missense),
and PolyPhen-2 are algorithms that employed training
sets in their development and validation. Given the ap-
proach employed to create the ‘gold standard’ dataset
used in this study, overlaps between our ‘gold standard’
dataset and the training sets employed for the develop-
ment of these algorithms were inevitable. To minimize
potential biases, we have performed all analyses after
the removal of all functionally curated SNVs present in
COSMIC; however, even after taking this step, a residual
number of SNVs present in the original training sets
remained (Additional file 28). When we compared the
performance of these mutation effect predictors after
the removal of SNVs present in COSMIC or in the ori-
ginal training sets, we either observed no significant
differences in their accuracy or a lower accuracy when
COSMIC SNVs were removed (Additional file 29). Finally,
although experimental validation is informative, it is not
often definitive. In particular for neutral effects, it is plaus-
ible that the results of such experiments are context
dependent (that is, cell line or organism employed and the
constellation of mutations already present in a given
model). For instance, the true effect of some mutations
may be conditioned by the genetic make-up (that is, quan-
titative trait loci, epistasis) [31,32], be only effective in a
particular developmental stage [33], or be species-specific
[34]. On the other hand, non-neutral mutation effects do
not necessarily imply causality with regards to an organis-
mal level phenotype; many dozens of loss-of-function vari-
ants exist in healthy humans [35].

Conclusions
Our study demonstrates that the challenges researchers
face at the time of analyzing massively parallel sequencing
data to identify variants for further experimental studies
are genuine. The information provided by mutation effect
prediction algorithms is not equivalent. None of the algo-
rithms analyzed here was found to deliver optimal accur-
acy, sensitivity, specificity, PPV, and NPV in the mutation
dataset studied. Mutation effect predictors are not equiva-
lent for the classification of individual mutations. The
performance of some of these predictors may be dependent
on tumor tissue and mutation type (that is, canonical versus
non-canonical mutations, neutral versus non-neutral muta-
tions). Combinations of mutation effect predictors, albeit
providing only modest but significant improvements in the
overall accuracy when compared to individual predictors or
meta-predictors, were found to result in substantially im-
proved NPVs without compromising accuracy.

Materials and methods
Mutation sets
To standardize the procedure of compiling mutations
that can be employed for the benchmarking of mutation
effect predictors, mutations affecting six bona fide onco-
genes (BRAF, KIT, PIK3CA, KRAS, EGFR, and ERRB2),
whose mutations preferentially affect kinase domains, six
recently described cancer genes (DICER1, ESR1, IDH1,
IDH2, MYOD1, and SF3B1), whose mutations do not
affect kinase domains, and three bona fide TSGs (TP53,
BRCA1, and BRCA2) were retrieved from the TCGA
Pan-Cancer dataset by Kandoth et al. [36] and from stud-
ies functionally testing mutations affecting these genes
(Additional file 2). In addition, for TSGs, specific data-
bases were employed; for TP53, the IARC database
[29,37], and for BRCA1 and BRCA2, the Universal Muta-
tion Database (UMD) [28,38,39]. This mining exercise re-
sulted in the identification of 3,706 mutations, of which
3,591 were SNVs (Table 1, Additional file 2). Given that
some mutation effect prediction algorithms (that is,
PolyPhen-2, MutationTaster, CanDrA, and Condel) do
not process dinucleotide or trinucleotide missense mu-
tations, and to have the same number of mutations
successfully analyzed by each predictor, we have only in-
cluded SNVs for the purpose of creating a mutation
dataset to benchmark mutation effect predictors. SNVs
were also annotated based on their presence in the
COSMIC dataset v68 [26].

Literature search
Literature search was performed by four of the authors
(LGM, MRDF, YZ, SP) to identify experimental evidence
of functional effects of each mutation. This strategy
entailed the use of Boolean logic in combination with
search engines such as PubMed, ScienceDirect, Google
Scholar, and MEDLINE. Search terms were combined
using Boolean (that is, AND, OR) and Adjacency (that
is, NEAR) operators to create search statements as well
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as to narrow and refine the search (for example, BRAF
AND V600E AND validation/function, ERBB2 AND
mutation NEAR kinase domain AND validation/func-
tion). In addition, the references listed in the papers
found were also scrutinized to aid the search of add-
itional literature in support of the findings. For TSGs,
in addition to literature search, the IARC TP53 functional
assessment dataset [29], UMD-BRCA1, and UMD-BRCA2
mutation databases [28] were employed to ascertain
whether specific missense mutations in TP53 would
be causative of Li-Fraumeni or Li-Fraumeni-like syn-
drome or have been functionally assessed, and muta-
tions in BRCA1 and BRCA2 would be causative of
early onset breast and ovarian cancer syndrome, respect-
ively (see below).

Oncogenes and new cancer genes
The six bona fide oncogenes, namely BRAF, KIT, PIK3CA,
KRAS, EGFR, and ERRB2 and the six new cancer genes,
namely DICER1, ESR1, IDH1, IDH2, MYOD1, and SF3B1
used for the present analysis were selected on the basis of
the presence and the absence of a kinase domain, re-
spectively, and the availability of studies investigating
functionally the impact of mutations affecting these
genes. In this literature search, direct functional evi-
dence to determine whether a mutation was neutral
(that is, passenger) or non-neutral (that is, pathogenic)
was sought. The functional impact of SNVs affecting
these 12 genes was categorized into six groups, namely:
(1) Change in kinase, GTPase, or other enzymatic activ-
ity (for example, RNase); (2) Effect in response to ligand/
substrate, impact on downstream effectors/pathways, or
cell proliferation/survival, differentiation, apoptosis; (3)
Ability to immortalize or transform human or murine
cells (for example, MCF10A, BaF3, NIH3T3 cell lines)
and/or anchorage-independent growth; (4) Response to
specific chemical/biological compounds, therapeutic
agents, or temperature; (5) Tumor growth/induction
in vivo (for example, xenografts, mouse/fish models), or
changes in the rates of progression-free or overall survival
in pre-clinical models; and (6) Changes in genome (that is,
aneuploidy), epigenome (that is, methylation), transcrip-
tome (that is, splicing), miRNA biogenesis, or DNA/RNA
binding affinity (Additional file 2). SNVs affecting these
genes were considered non-neutral if there was literature
evidence to support their impact on at least one of the
mentioned categories. When the functional testing dem-
onstrated no significant impact on the wild-type function
of the protein in at least one functional category, and/or
no evidence was found for other categories, the SNVs
were classified as neutral mutations. SNVs for which no
reliable functional evidence or conflicting evidence was
found for any of the six categories, were regarded as
uncertain.
Tumor suppressor genes (TSGs)
The IARC datasets ‘TP53 germline mutations and family
history’ and ‘Functional assessment of p53 mutant pro-
teins in various experimental assays’ (R17) [29,37] were
employed to ascertain whether specific mutations
affecting TP53 would be associated with the develop-
ment of Li-Fraumeni syndrome or Li-Fraumeni-like syn-
drome, and/or whether specific TP53 SNVs would result
in conserved wild-type function, loss of function, domin-
ant negative activity, gain of function, and/or temperature
sensitivity in various systems and cell lines [29,37]. TP53
mutations strictly associated with Li-Fraumeni syndrome
or Li-Fraumeni-like syndrome, and present in patients
without additional germline mutations affecting cancer
causing genes (for example, PTEN, BRCA1, or BRCA2),
and/or meeting at least one of the above functional levels
of evidence were considered non-neutral, whereas those
mutations lacking an association with Li-Fraumeni syn-
drome or Li-Fraumeni-like syndrome or a functional im-
pact were considered neutral. The remaining TP53 SNVs
were considered uncertain. For BRCA1 and BRCA2, the
UMD-BRCA1 (4 February 2014 update) and UMD-
BRCA2 (22 January 2014 update) mutation databases
[28,38,39] were used to collect information on specific
BRCA1 and BRCA2 mutations. Mutations with validated
functional evidence classified as ‘5 - Causal’ in the data-
base were classified as non-neutral in this study, ‘1 - Neu-
tral’ in the database were classified as neutral in this study,
and ‘4 - Likely causal’, ‘3 - UV’, and ‘2 - Likely neutral’ in
the database were classified as uncertain in this study.

Assessment of mutation effect predictors
We first tested the set of 3,591 SNVs using 15 prediction
algorithms, including 11 single predictors and four meta-
predictors or consensus classifiers (Additional file 1) using
default settings. The single predictors included PROVEAN
(v1.1.3) [14] and SIFT (Ensemble 66) [16] from [40], which
used the ‘PROVEAN Human Genome Variants’ and pro-
vided both PROVEAN and SIFT results (default prediction
cutoff of -2.5 and 0.05, respectively). For PolyPhen-2
(v2.2.2) [17], we employed the Batch Query Data tool from
[41], using the ‘HumDiv’ classifier model (default predic-
tion categories). We used the downloadable version of
CHASM (v1.0.7) [20] employing a cutoff of 0.3, which was
selected as the approximate point of intersection of the dis-
tributions of scores for the drivers and passengers from the
original study [20]. SNVs with scores ≤0.3 were classified
as ‘drivers’ and those with scores >0.3 were classified as
‘passengers’. For CHASM, we selected classifiers specific to
breast cancer, melanoma and lung adenocarcinoma, re-
ferred to as ‘CHASM (breast)’, ‘CHASM (melanoma)’, and
‘CHASM (lung)’, respectively. We obtained VEST (v3.0)
[22] predictions from [42], employing a cutoff of 0.5. For
VEST, given that no particular threshold was recommend
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by the authors, the cutoff for this study was selected to bal-
ance false-positive and false-negative rates based on simu-
lations from the original study [22]. SNVs with scores ≥0.5
were considered ‘functional’ and those with scores <0.5
were considered ‘neutral’. We ran Mutation Assessor (re-
lease 2) [18] and MutationTaster (24 July 2014 update) [23]
from [43,44], respectively, following the instructions for
data input. For FATHMM ([45], v2.3) [21], we used both
‘Inherited Disease’ tool (prediction algorithm: weighted;
phenotypic associations: disease ontology, default predic-
tion categories; referred to as ‘FATHMM (missense)’) and
‘Cancer’ tool (default prediction threshold -0.75, referred
to as ‘FATHMM (cancer)’), as previously described [21].
The meta-predictors tested in this study included Condel

(db version 05) [19] and CanDrA (v1.0) [24]. For Condel,
we employed the website [46] following instructions for
data input (default prediction categories). For CanDrA
[24], we downloaded and installed the executable pack-
age and associated annotation data files for breast can-
cer (‘CanDrA (breast)’), lung adenocarcinoma (‘CanDrA
(lung)’), and melanoma (‘CanDrA (melanoma)’) from
[47] and performed the classifications as described (de-
fault prediction categories) [24].
For the purposes of assessing performance and compar-

ing predictors, some of the categories returned by the pre-
dictors were merged. For PolyPhen-2, ‘probably damaging’
and ‘possibly damaging’ were considered non-neutral. For
Mutation Assessor, ‘high’ and ‘medium’ were considered
non-neutral and ‘low’ and ‘neutral’ were considered neu-
tral. For FATHMM (cancer), ‘CANCER’ was considered
non-neutral and ‘PASSENGER/OTHER’ was considered
neutral. For MutationTaster, ‘disease_causing’ and ‘disea-
se_causing_automatic’ were considered non-neutral and
‘polymorphism’ and ‘polymorphism_automatic’ were con-
sidered neutral. For the remaining predictors, ‘damaging’,
‘functional’, ‘driver’, and ‘deleterious’ were considered non-
neutral and ‘tolerated’, ‘neutral’, ‘passenger’, and ‘benign’
were considered neutral. For CanDrA, ‘no-call’ was con-
sidered equivocal.
We next tested the set of 3,591 SNVs using 15 predic-

tion algorithms by introducing a prediction category of
low confidence. CanDrA (breast/lung/melanoma) (‘no-
call’), PolyPhen-2 (‘possibly damaging’), and Mutation
Assessor (‘low’) have pre-specified categories that iden-
tify SNVs whose predictions are based on limited confi-
dence. For the other predictors, we employed a heuristic
approach based on the original description of each pre-
dictor and additional online sources to define a category
of SNVs whose predictions were of low confidence. For
CHASM (breast/lung/melanoma), based on the histo-
grams of CHASM scores for driver mutations and pas-
senger mutations described in the original study [20],
we called predictions with scores between 0.25 and 0.35
as low confidence. For FATHMM (cancer), based on the
interactive prediction threshold graph (online documen-
tation, [48]), prediction scores between -1.65 and 0.1
were considered as low confidence. For FATHMM (mis-
sense), based on the distribution of the predicted mag-
nitude of effect for disease-associated and functionally
neutral mutations using the weighted method in the ori-
ginal study [21], the region with the highest overlap of
the disease-associated and functionally neutral scores
(that is, between -2.5 and 0) was classified as low confi-
dence. For MutationTaster, we considered predictions
with probabilities of ≤95% as low confidence. For PRO-
VEAN, based on the stringency score thresholds described
in the online documentation [49], predictions with scores
between -4.1 and -1.3 were considered low confidence.
For SIFT, given the lack of reported stringency score
thresholds in the original study [16] or in the online docu-
mentation, low confidence prediction scores between 0.04
and 0.1 were selected based on the distribution of SIFT
scores in our dataset. In brief, these cutoffs were chosen
on the basis of a density plot of the SIFT scores generated
with the results from our dataset, which displayed a non-
parametric distribution (left skewed) with a mode cen-
tered around 0.005 and a second much smaller mode
centered around 0.999. For VEST, based on the density
plots created from VEST score distributions reported in
the original study [22], predictions with scores between
0.45 and 0.55 were considered low confidence. For Con-
del, based on the density of scores for the known neutral
and deleterious mutations as reported in the online docu-
mentation [50] the region with the highest overlap of the
neutral and deleterious mutation scores (that is, between
0.489 and 0.547) was classified as low confidence.
The mutation effect prediction algorithms were assessed

using either all SNVs included in this study (n = 3,591) or
using only the neutral and non-neutral SNVs (n = 989). In
addition, we performed the analyses of these two sets of
SNVs by removing either all SNVs present in the COSMIC
dataset v68 (n = 1,699 and n = 297, respectively) or by re-
moving all SNVs present in the training sets of CHASM
(breast/lung/melanoma), FATHMM (cancer), FATHMM
(missense) or PolyPhen-2. For CHASM (breast/lung/mel-
anoma), training sets were retrieved from the drivers.tmps,
null.tmps and passengers.tmps of the respective built clas-
sifiers [51] (Additional file 28). For FATHMM (cancer)
and FATHMM (missense), training sets were retrieved
from [52] (Additional file 28). For PolyPhen-2, training
sets were retrieved from [53] (Additional file 28).

Analysis of agreement between mutation effect predictors
We converted the calls made by each predictor into
neutral and non-neutral (as described above) and per-
formed hierarchical clustering using complete linkage
and Hamming distance metric. We assessed the agree-
ment between the predictors using unweighted Cohen’s
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Kappa coefficient with 95% confidence intervals (CIs).
Inter-rater agreement was tested to determine the agree-
ment between different mutation effect prediction algo-
rithms. We considered Kappa coefficients <0 to be no
agreement, between 0.01 and 0.20 to be slight agreement,
between 0.21 and 0.40 to be fair agreement, between 0.41
and 0.60 to be moderate agreement, between 0.61 and
0.80 to be substantial agreement, and between 0.81 and 1
to constitute almost-perfect agreement [54].

Assessment of mutation effect predictor performance
The performance of each predictor was evaluated based
on the concordance with our established, functionally
validated neutral and non-neutral mutation categories.
We evaluated the accuracy, sensitivity, specificity, positive
predictive value (PPV), negative predictive value (NPV)
for each predictor, and a composite score, ranging from 0
to 4, defined as the sum of sensitivity, specificity, PPV, and
NPV. For the analyses performed, sensitivity measures the
proportion of experimentally validated non-neutral muta-
tions that were correctly identified, that is,

sensitivity ¼ the number of non‐neutral mutations correctly classified as non‐neutral
the number of all experimentally validated non‐neutral mutations

whereas specificity measures the proportion of experi-
mentally validated neutral mutations that were correctly
identified, that is,

specificity ¼ the number of neutral mutations correctly classified as neutral
the number of all experimentally validated neutral mutations

PPV is defined as the proportion of mutations pre-
dicted to be non-neutral that were experimentally vali-
dated as non-neutral, that is,

PPV ¼ the number of non‐neutral mutations correctly classified as non‐neutral
the number of mutations predicted to be non‐neutral

and NPV is the proportion of mutations predicted to be
neutral that were experimentally validated as neutral,
that is,

NPV ¼ the number of neutral mutations correctly classified as neutral
the number of mutations predicted to be neutral

95% CIs for each of these measures were generated by
performing resampling with replacement (that is, boot-
strapping) for 1,000 iterations. For the CIs generated
from bootstrapping, if CIs touch or do not overlap, the
difference is considered statistically significant as the sig-
nificance levels satisfies P <0.05 [55]. Briefly, if the two
standard errors are se1 and se2, then the standard error
of the difference is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se12 þ se22
p

and the difference be-
tween the means is 2(se1 + se2), hence the P value can be

calculated from z ¼ 2 se1þse2ð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

se12þse22
p . This approach has been

shown to be valid for a range of values and successfully
employed in a previous study [55].
Combination of mutation effect predictors
To assess the effect of combining single predictors, we
made use of the computed categories of individual pre-
dictors. For each possible combination of the 11 single
predictors using n (n =2, 3, … 11) predictors at a time, a
mutation would be considered non-neutral if at least p
(p =1, 2, … n) predictors considered it non-neutral. To
test the impact of the combinations of predictors, we used
a split-sample approach by dividing the dataset of function-
ally validated mutations randomly into two sub-datasets
(that is, subsets), each consisting of two-thirds (‘subset 1’)
and one-third (‘subset 2’) of the mutations included in the
entire dataset. We computed performance statistics (accur-
acy, sensitivity, specificity, PPV, NPV, and composite score)
for each combination of n and p, resulting in 11,253 unique
combinations. To define the confidence intervals for the
predictions, we repeated the splitting of the dataset 1,000
times to create 1,000 random splits of the dataset and
computed the performance statistics for each iteration.
Separately for subsets 1 and 2, we ranked the predictor
combinations based on their accuracy or their composite
scores. Differences in the performance statistics were con-
sidered statistically significant if their confidence intervals
touched or did not overlap (see above).

Additional files

Additional file 1: Overview of computational mutation effect
prediction algorithms analyzed in this study. Prediction algorithms in
blue boxes represent single/independent predictors, those in black boxes
meta-predictors. Arrows between predictors indicate dependency, such
that predictions made by the predictor at the tail of the arrows are
integrated by the predictor at the head of the arrows. Predictors are
annotated based on the features used in the algorithms. Features are
divided into four categories: C: conservation, such as conservation scores
and homology search; S: protein structure, such as secondary and tertiary
structures and accessible surfaces; A: protein sequence annotation, such
as annotation information from Uniprot and Pfam; and F: mutational
frequency from databases such as COSMIC, HapMap, and Human Gene
Mutation Database. The version of each algorithm included in this study
is described in each box.

Additional file 2: List of all mutations included in this study. This
table lists all 3,706 missense mutations included in the study, their
classification using 15 mutation effect prediction algorithms, their
experimental functional categories, the evidence supporting the
experimental functional classification, and their association with
hereditary diseases (TP53, BRCA1, and BRCA2).

Additional file 3: Inter-rater agreement of mutation effect
prediction algorithms as defined by unweighted Cohen’s Kappa
coefficients for all 3,591 single nucleotide variants and all 1,699
non-COSMIC single nucleotide variants included in the dataset.

Additional file 4: Inter-rater agreement between 15 mutation effect
prediction algorithms for the single nucleotide variants for which
functional data are available. Hierarchical clustering of the calls made
by 15 mutation effect prediction algorithms using (A) all 989 single
nucleotide variants (SNVs) for which functional data are available, and
(C) the subset of 297 SNVs not present in the COSMIC database. The
unweighted Cohen’s Kappa coefficient was computed for each pair of
predictors using (B) all 989 SNVs and (D) the subset of 297 SNVs not
present in the COSMIC database. The ranges of unweighted Kappa values
and their corresponding colors are indicated in the color key.

http://genomebiology.com/content/supplementary/s13059-014-0484-1-s1.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s2.xlsx
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s3.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s4.pdf
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Additional file 5: Inter-rater agreement of mutation effect
prediction algorithms as defined by unweighted Cohen’s Kappa
coefficients for the 989 single nucleotide variants for which
functional data are available and for the subset of these single
nucleotide variants (n = 297) that are not in the COSMIC database.

Additional file 6: Summary of the 1,699 single nucleotide variants
included in this study not present in the COSMIC database and
their experimental functional categories.

Additional file 7: Predictions of single nucleotide variants not
present in the COSMIC database (n = 1,699) by 15 mutation effect
prediction algorithms.

Additional file 8: Predictions of functionally validated single
nucleotide variants by 15 mutation effect prediction algorithms
with low confidence prediction categories, for all mutations
(n = 3,591) and for mutations not present in the COSMIC database
(n = 1,699).

Additional file 9: Number of single nucleotide variants classified
as of low confidence by 15 mutation effect prediction
algorithms.

Additional file 10: Inter-rater agreement between 15 mutation
effect prediction algorithms for all 3,591 single nucleotide variants
(SNVs) and all 1,699 non-COSMIC SNVs included in the dataset,
when a low confidence category is included. Hierarchical clustering
of the calls (that is, neutral, non-neutral, low confidence) made by 15
mutation effect prediction algorithms using (A) all 3,591 SNVs included in
this study, and (C) the 1,699 SNVs not present in the COSMIC database.
The unweighted Cohen’s Kappa coefficient was computed for each pair
of predictors using (B) all 3,591 SNVs and (D) the 1,699 SNVs not present
in the COSMIC database. The ranges of unweighted Kappa values and
their corresponding colors are indicated in the color key.

Additional file 11: Inter-rater agreement of mutation effect
prediction algorithms as defined by unweighted Cohen’s Kappa
coefficients for predictions made for all single nucleotide variants
(n = 3,591) and for single nucleotide variants not present in the
COSMIC database (n = 1,699) when a low confidence category is
included.

Additional file 12: Inter-rater agreement between 15 mutation
effect prediction algorithms for single nucleotide variants for which
functional data are available, when a low confidence category is
included. Hierarchical clustering of the calls made (that is, neutral,
non-neutral, low confidence) by 15 mutation effect prediction algorithms
using (A) all 989 single nucleotide variants (SNVs) for which functional data
are available, and (C) the subset of 297 SNVs not present in the COSMIC
database. The unweighted Cohen’s Kappa coefficient was computed for
each pair of predictors using (B) all 989 SNVs and (D) the subset of 297
SNVs not present in the COSMIC database. The ranges of unweighted Kappa
values and their corresponding colors are indicated in the color key.

Additional file 13: Inter-rater agreement of mutation effect
prediction algorithms as defined by unweighted Cohen’s Kappa
coefficients for 989 single nucleotide variants for which functional
data are available and for the subset of these single nucleotide
variants (n = 297) that are not present in the COSMIC database,
when a low confidence category is included.

Additional file 14: Predictions of functionally validated single
nucleotide variants in bona fide oncogenes, bona fide tumor
suppressor genes, and new cancer genes by 15 mutation effect
prediction algorithms (n = 989).

Additional file 15: Performance statistics of mutation effect
prediction algorithms using only single nucleotide variants (SNVs)
in bona fide oncogenes or in bona fide tumor suppressor genes.
Based on the prediction results of the non-neutral and neutral SNVs
(n = 989) in bona fide oncogenes (n = 176) (A) or in bona fide tumor
suppressor genes (n = 783) (B), the accuracy, sensitivity, specificity,
positive predictive value (PPV), negative predictive value (NPV), and
composite score for each predictor are plotted. Error bars represent the
95% confidence intervals generated by bootstrapping. Blue bars
represent single/independent predictors, orange bars meta-predictors.
Additional file 16: Performance statistics and 95% confidence
intervals of mutation effect prediction algorithms using only
functionally validated single nucleotide variants in bona fide
oncogenes or bona fide tumor suppressor genes.

Additional file 17: Performance statistics for mutation effect
prediction algorithm combinations using all 989 single nucleotide
variants with functional data included in this study.

Additional file 18: Performance statistics for mutation effect
prediction algorithm combinations using 297 single nucleotide
variants not present in the COSMIC database for which functional
data are available.

Additional file 19: Number of mutation effect prediction algorithm
combinations that outperform single predictors and meta-
predictors.

Additional file 20: Performance statistics of the top five mutation
effect prediction algorithm combinations as ranked by accuracy.
Prediction results of the non-neutral (n = 849) and neutral (n = 140)
single nucleotide variants (SNVs) in the entire dataset (A, B) and the
non-neutral (n = 188) and neutral (n = 109) SNVs not present in the
COSMIC dataset (C, D) are shown. Results are ranked according to the
accuracy of each mutation effect prediction algorithm combination,
and the accuracy, sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and composite score of the top five
prediction algorithm combinations in subset 1 (A, C) and subset 2 (B, D)
are plotted. Error bars represent the 95% confidence intervals generated
by 1,000 random samples of subsets 1 and 2. Red bars represent
predictor combinations, blue bars single/independent predictors, and
orange bars meta-predictors. Blue stars: statistically significant improvement
in accuracy as compared to that of the best performing single/independent
predictor; orange stars: statistically significant improvement in accuracy as
compared to that of the best performing meta-predictor; blue triangles:
statistically significant improvement in NPV as compared to that of the best
performing single/independent predictor; orange triangles: statistically
significant improvement in NPV as compared to that of the best performing
meta-predictor.

Additional file 21: Top five mutation effect prediction algorithm
combinations ranked by either accuracy or composite score
separately for subsets 1 and 2 using all 989 single nucleotide
variants for which functional data are available and the
corresponding best performing single and meta-predictors.

Additional file 22: Top five mutation effect prediction algorithm
combinations ranked by either accuracy or composite score
separately for subsets 1 and 2 using all 297 single nucleotide
variants not included in the COSMIC database for which functional
data are available and the corresponding best performing single
and meta-predictors.

Additional file 23: Recurrence of individual mutation effect
prediction algorithms in top performing mutation effect prediction
algorithm combinations ranked by accuracy. The top 10, top 20, top
50, and top 100 combinations of mutation effect prediction algorithms
were defined using the non-neutral (n = 849) and neutral (n = 140)
single nucleotide variants (SNVs) included the entire dataset and ranked
according to accuracy. The frequency of each single mutation effect
predictor present in these top combinations was determined in subset 1
and subset 2 (A). The top 10, top 20, top 50, and top 100 combinations
of mutation effect prediction algorithms were defined using the
non-neutral (n = 188) and neutral (n = 109) SNVs not present in the
COSMIC database and ranked according to accuracy. The frequency of
each single mutation effect predictor present in these top combinations
was determined in subset 1 and subset 2 (B).

Additional file 24: Accuracy of mutation effect prediction algorithm
combinations according to n and p, using all non-neutral and
neutral single nucleotide variants (n =989) in this dataset. Based on
the prediction results of 11,253 combinations using all non-neutral and
neutral single nucleotide variants included in this study, boxplots
showing the accuracy of the combinations were plotted and grouped by
n with increasing p along the x-axis (A) and by p with increasing n along
the x-axis (B).

http://genomebiology.com/content/supplementary/s13059-014-0484-1-s5.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s6.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s7.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s8.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s9.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s10.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s11.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s12.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s13.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s14.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s15.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s16.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s17.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s18.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s19.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s20.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s21.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s22.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s23.pdf
http://genomebiology.com/content/supplementary/s13059-014-0484-1-s24.pdf
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Additional file 25: Optimal p and n using all 989 functionally
defined non-neutral or neutral single nucleotide variants included
in this dataset.

Additional file 26: Accuracy of mutation effect prediction algorithm
combinations according to n and p, using all non-neutral and
neutral single nucleotide variants not included in the COSMIC
database (n =297) in this dataset. Based on the prediction results of
11,253 combinations using all non-neutral and neutral single nucleotide
variants included in this study, boxplots showing the accuracy of the
combinations were plotted and grouped by n with increasing p along
the x-axis (A) and by p with increasing n along the x-axis (B).

Additional file 27: Optimal p and n using all 297 functionally
defined non-neutral or neutral single nucleotide variants not
included in the COSMIC database.

Additional file 28: Residual single nucleotide variants in the set of
989 functionally defined non-neutral and neutral single nucleotide
variants and in the subset of 297 single nucleotide variants not
present in the COSMIC database.

Additional file 29: Performance statistics of mutation effect
prediction algorithms after exclusion of single nucleotide variants
(SNVs) present in COSMIC or in the training sets of each mutation
effect predictor. The accuracy, sensitivity, specificity, positive predictive
value (PPV), negative predictive value (NPV), and composite score of
CHASM (breast), CHASM (lung), CHASM (melanoma), FATHMM (cancer),
FATHMM (missense) and PolyPhen-2 using all 989 functionally defined
non-neutral or neutral SNVs (red bars), 297 non-COSMIC non-neutral or
neutral SNVs (blue bars) and SNVs after exclusion of those found in the
training set of each mutation effect predictor (orange bars). Error bars
indicate 95% confidence intervals generated by bootstrapping. Y-axis
on the left represents the scale of accuracy, sensitivity, specificity, PPV
and NPV, whereas the y-axis on the right represents the scale of
composite score.

Abbreviations
CI: Confidence interval; NPV: Negative predictive value; PPV: Positive
predictive value; TSG: Tumor suppressor gene.
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