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Abstract: Poly(ADP-ribose) polymerase (Parp)-1 catalyzes polyADP-ribosylation using NAD+ and
is involved in the DNA damage response, genome stability, and transcription. In this study,
we demonstrated that aged Parp-1−/− mouse incisors showed more frequent dental dysplasia in both
ICR/129Sv mixed background and C57BL/6 strain compared to aged Parp-1+/+ incisors, suggesting
that Parp-1 deficiency could be involved in development of dental dysplasia at an advanced age.
Computed tomography images confirmed that dental dysplasia was observed at significantly higher
incidences in Parp-1−/− mice. The relative calcification levels of Parp-1−/− incisors were higher in
both enamel and dentin (p < 0.05). Immunohistochemical analysis revealed (1) Parp-1 positivity in
ameloblasts and odontoblasts in Parp-1+/+ incisor, (2) weaker dentin sialoprotein positivity in dentin
of Parp-1−/− incisor, and (3) bone sialoprotein positivity in dentin of Parp-1−/− incisor, suggesting
ectopic osteogenic formation in dentin of Parp-1−/− incisor. These results indicate that Parp-1
deficiency promotes odontogenic failure in incisors at an advanced age. Parp-1 deficiency did
not affect dentinogenesis during the development of mice, suggesting that Parp-1 is not essential
in dentinogenesis during development but is possibly involved in the regulation of continuous
dentinogenesis in the incisors at an advanced age.
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1. Introduction

Tooth function is quite important in our daily life, and includes mastication, speech, aesthetics, and
facial and jaw development during growth periods. Teeth consist of mainly four elements—enamel,
dentin, pulp, and cementum—and their development requires multilineage cells controlled by different
signaling pathways, as in the development of other organs. During tooth development, both tooth
formation and mineralization are necessary, and reciprocal interactions between dental epithelium
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and neural crest-derived ectomesenchyme (EM) are also required [1]. Briefly, dental epithelium
develops both external and internal enamel epithelium from which ameloblasts differentiate, whereas
EM cells differentiate into odontoblasts [2]. Ameloblasts are responsible for secretion of enamel
matrix, which is a highly mineralized tissue and the hardest tissue in the body [3,4]. Meanwhile,
odontoblasts are responsible for dentin formation, and dental pulp is the soft tissue inside the tooth
that supports dentin formation and regeneration [5,6]. Moreover, dentin should be formed before
enamel formation. After crown formation is completed, both external and internal enamel epithelial
cells proliferate and form Hertwig’s epithelial root sheath, which is necessary for root formation [7].
Then, it induces differentiation of EM cells from radicular pulp into odontoblasts that form root dentin.
The mechanism of crown and root formation, and related transcription factors and growth factors,
have been reported [2–4].

The process of dentinogenesis, including secretion of extracellular matrix (ECM) proteins and
regulation of dentin mineralization, is highly controlled by odontoblasts. Dentin sialophosphoprotein
(DSPP) is the most abundant ECM in dentin and is processed into dentin sialoprotein (DSP), dentin
glycoprotein (DGP), and dentin phosphoprotein (DPP) [8–10]. Among them, DSP and DPP are
mainly expressed in odontoblasts and dentin [11,12]. On the other hand, production of enamel by
ameloblasts is regulated by laminin, amelogenin, and type I collagen [3], in addition to reciprocal
signaling interactions between dental epithelium and mesenchyme [13–15].

To achieve the above-mentioned complicated dentinogenesis, regulation of differentiation by
chromatin factors is expected to be important, and poly(ADP-ribose) polymerase-1 (Parp-1) could be
one of such factors. PARP-1 is the most abundant PARP enzyme in the Parp family, which catalyzes
poly(ADP-ribosyl)ation consuming nicotinamide adenine dinucleotide (NAD+) as a substrate to
target proteins that lead to biological activities. Poly(ADP-ribosyl)ation is known to be involved in
many cellular processes, including transcriptional regulation and differentiation, as well as DNA
repair [16,17], cell death [18], telomere regulation [19], and genomic stability [20]. Moreover, its deletion
was reported to lead to increased sensitivity to anticancer drugs and ionizing radiation in mice [20,21].
In addition to these biological activities, accumulating studies have shown Parp-1 involvement in
differentiation processes. For example, trophoblast differentiation was shown to be regulated by
Parp-1 [22]. Parp inhibitors caused differentiation of blood cancer cells [23]. Parp-1 knockout mice at
an advanced age showed augmented incidences of tumor development [24] and showed increased
frequency of deletion-type mutations in the liver [25]. We have also recently reported that a Parp
inhibitor (PJ34) suppressed osteogenic differentiation of mouse mesenchymal stem cells in vitro via
modulation of the BMP-2 signaling pathway [26].

In this study, we surveyed histopathological changes in the entire body of Parp-1−/− mice at an
advanced age, and unexpectedly observed a higher incidence of dental dysplasia in the incisors of
Parp-1−/− mice compared with those of Parp-1+/+ mice, and also analyzed them using micro-CT.

2. Materials and Methods

2.1. Animal Experiments

Parp-1−/− mice were previously generated by disrupting the Parp-1 exon 1 through the insertion
of a neomycin resistance gene cassette [21]. Both Parp-1+/+ and Parp-1−/− male mice of two strains were
produced—a mixed genetic background of ICR/129SV and a mixed genetic background of C57BL/6 by
line-breeding, respectively. They were housed five each in plastic cages under specific pathogen-free
conditions, with a 12-h light–dark cycle until they were analyzed. The mice were continuously supplied
with normal food chow (CE-2; CLEA Japan, Inc., Tokyo, Japan) and sterilized water ad libitum.

When they became 110 weeks old, they were sacrificed by cervical dislocation. Consequently,
they were fixed in 10% formalin/phosphate buffered saline (PBS, Wako Pure Chemical Industries, Ltd.,
Osaka, Japan) for 48 h. All animal studies were approved by the Animal Experimental Committee
of the National Cancer Center and performed following the Guidelines for Animal Experiments of
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the National Cancer Center, which meet the ethical guidelines for experimental animals in Japan.
The numbers of Ethical Board Approval of National Cancer Center Research Institute are as follows;
T03-C0047, T03-C0048, T03-C0051, T03-C0056, T03-C0058, and T03-C0061.

2.2. High Resolution Radiography of Incisors

To obtain high resolution radiographs of mouse incisors, each maxilla was analyzed after formalin
fixation followed by hand-removal of surrounding tissue. Each maxilla was X-rayed on a 3D Measuring
X-Ray Computed Tomography (CT) Scanner (TDM1000, Yamato Scientific Co. Ltd., Tokyo, Japan).
The setting of the CT was as follows; tube voltage was 90 kV, tube current was 19 µA, tomography
interval was 9.6 µm, figure measurement was 9.6 mm, matrix size was 1000 × 1000 × 1000, and
integration for 16 times. Then, all data were analyzed by 3D Trabecular Bone Structure Measurement
Software (TRI/3D-BON, Ratoc Company, Tokyo, Japan). Evaluation items were as follows; (1) volume
of teeth, (2) volume of pulp cavity, (3) pulp thickness, (4) relative evaluation of calcification levels of
enamel, (5) dentin, (6) pulp, (7) dentin + pulp, and (8) the whole of the teeth of the coronal section
at the middle of sinus (air was set to be zero reference), respectively. The areas of enamel, dentin,
pulp and the whole tooth for each evaluation were defined in Supplemental Figure S1. Moreover, the
calcification level of dentin was defined as the average of four points; 1Omedial, 2O distal, 3O labial, and
4O palatal points of dentin, respectively. Six Parp-1+/+ and ten Parp-1−/− mice (C57BL/6) were used in

this analysis.

2.3. Decalcification

After radiographical analysis was completed, the maxilla of each mouse was decalcified in
OSTEOSOFT (Merck KGaA, Darmstadt, Germany) at 4 ◦C by changing the liquid every three days for
four weeks [27] and formic acid decalcification was also used for other cases.

2.4. Histopathological Analysis

The maxilla was immersed in 70% alcohol for 48 h, dehydrated, and embedded in paraffin.
Samples were sectioned in the coronal plane for ICR/129Sv mice and sectioned in the sagittal plane for
C57BL/6 mice. Tissue sections (4 µm) were mounted on silane-coated slides (New Silane III, Muto Pure
Chemicals Co., LTD., Tokyo, Japan), deparaffinized with xylene (Wako Pure Chemical Industries, Ltd.,
Tokyo, Japan), and rehydrated with graded alcohol solutions (Wako Pure Chemical Industries, Ltd.).
The specimens were pathologically analyzed by hematoxylin and eosin staining (HE; Merck KGaA,
Darmstadt, Germany).

2.5. Immunohistochemistry

Tissue sections mounted on slides were deparaffinized with xylene and rehydrated with descending
concentrations of ethanol. Antigen retrieval was then performed using Immunosaver (Nisshin
EM, Tokyo, Japan) according to the manufacturer’s protocol. Briefly, sections were incubated in
Immunosaver (1:200 dilution in tap water) for 40 min at 95 ◦C and then transferred to tap water and
incubated for 10 min at room temperature. Subsequently, endogenous peroxidase was inactivated by
treatment with 3% hydrogen peroxide (Wako Pure Chemical Industries, Ltd.) in methanol (Wako Pure
Chemical Industries, Ltd.) for 30 min at room temperature [28].

Antibodies used in this study were rabbit polyclonal anti-bone sialoprotein (BSP) antibody (1:200
dilution, Rockland, Leimrick, PA, USA), monoclonal anti-dentin sialoprotein (DSP) antibody (1:250
dilution, Merk Millipore, Kenilworth, NJ, USA), and monoclonal anti-PARP-1 antibody (1:50 dilution,
Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA).

For immunohistochemistry of anti-BSP antibody, slides were treated with 20% normal goat serum
(Nichirei Corporation, Tokyo, Japan) for 30 min at room temperature and were incubated with the
primary antibody at 4 ◦C overnight. Antibodies were diluted with PBS (pH 7.4) containing 1% bovine
serum albumin (Sigma-Aldrich, St. Louis, MO, USA) and incubated at 4 ◦C. After several washes
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with PBS, bound antibodies were visualized using Histofine Simple Stain MAX-PO(MULTI) (Nichirei,
Tokyo, Japan) and 3,3′-diaminobenzidine (Vector Laboratories, Burlingame, CA, USA) according to the
manufacturer’s protocol.

For immunohistochemistry of anti-DSP antibody and anti-PARP-1 antibody, Mouse on Mouse
(M.O.M.®) Basic Kit and Vectastain Elite® ABC kit (both from Vector Laboratories, Burlingame, CA,
USA) were used according to the manufacturer’s protocol.

The sections were counterstained with hematoxylin and mounted. As a negative control, sections
were processed without exposure to the primary antibody. The sections were viewed under BX51
System Microscope (Olympus, Tokyo, Japan). Images were recorded using a digital microscope camera
(DP70; Olympus). Four Parp-1+/+ and four Parp-1−/− mice were used in this analysis.

2.6. Semi-Quantitative Analysis of Immunohistochemical Stainings

The photographs of the immunohistochemical analysis with each antibody were analyzed by
ImageJ Fiji (National Institutes of Health, Bethesda, MD, USA, available form https://imagej.net/
Fiji/Downloads) and mean intensity of selected area was calculated. First, all photographs were
deconvoluted and DAB color version images were chosen from divided three images. Then, subjected
area was selected and cropped; (1) odontoblasts lineage for Parp-1 positivity, (2) ameloblasts lineage for
Parp-1 positivity, (3) dentin area for DSP positivity, and 4) dentin area for BSP positivity. Subsequently,
mean density of DAB color was calculated and the number was converted from max intensity of
255 [29]. The representative immunostaining data for Figures 7–9 of each genotype were used in
this analysis.

2.7. Statistical Analysis

All statistical analyses were performed with EZR (Saitama Medical Center, Jichi Medical University,
Saitama, Japan), which is a graphical user interface for R (The R Foundation for Statistical Computing,
Vienna, Austria). More precisely, it is a modified version of R Commander designed to add statistical
functions frequently used in biostatistics [30]. In detail, chi-square test was performed for the analysis
of the incidence of dysplasia and denticle in incisors of both genotypes (Tables 1 and 2). Students’ t-test
was performed for the analysis of general structure of incisors of both genotypes.

Table 1. Incidence of dental dysplasia of aged ICR/129Sv mice.

Genotype No. of Animals
Incidence (%)

Dysplasia Denticle Both Dysplasia & Denticle

Parp-1+/+ 13 4 (30.8) 4 (30.8) 4 (30.8)
Parp-1−/− 9 9 (100.0) * 8 (88.9) * 8 (88.9) *

*: p < 0.01.

Table 2. Incidence of dental dysplasia of aged C57BL/6 mice.

Genotype No. of Animals
Incidence (%)

Dysplasia Denticle Both Dysplasia & Denticle

Parp-1+/+ 6 2 (33.3) 0 (0.0) 0 (0.0)
Parp-1−/− 10 9 (90.0) * 4 (40.0) * 4 (40.0) *

*: p < 0.01.

3. Results

3.1. Higher Incidence of Dental Dysplasia in Aged Parp-1−/− Incisors of an ICR/129Sv Mixed
Genetic Background

Comparison of histopathological changes in aged Parp-1+/+ and Parp-1−/− mice at 110 weeks old
of an ICR/129Sv mixed genetic background were carried out with microscopic analysis. We found

https://imagej.net/Fiji/Downloads
https://imagej.net/Fiji/Downloads
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the development of dental dysplasia in incisors but not in molars or other teeth of aged Parp-1+/+

and Parp-1−/− mice. Coronal sections of incisors of most of the aged Parp-1+/+ mice showed the tooth
structure of enamel, dentin, predentin, and pulp, similar to those of mature mice, resembling the human
tooth. Moreover, a layer of odontoblasts was observed in the periphery of dental pulp (Figure 1a,c).
However, coronal sections of incisors of 110-week-old Parp-1−/− mice frequently showed failure to form
a normal tooth structure, especially in the lower half area of the sections. Dental dysplasia, such as
hypertrophy, distortion of tooth architecture, and several denticle structures, was observed inside the
aged Parp-1−/− incisors (Figure 1b,d).Cells 2019, 8, x 5 of 18 
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Figure 1. Histopathological analysis of incisors of aged Parp-1+/+ and Parp-1−/− mice (ICR/129Sv).
(a) hematoxylin and eosin staining (HE) staining of coronal plane of Parp-1+/+ incisor. (b) HE staining of
coronal plane of Parp-1−/− incisor. (c) and (d) are a higher magnification of the black box of (a) and (b),
respectively. Light blue arrows indicate denticle structure and yellow arrows indicate dental dysplasia.
E = enamel, D = dentin, Od = odontoblast, P = pulp. Bars indicate 200 µm.

In aged ICR/129Sv mice, four out of 13 Parp-1+/+ incisors and all of the aged Parp-1−/− incisors
showed dental dysplasia, respectively. Denticles were also observed in four out of 13 Parp-1+/+ and
eight out of nine Parp-1−/− incisors (Table 1). All of the Parp-1−/− incisors that showed dental dysplasia
harbored denticles. To analyze whether increased development of dental dysplasia and denticles in
Parp-1−/− incisors also appear in younger animals, we analyzed incisors at 41-weeks-old (data not
shown), however, dental dysplasia and denticles were not observed in either Parp-1+/+ or Parp-1−/−

incisors, suggesting that only aged incisors show an increased incidence of dental dysplasia under
Parp-1 deficiency.
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3.2. Histopathological Analysis of Incisors of Aged Parp-1+/+ and Parp-1−/− Mice (C57BL/6)

Next, to clarify the effect of genetic background for the phenomena, we analyzed development of
dental dysplasia in a different genetic background using line breeding with C57BL/6 mouse strain.
Parp-1+/− mice backcrossed to C57BL/6 strain were used to generate Parp-1+/+ and Parp-1−/− mice.
Microscopic analysis of sagittal incisor sections of 110-week-old Parp-1+/+ mice showed a clear and
distinct tooth structure of enamel, dentin, predentin, and pulp, consistent with ICR/129Sv mouse
incisors. The layer of odontoblasts was also observed in the dental pulp periphery (Figure 2a,c,f)
and the layers of ameloblasts were also apparent from apex to incisor edge (Figure 2a,c,d). On the
other hand, the incisors of Parp-1−/− counterparts showed a failure to form a normal tooth structure in
the sagittal sections. Inside the incisors, dental dysplasia, such as ectopic and hypertrophic dentin
formation, was also observed, and accordingly, the layer of odontoblasts at the margin of the pulp
had failed and the alteration of cellular morphology of odontoblasts was also observed (Figure 2b,g,j).
The layers of ameloblasts were also affected in Parp-1−/− mice incisors. These showed almost normal
ameloblast layers from the apex to one-third from the apex, however, the height of ameloblasts of the
medial half of the incisors became shorter with a shrunken cellular morphology (Figure 2b,g,h). Most
of the structure of the enamel disappeared by the decalcification process in both Parp-1+/+ and Parp-1−/−

mice incisors (Figure 2a,b). Cementum of Parp-1+/+ and Parp-1−/− mouse incisors was not detectable,
therefore we performed immunohistochemical analysis of BSP in the later section as a biomarker of
cementum and periodontal ligament. From HE staining and radiographic analysis, the incidences of
dental dysplasia of the aged, mixed genetic background of C57BL/6 were also evaluated. As shown in
Table 2, two out of six Parp-1+/+ mice and nine out of ten aged Parp-1−/− mice showed dental dysplasia,
respectively. Moreover, denticle structures were observed coexisting with dysplasia in four out of ten
Parp-1−/− mice, but not in Parp-1+/+ mice.

Cells 2019, 8, x 6 of 18 

 

hypertrophic dentin formation, was also observed, and accordingly, the layer of odontoblasts at the 
margin of the pulp had failed and the alteration of cellular morphology of odontoblasts was also 
observed (Figure 2b,g,j). The layers of ameloblasts were also affected in Parp-1−/− mice incisors. These 
showed almost normal ameloblast layers from the apex to one-third from the apex, however, the 
height of ameloblasts of the medial half of the incisors became shorter with a shrunken cellular 
morphology (Figure 2b,g,h). Most of the structure of the enamel disappeared by the decalcification 
process in both Parp-1+/+ and Parp-1−/− mice incisors (Figure 2a,b). Cementum of Parp-1+/+ and Parp-1−/− 
mouse incisors was not detectable, therefore we performed immunohistochemical analysis of BSP 
in the later section as a biomarker of cementum and periodontal ligament. From HE staining and 
radiographic analysis, the incidences of dental dysplasia of the aged, mixed genetic background of 
C57BL/6 were also evaluated. As shown in Table 2, two out of six Parp-1+/+ mice and nine out of ten 
aged Parp-1−/− mice showed dental dysplasia, respectively. Moreover, denticle structures were 
observed coexisting with dysplasia in four out of ten Parp-1−/− mice, but not in Parp-1+/+ mice.  

Table 2. Incidence of dental dysplasia of aged C57BL/6 mice. 

Genotype No. of Animals 
Incidence (%) 

Dysplasia Denticle Both Dysplasia & Denticle 
Parp-1+/+ 6 2 (33.3)  0 (0.0)  0 (0.0) 
Parp-1−/− 10  9 (90.0) *   4 (40.0) *   4 (40.0) * 

*: p < 0.01. 

Therefore, the incidences of dental dysplasia and denticle structure in the incisors were 
significantly higher in both ICR/129Sv and C57BL/6 Parp-1−/− mice compared with those of Parp-1+/+ 
mice, respectively (p < 0.01). 

 
Figure 2. Histopathological analysis of incisors of aged Parp-1+/+ and Parp-1−/− mice (C57BL/6). HE 
staining of sagittal plane of Parp-1+/+ (a) and Parp-1−/− incisors (b). (c–f): A higher magnification of 
Parp-1+/+ incisor showing the distinct structure of normal tooth. On the other hand, a higher 
magnification of the Parp-1−/− incisor showed almost normal ameloblast layers 1/3 from the apex (g), 
however, it turned to layers of shrunken ameloblast at the incisor edge (h). Odontoblasts of the 
Parp-1−/− incisor were almost normal in the apex area (i) and they also turned to shrunken cells and 

Figure 2. Histopathological analysis of incisors of aged Parp-1+/+ and Parp-1−/− mice (C57BL/6). HE
staining of sagittal plane of Parp-1+/+ (a) and Parp-1−/− incisors (b). (c–f): A higher magnification
of Parp-1+/+ incisor showing the distinct structure of normal tooth. On the other hand, a higher
magnification of the Parp-1−/− incisor showed almost normal ameloblast layers 1/3 from the apex
(g), however, it turned to layers of shrunken ameloblast at the incisor edge (h). Odontoblasts of the
Parp-1−/− incisor were almost normal in the apex area (i) and they also turned to shrunken cells and
moreover, the layer itself disappeared (j). Am, ameloblast; Od, odontoblast; E, enamel; D, dentin; P,
pulp. Bars indicate 2 mm.
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Therefore, the incidences of dental dysplasia and denticle structure in the incisors were significantly
higher in both ICR/129Sv and C57BL/6 Parp-1−/− mice compared with those of Parp-1+/+ mice,
respectively (p < 0.01).

3.3. Radiological Analysis Showed Dental Dysplasia and Denticle Structures in Aged C57BL/6
Parp-1−/− Incisors

The incisors of aged Parp-1+/+ mice showed a normal structure of a tooth, including enamel,
dentin, and pulp. Moreover, the boundary of the dentin and pulp cavity was smooth and constant
(Figure 3a,c,e,g). On the other hand, incisors of aged Parp-1−/− mice showed an abnormal form of
dentin and pulp cavity structure, widely expanded form at the upper area and shrunken form at the
bottom area in the coronal plane (Figure 3b). The boundary of dentin and pulp cavity was bumpy and
uneven, and ectopic dentin-like structures and denticle structures were observed inside the pulp cavity
in all planes (Figure 3b,d,f,h).
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incisors were analyzed from the coronal, horizontal, and sagittal plane, respectively. (a) Coronal
plane of Parp-1+/+ mouse. (b) Coronal plane of Parp-1−/− mouse. (c) Horizontal plane of Parp-1+/+

mouse. (d) Horizontal plane of Parp-1−/− mouse. (e) Sagittal plane of right incisor of Parp-1+/+ mouse.
(f) Sagittal plane of right incisor of Parp-1−/− mouse. (g) Sagittal plane of left incisor of Parp-1+/+ mouse.
(h) Sagittal plane of left incisor of Parp-1−/− mouse. Bar indicates 2 mm.
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3.4. Three-Dimensional Analysis Based on Radiological CT Images in Aged C57BL/6 Parp-1−/− Incisors

Three-dimensional figures of both Parp-1+/+ and Parp-1−/− maxillae were constructed, based on the
radiological analysis of CT images. The boundary of the dentin and pulp cavity of incisors of Parp-1+/+

mice was smooth and constant (Figure 4a). On the other hand, incisors of the Parp-1−/− counterparts
showed an abnormal form of dentin and pulp cavity structure, uneven boundary of dentin and pulp
cavity, and ectopic dentin and denticle structures, respectively (Figure 4b).

To evaluate the incisor structure itself, another type of three-dimensional analysis was performed.
The pulp cavity was drawn in orange and hard tissue such as enamel and dentin was drawn in yellow
(Figure 4c,d). The pulp cavity of Parp-1+/+ mouse was wide at the apex of the incisors, gradually
became narrower, and disappeared at the incisor margin (Figure 4c). On the other hand, the pulp
cavity of Parp-1−/− mouse was also wide at the apex, it was widely spread inside the incisors, and did
not show any narrowing structures (Figure 4d).
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Figure 4. (a) Upper oblique view of Parp-1+/+ mouse and (b) upper oblique view of Parp-1−/− mouse
via 3D images. (c) Three-dimensional structure of Parp-1+/+ mouse incisor. (d) Three-dimensional
structure of Parp-1−/− mouse incisor. Hard tissue (enamel and dentin) is drawn in yellow and pulp
cavity is drawn in orange. Bar indicates 2 mm.

3.5. Tooth and Pulp Volumes of Aged Parp-1−/− Incisors Based on 3D Radiological CT Images

To evaluate how ectopic dentin and denticle structures in the Parp-1+/+ and Parp-1−/− incisors in
the C57BL/6 strain affected tooth and pulp cavity volume and pulp thickness, these were calculated
using 3D Trabecular Bone Structure Measurement Software (TRI/3D-BON, Ratoc Company, Tokyo,
Japan).

The average tooth volume of aged Parp-1+/+ and Parp-1−/− incisors was 6.85 mm3 (range; 5.51–8.65,
S.D. = 1.50) and 6.90 mm3 (range; 5.45–9.67, S.D. = 1.86), respectively. The average pulp cavity volume
of aged Parp-1+/+ and Parp-1−/− incisors was 1.92 mm3 (range; 1.05–3.88, S.D. = 1.05) and 1.28 mm3

(range; 0.63–2.11, S.D. = 0.71), respectively. There was no significant difference between the genotypes
in either tooth or pulp volume, however, there was a tendency for smaller pulp cavity in Parp-1−/−

incisors (p = 0.181, Figure 5a). The average pulp thickness of aged Parp-1+/+ and Parp-1−/− incisors was
336.4 µm (range; 267.8–411.9, S.D. = 87.6) and 316.3 µm (range; 199.2–396.4, S.D. = 63.8), respectively.
There was no significant difference between the genotypes in the pulp thickness (Figure 5b).
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Figure 5. The volume analysis of tooth, pulp cavity, and pulp thickness of incisors of aged Parp-1+/+

and Parp-1−/− mice (C57BL/6). (a) Tooth and pulp cavity volumes of incisors of Parp-1+/+ and Parp-1−/−

mice. (b) Pulp thickness of Parp-1+/+ and Parp-1−/− mice. Six Parp-1+/+ mice and ten Parp-1−/− mice were
used in this analysis. There were no statistically significant differences in the volume of tooth, pulp
cavity, and pulp thickness between the genotypes. However, pulp cavity of Parp-1−/− mice showed
a tendency of slightly smaller volume. (p = 0.181). N.S., not statistically significant.

3.6. Relative Calcification Levels of Each Element of Tooth were Significantly Higher in Aged Parp-1−/− Incisors

To evaluate the function of ameloblasts and odontoblasts in aged Parp-1+/+ and Parp-1−/− incisors
in the mixed genetic background of C57BL/6, relative calcification levels of each element of a tooth
were calculated using the same software, 3D Trabecular Bone Structure Measurement Software. Air
was set to be the zero reference. Six Parp-1+/+ mice and ten Parp-1−/− mice were used in this analysis.

The relative calcification levels of enamel were 1939.6 (range; 1077.8–2459.0, S.D. = 447.1) and
2173.0 (range; 1049.5–2788.0, S.D. = 610.2), that of dentin were 1243.1 (range; 922.0–1461.8, S.D. =

175.5) and 1401.8 (range; 1265.2–1527.7, S.D. = 79.6), that of pulp were 321.7 (range; 231.7–410.1, S.D. =

58.4) and 348.2 (range; 176.0–886.9, S.D. = 156.3), that of dentin + pulp were 640.3 (range; 490.4–875.4,
S.D. = 118.8) and 814.6 (range; 532.1–1096.0, S.D. = 192.0), and that of a total tooth were 675.5 (range;
475.6–897.7, S.D. = 134.1) and 866.0 (range; 584.2–1123.2, S.D. = 199.9) in aged Parp-1+/+ and Parp-1−/−

mice, respectively. In these elements of teeth, aged Parp-1−/− incisors showed significantly higher
calcification levels in enamel, dentin, dentin + pulp, and total of a tooth (p < 0.05) (Figure 6a–e).

3.7. Immunohistochemical Analysis of Parp-1 in Parp-1+/+ and Parp-1−/− Incisors

To confirm that the failure of odontoblast and ameloblast layers or alteration of cellular
morphology were related to the lack of Parp-1, the expression of Parp-1 protein was analyzed
by immunohistochemical analysis using four mice of each genotype. Parp-1+/+ incisors showed
positive Parp-1 immunostaining in ameloblast (Figure 7c,h) and odontoblast (Figure 7f,g) layers and
their localization was mostly in cytoplasm, but occasionally in nuclei (Figure 7a,c–h). The long term
decalcification process may have caused the preferential loss of antigen detection in nuclei compared
with cytoplasm. Parp-1 was not detected at the apex area and inside of the pulp of Parp-1+/+ incisor
(Figure 7e, f) and Parp-1 was absent in any elements of Parp-1−/− incisor (Figure 7b,i–n).
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From the result of DSP staining, dentin formation inside aged Parp-1−/− incisors was considered 
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Figure 7. Immunohistochemical analysis of Parp-1 expression in aged Parp-1+/+ and Parp-1−/− incisors
(C57BL/6). Expression of Parp-1 protein in the sagittal plane of Parp-1+/+ (a) and Parp-1−/− incisors
(b). Parp-1 was detected in odontoblasts (c,e,f,g) and ameloblasts (c,d,h) of Parp-1+/+ incisor mostly
in cytoplasm and occasionally in nuclei, whereas, positive immunostaining was not detectable in
odontoblasts (m), ameloblasts (i,j,n), pulp (k), and dentin (i,l) of Parp-1−/− incisor. Semi-quantitative
analysis showed that the average values of relative intensities of DAB staining in odontoblast area
were 78.2 ± 8.0 and 26.5 ± 7.7 in Parp-1+/+ and Parp-1−/− incisors, respectively (g,m), whereas that
in ameloblast area were 74.6 ± 15.3 and 40.7 ± 3.7 in Parp-1+/+ and Parp-1−/− incisors, respectively
(h,n). Am, ameloblast; Od, odontoblast; E, enamel; D, dentin; P, pulp. Bars of (a,b) indicate 2 mm.
The representative results of a mouse for each genotype are shown.
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To quantify the intensity of DAB staining for Parp-1 staining, the photos of both Parp-1+/+ and
Parp-1−/− incisors represented in Figure 7 were analyzed by ImageJ Fiji. The average value of relative
intensity of DAB staining of Parp-1 was 2.95 folds higher in odontoblast area (Figure 7g,m, and the
legend) and 1.83 folds higher in ameloblast area compared with Parp-1+/+ incisor (Figure 7h,n, and the
legend), respectively.

3.8. Immunochemical Analysis of Dentin Sialoprotein (DSP) and Bone Sialoprotein (BSP) in Parp-1+/+ and
Parp-1−/− Incisors

Next, expression and localization of dentin sialoprotein (DSP), a biomarker of dentin, and bone
sialoprotein (BSP), a biomarker of cementum and periodontal ligament, were analyzed using an
immunohistochemical method in the mixed genetic background of C57BL/6. Although we used serial
sections of each sample, direct merging of different immunohistochemical samples was not possible.
Strong expression of DSP was observed in the dentin area of aged Parp-1+/+ incisor (Figure 8a,d,f–h),
whereas weaker expression of DSP was sparsely observed inside aged Parp-1−/− incisor, which could
be considered as dentin area (Figure 8b,i,j,l–n).Cells 2019, 8, x 12 of 18 
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(g,h,m,n). Am, ameloblast; Od = odontoblast; E = enamel; D = dentin; P = pulp. Bars of (a,b) indicate 2 
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detectable in Parp-1−/− incisor (Figure 9n). BSP was not detected at the apex area of neither Parp-1+/+ and 
Parp-1−/− incisors nor in the dentin area of Parp-1+/+ incisor, however, a scattered expression pattern of 
BSP was observed in predentin, especially in the severe dental dysplasia area of Parp-1−/− incisor 
(Figure 9j,m; red arrows). To quantify the intensity of DAB staining for BSP staining in dentin area, 
the photos of both Parp-1+/+ and Parp-1−/− incisors represented in Figure 9 were analyzed by ImageJ 
Fiji. The average value of relative intensity of BSP positivity in dentin area was 2.54 folds higher in 
Parp-1−/− incisor compared with Parp-1+/+ incisor (Figure 9g, m, and the legend). Moreover, 
BSP-positive cells were observed both in pulp cavity and dentin areas in Parp-1−/− incisor (Figure 9j,m). 
These BSP-positive dentin area and pulp cells of Parp-1−/− incisor could be possible evidence of ectopic 
bone-like formation in dentin and osteoblast-like cells in pulp in aged Parp-1−/− incisor. 

Figure 8. Immunohistochemical analysis of dentin sialoprotein (DSP) expression in aged Parp-1+/+ and
Parp-1−/− incisors (C57BL/6). The expression of DSP protein in the sagittal plane of Parp-1+/+ (a) and
Parp-1−/− incisors (b). Ameroblasts, odontoblasts, pulp and enamel were not reactive to DSP in Parp-1+/+

incisors (c,e). Parp-1+/+ incisor showed thickly stained DSP at dentin area (d,f,g,h), whereas DSP was
sparsely stained at the corresponding area in Parp-1−/− incisor (i–n). Moreover, dentinal tubules were
clearly observed in dentin area in Parp-1+/+ incisors (g), however, they were hardly observed in Parp-1−/−

incisor (m, n). Semi-quantitative analysis showed that the average values of relative intensities of DSP
positivity in dentin area were 140.6 ± 10.9 and 59.1 ± 5.6 in Parp-1+/+ and Parp-1−/− incisors, respectively
(g,h,m,n). Am, ameloblast; Od = odontoblast; E = enamel; D = dentin; P = pulp. Bars of (a,b) indicate 2
mm. The representative results of a mouse for each genotype are shown.

To quantify the intensity of DAB staining for DSP staining in dentin area, the photos of both
Parp-1+/+ and Parp-1−/− incisors represented in Figure 8 were analyzed by ImageJ Fiji. The average
value of relative intensity of DSP positivity in dentin area was 2.38 folds higher in Parp-1+/+ incisor
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compared with Parp-1−/− incisor (Figure 8g,h,m,n, and the legend). Moreover, dentinal tubules were
clearly observed in dentin area of Parp-1+/+ incisor (Figure 8g), however, they were hardly observed in
Parp-1−/− incisor (Figure 8m,n).

From the result of DSP staining, dentin formation inside aged Parp-1−/− incisors was considered
ectopic and not fully matured.

On the other hand, the expression of BSP was observed in periodontal ligament of both aged
Parp-1+/+ (Figure 9a,f–h) and Parp-1−/− incisors (Figure 9b,l,n) but the level was weaker in Parp-1−/−

incisor. BSP was also observed in cementum of Parp-1+/+ incisor (Figure 9g,h), but was hardly detectable
in Parp-1−/− incisor (Figure 9n). BSP was not detected at the apex area of neither Parp-1+/+ and Parp-1−/−

incisors nor in the dentin area of Parp-1+/+ incisor, however, a scattered expression pattern of BSP was
observed in predentin, especially in the severe dental dysplasia area of Parp-1−/− incisor (Figure 9j,m;
red arrows). To quantify the intensity of DAB staining for BSP staining in dentin area, the photos of
both Parp-1+/+ and Parp-1−/− incisors represented in Figure 9 were analyzed by ImageJ Fiji. The average
value of relative intensity of BSP positivity in dentin area was 2.54 folds higher in Parp-1−/− incisor
compared with Parp-1+/+ incisor (Figure 9g, m, and the legend). Moreover, BSP-positive cells were
observed both in pulp cavity and dentin areas in Parp-1−/− incisor (Figure 9j,m). These BSP-positive
dentin area and pulp cells of Parp-1−/− incisor could be possible evidence of ectopic bone-like formation
in dentin and osteoblast-like cells in pulp in aged Parp-1−/− incisor.Cells 2019, 8, x 13 of 18 
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observed in Parp-1−/− incisor (n). Semi-quantitative analysis showed that the average values of 
relative intensities of BSP positivity in dentin area were 42.4 ± 2.7 and 107.8 ± 7.4 in Parp-1+/+ and 
Parp-1−/− incisors, respectively (g,m). Am, ameloblast; Od, odontoblast; E, enamel; D, dentin; P.L., 
periodontal ligament; P, pulp; A.B., alveolar bone. Arrows indicate the predentin area showing 
scattered BSP-positive area. Bars of (a,b) indicate 2 mm. The representative results of a mouse for 
each genotype are shown. 
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In this study, aged Parp-1−/− mouse incisors showed more frequent dental dysplasia and denticle 
formation in both ICR/129Sv mixed background and C57BL/6 strain, while aged Parp-1+/+ incisors 
showed only slight changes in both genetic backgrounds (Tables 1 and 2), though, dental dysplasia 
was not observed in younger mice or in molars or other teeth of aged mice in either genotype. 
Considering these results, Parp-1 would not be essential in dentinogenesis during development, but is 
possibly involved in the regulation of continuous dentinogenesis in the incisors at an advanced age. 

We analyzed aged Parp-1+/+ and Parp-1−/− incisors of both ICR/129Sv mixed genetic background 
and C57BL/6 strain histopathologically, but immunohistochemical analysis for incisors of the 
ICR/129Sv mixed genetic background was not successful using anti-Parp-1, DSP, and BSP 
antibodies, possibly because the incisor samples of the ICR/129Sv mixed genetic background were 
relatively older and not in good condition after long-term decalcification. We found that expression 
of Parp-1 was detected in the ameloblasts and odontoblasts in Parp-1+/+ incisor, whereas Parp-1 
protein expression was not detected anywhere in Parp-1−/− incisor (Figure 7b,i–n), as expected. The 

Figure 9. Immunohistochemical analysis of bone sialoprotein (BSP) expression of aged Parp-1+/+ and
Parp-1−/− incisors (C57BL/6). Expression of BSP in the sagittal plane of Parp-1+/+ (a) and Parp-1−/−

incisors (b). BSP was detected at periodontal ligament in both Parp-1+/+ (a,f,g,h ) and Parp-1−/− incisors
(b,l,n). BSP was also detected in dentin area of Parp-1−/− incisor (i–n; red arrows) but not in Parp-1+/+

incisor (a,c,d,e,g). Moreover, BSP positive cementum was observed as linear structure in Parp-1+/+

incisor between dentin and periodontal ligament (g,h; black arrows), whereas it was hardly observed in
Parp-1−/− incisor (n). Semi-quantitative analysis showed that the average values of relative intensities
of BSP positivity in dentin area were 42.4 ± 2.7 and 107.8 ± 7.4 in Parp-1+/+ and Parp-1−/− incisors,
respectively (g,m). Am, ameloblast; Od, odontoblast; E, enamel; D, dentin; P.L., periodontal ligament;
P, pulp; A.B., alveolar bone. Arrows indicate the predentin area showing scattered BSP-positive area.
Bars of (a,b) indicate 2 mm. The representative results of a mouse for each genotype are shown.
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4. Discussion

In this study, aged Parp-1−/− mouse incisors showed more frequent dental dysplasia and denticle
formation in both ICR/129Sv mixed background and C57BL/6 strain, while aged Parp-1+/+ incisors
showed only slight changes in both genetic backgrounds (Tables 1 and 2), though, dental dysplasia was
not observed in younger mice or in molars or other teeth of aged mice in either genotype. Considering
these results, Parp-1 would not be essential in dentinogenesis during development, but is possibly
involved in the regulation of continuous dentinogenesis in the incisors at an advanced age.

We analyzed aged Parp-1+/+ and Parp-1−/− incisors of both ICR/129Sv mixed genetic background
and C57BL/6 strain histopathologically, but immunohistochemical analysis for incisors of the ICR/129Sv
mixed genetic background was not successful using anti-Parp-1, DSP, and BSP antibodies, possibly
because the incisor samples of the ICR/129Sv mixed genetic background were relatively older and not
in good condition after long-term decalcification. We found that expression of Parp-1 was detected
in the ameloblasts and odontoblasts in Parp-1+/+ incisor, whereas Parp-1 protein expression was not
detected anywhere in Parp-1−/− incisor (Figure 7b,i–n), as expected. The role of poly(ADP-ribosyl)ation
during tooth development, including differentiation of ameloblasts and odontoblasts, enamel and
dentin formation, and cementum and periodontal ligament formation has not been reported, and no
aberration during tooth development was observed for exon1-, exon2-, and exon4-disrupted Parp-1
knockout mice [21]. However, it is reasonable to hypothesize that differentiation and/or proliferation
of ameloblasts and odontoblasts could be regulated by poly(ADP-ribosyl)ation, considering that
poly(ADP-ribosyl)ation is known to be involved in many cellular processes, including differentiation
of osteoblasts [26].

To confirm the effect of Parp-1 deficiency on tooth development in aged Parp-1−/− incisors,
immunohistochemical analysis of DSP and BSP was performed. Expression patterns of DSP and BSP
were different between Parp-1+/+ and Parp-1−/− incisors, respectively. Briefly, DSP was strongly positive
in the dentin area in Parp-1+/+ incisor, while DSP positive areas were weaker and sparsely observed
in Parp-1−/− incisor. The expression of BSP was detected in the cementum area of Parp-1+/+ incisor
but not in Parp-1−/− incisor. On the other hand, BSP expression was detected in the dentin area of
Parp-1−/− incisor, especially in severe dental dysplasia showing cell-like pattern, which suggested
possible ectopic osteogenesis in the dentin area, whereas it was negative in dentin of Parp-1+/+ incisor.
Therefore, the observed DSP and BSP detection pattern suggests that Parp-1 deficiency is likely to
cause failure of precise dentinogenesis in incisors at an advanced age. In addition to the results of
immunohistochemical analysis, CT images showed significantly higher relative calcification levels in
both enamel and dentin in Parp-1−/− mice (p < 0.05, Figure 6). It was not possible to analyze enamel or
enamel-related protein histopathologically, because it was lost by decalcification, which was required
for preparation of paraffin sections. It was notable that Parp-1 expression was detected in arrays of
ameloblasts and odontoblasts in Parp-1+/+ incisor, and relative calcification levels were significantly
higher in Parp-1−/− incisor, respectively.

Unexpectedly, the parameters of the general structure of incisors at an advanced age, including
volume of the tooth, that of pulp cavity, and thickness of pulp, did not exhibit statistically significant
differences between either genotype, and only pulp cavity showed a tendency to be smaller in Parp-1−/−

incisors. The reason why the parameters of the general structure did not show significant difference
could be the wide range of morphological variations in incisors of Parp-1−/− mice; Parp-1−/− incisors
showed varied thickness of pulp based on the diverse shapes of pulp cavities, for example, some of them
showed almost a closed pulp cavity because of the denticle structure inside of the incisors. As a result
of this, pulp thickness seems to be larger in Parp-1−/− incisors (Figures 3 and 4), however, there was
a tendency for a smaller pulp cavity in Parp-1−/− incisors (p = 0.181, Figure 5a). In this study, only
male mice were analyzed because it was preferred to analyze the effect of Parp-1 deficiency on dental
differentiation at an advanced age in the absence of the effect of the estrous cycle. However, a gender
difference of tooth formation has been reported using Trps1+/− (trichorhinophalangeal syndrome
heterozygous) mice showing significantly smaller crown and root volumes in female Trps1+/− mice
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compared with male Trps1+/− mice [31]. Trichorhinophalangeal syndrome is a skeletal dysplasia with
skeletal defects as well as dental abnormalities, where Trps1 gene regulates dental mineralization.
Although Parp-1 deficiency has not been reported to be associated with such autosomal dominant
genetic disorders, it could be possible that aged female Parp-1−/− incisors might show a difference
from male ones in their general structure, considering that dental mineralization could be affected
by gender. Therefore, possible gender differences should be studied further. From the view point of
skeletal structure, particular body growth inhibition was not observed in Parp-1−/− mice from body
weight comparisons between the two genotypes (data not shown). The eating behavior might not be
affected by Parp-1 deficiency, although Parp-1−/− mice in the C57BL6 strain showed a slightly lower
bodyweight from a young age as previously reported [32].

For an interim summary, it is suggested that the activity of Parp-1 in odontoblasts and ameloblasts
could be a direct key factor of dentinogenesis in an aged condition, based on our results. Parp-1 is known
as a nuclear protein, as well as cytoplasmic protein [33], and it is occasionally detected in the cytoplasm
in tissue staining [34]. We consider that Parp-1 activity either in nuclei or cytoplasm of Parp-1+/+ mice
could contribute as a possible differentiation regulator for odontoblasts and ameloblasts. Therefore,
the possible mechanism of Parp-1 involvement in odontogenic development of incisors at an advanced
age could be that (1) Parp-1 might be directly involved in regulation of DSP expression in odontoblasts;
(2) the loss of Parp-1 expression might cause a failure in differentiation from ectomesenchymal cells into
odontoblasts in Parp-1−/− incisors, which resulted in increased differentiation into osteoblasts; (3) the
layer formation of odontoblasts was also affected by the loss of Parp-1 expression. As a result, relative
calcification levels of enamel and dentin would become significantly higher in Parp-1−/− incisors.

There are other possible ways of indirect Parp-1 involvement in odontogenic differentiation.
Considering the three facts that (1) rodents’ incisors continuously grow throughout their lives, (2) Parp-1
deficiency is reported to accelerate senescence by causing genomic and epigenetic instabilities [35],
and (3) dentin and cementum are reported to be possible factors to estimate age [36], Parp-1 may
accelerate senescence, which affects odontogenic differentiation by losing the capacity for renewal
and regeneration.

To further understand how Parp-1 activity is involved in dentinogenesis/odontogenesis during
aging, various possible interacting factors, which are also related to dentinogenesis, must be
investigated—Wnt [37,38], hedgehog [39,40], Notch [41], and TGF-β signaling [42]—in relation
to poly(ADP-ribosyl)ation.

As a clinical importance, ectopic osteogenic formation in dentin has been reported in patients with
osteogensis imperfecta type I, III, IV with mutation of COLIA2 (MIM #120160) [43], and VII [43,44].
When it comes to more familiar clinical problems, patients with dental dysplasia and root canal
narrowing would definitely result in difficult root canal treatment for dentists and its success ratio
would decrease [45], followed by apical periodontitis, which causes pain, swelling, pus discharge,
and so on [46]. Therefore, if dental dysplasia in Parp-1−/− incisors could be a model of odontogenesis
imperfecta, dentinogenesis imperfect, or dental dysplsia, the analysis of PARP-1 aberration would be
a big key in looking for insights into not only these inherited autosomal dominant diseases, but also
treatment of root canal.

5. Conclusions

In this study, aged Parp-1−/− mouse incisors showed frequent dental dysplasia and denticle
formation in both ICR/129Sv mixed background and C57BL/6 strain, suggesting that Parp-1 deficiency
itself could be involved in development of dental dysplasia at an advanced age. Although Parp-1 is
not essential in dentinogenesis during development, Parp-1 is possibly involved in the regulation of
continuous dentinogenesis in the incisors at an advanced age.
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