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Recently, many studies have demonstrated that microRNAs (miRNAs) are new small

molecule drug targets. Identifying small molecule-miRNA associations (SMiRs) plays an

important role in finding new clues for various human disease therapy. Wet experiments

can discover credible SMiR associations; however, this is a costly and time-consuming

process. Computational models have therefore been developed to uncover possible

SMiR associations. In this study, we designed a new SMiR association prediction

model, RWNS. RWNS integrates various biological information, credible negative

sample selections, and random walk on a triple-layer heterogeneous network into a

unified framework. It includes three procedures: similarity computation, negative sample

selection, and SMiR association prediction based on random walk on the constructed

small molecule-disease-miRNA association network. To evaluate the performance of

RWNS, we used leave-one-out cross-validation (LOOCV) and 5-fold cross validation

to compare RWNS with two state-of-the-art SMiR association methods, namely,

TLHNSMMA and SMiR-NBI. Experimental results showed that RWNS obtained an AUC

value of 0.9829 under LOOCV and 0.9916 under 5-fold cross validation on the SM2miR1

dataset, and it obtained an AUC value of 0.8938 under LOOCV and 0.9899 under 5-

fold cross validation on the SM2miR2 dataset. More importantly, RWNS successfully

captured 9, 17, and 37 SMiR associations validated by experiments among the predicted

top 10, 20, and 50 SMiR candidates with the highest scores, respectively. We inferred

that enoxacin and decitabine are associated with mir-21 and mir-155, respectively.

Therefore, RWNS can be a powerful tool for SMiR association prediction.

Keywords: SMiR associations, randomwalk, negative sample selection, triple-layer heterogeneous network, drug

repositioning

1. INTRODUCTION

miRNA is a small non-coding RNA molecule found in human beings, animals, plants, and even
viruses (Bartel, 2004; Borges andMartienssen, 2015; Gebert andMacRae, 2019; Zhang et al., 2019b).
miRNA can regulate gene expression and influence basic cellular functions, including proliferation,
differentiation, and death (Lu et al., 2005; Gong et al., 2019). Overexpression and misregulation of
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miRNAs can result in great regulatory upheavals in the cell
(Lu et al., 2005; Croce, 2009; Shigemizu et al., 2019) and
produce phenotypes of human disease states (Trang et al., 2009;
Chen et al., 2017a). For example, miR-21 is a well-known
oncogenic miRNA, and its overexpression may result in onset
of a variety of cancers, including ovarian, breast, lung, and
gastric cancers (Esteller, 2011; Simonian et al., 2018). In Gastric
Cancer (GC), its upregulation may lead to the suppression of
tumor-suppressor genes, including PTEN, RECK, and PDCD4
(Kim et al., 2013), and promote proliferation, migration, and
apoptosis inhibition (Zhang et al., 2008). Although miRNAs
were discovered in the early 1990s (Lee et al., 1993; Wightman
et al., 1993), related research did not achieve further progress
until the 2000s (Reinhart et al., 2000; Lau et al., 2001). Many
research studies have suggested that miRNAs play important
roles in controlling many severe diseases, and miRNA can
associate with diseases. Many computational models have been
proposed to mine associations between miRNA and disease, such
as AMVML (Liang et al., 2019), LPLNS (Li et al., 2018), and
GRNMF (Xiao et al., 2017). Most drugs are composed of small
molecules with a low molecular weight(<900 Daltons) (Huangfu
et al., 2008). Small molecule drugs can regulate numerous
cellular processes and thus heal diverse complex diseases (Lamb
et al., 2006; Warner et al., 2018; Zhang et al., 2019a). More
importantly, small molecules can inhibit miRNA pathways and
regulate the metabolisms of humans (Sonnenburg and Bäckhed,
2016). New clues have been provided for various human disease
therapies, including immune disorders and cancers, based on
small molecules targeting miRNAs (Sevignani et al., 2006; Zhang
et al., 2010; Abba et al., 2017; De Santi et al., 2017). For example,
small molecules can inhibit the expression of miR-21 to activate
tumor-suppressor genes by targeting miR-21 (Masoudi et al.,
2018). Therefore, it has become a new therapy for human
diseases to find miRNAs interacting with small molecules. Wet
experiments discovered several Small Molecule drug-miRNA
(SMiR) associations (Qu et al., 2018; Chen et al., 2020); however,
this is a costly and time-consuming process. Therefore, various
computational models are currently being explored to uncover
potential SMiR associations based on small molecule similarity,
the disease phenotype similarity of miRNA, and the SMiR
association network (Monroig et al., 2015; Chen et al., 2020).
Lv et al. (2011) and Qu et al. (2018) proposed SMiR association
models based on random walk with restart. Jiang et al. (2012)
identified new SMiR associations based on the expression
difference of miRNA target genes and therapy drugs from 17
different cancers. Meng et al. (2014) explored a systematic
computational model (smiRN-AD) to construct a bioactive SMiR
association Network. smiRN-AD integrated gene expression data
from bioactive small molecule perturbation and Alzheimer’s
disease-related miRNA regulation. Li et al. (2016) designed a
network-based miRNA pharmacogenomic model, SMiR-NBI,
integrating relevant biological information, including drugs,
miRNAs, genes, and a network-based inference approach into
a unified framework. SMiR-NBI effectively discovered potential
response mechanisms of anticancer drugs targeting miRNAs
and found that miRNAs may be underlying pharmacogenomic
biomarkers in cancers. Chen et al. (2017b) developed an

NRDTD database. NRDTD provides 165 non-coding RNA-drug
associations supported by wet and clinical experiments from 96
drugs and 97 non-coding RNAs. Wang et al. (2019) developed
a random forest-based SMiR prediction model, RFSMMA. Zhao
et al. (2020) found SMiR association candidates based on
symmetric non-negative matrix factorization and Kronecker
regularized least squares. Yin et al. (2019) discovered underlying
SMiR association-based sparse learning and heterogeneous
graph inference. Qu et al. (2019) identified possible SMiR
associations based on the HeteSim algorithm. These methods
effectively improved SMiR association prediction performances.
However, no negative samples (non-associating SMiR pairs)
were available for validation. Therefore, these models had to
randomly select parts of unobserved small molecule-miRNA
pairs (unlabeled samples) as negative samples. However, these
extracted negative samples probably contained positive SMiR
associations, and this thus severely affects the prediction
performance of computational models. More importantly,
some methods, for example, TLHNSMMA (Qu et al., 2018),
require numerous computational resources. Inspired by graph
embedding methods on biomedical networks (Yue et al.,
2020), we developed a new SMiR association prediction model,
RWNS, integrating credible negative sample selection, random
walk with restart, and diverse biological information into a
unified framework. It includes three procedures: similarity
computation, negative sample selection, and SMiR association
prediction based on random walk with restart on the constructed
small molecule-disease-miRNA association network (triple-layer
network). RWNS computed small molecule similarity based on
side effects, chemical structures, disease phenotypes, and gene
functional consistency and miRNA similarity based on disease
phenotypes and gene functional consistency. RWNS selected
highly credible negative SMiR associations based on obtained
similarity information. RWNS then iteratively performed a
random walk with restart on the constructed triple-layer
heterogeneous network to propagate association information
and discover SMiR candidates. To evaluate the performance of
RWNS, we used leave-one-out cross-validation (LOOCV) and
5-fold cross validation to compare RWNS with two state-of-the-
art SMiR association methods, namely, TLHNSMMA and SMiR-
NBI. Experimental results showed that RWNS obtained better
improvement, and enoxacin and decitabine may be associated
with mir-21 and mir-155, respectively. Therefore, RWNS could
be a powerful tool for SMiR association prediction.

2. MATERIALS AND METHODS

2.1. Small Molecule-miRNA Associations
The SMiR association network was obtained from the
SM2miRdatabase (Liu et al., 2012). There are 664 experimentally
validated SMiR associations in the database. Two datasets
were applied to compare the performance of RWNS with two
state-of-the-art methods, TLHNSMMA and SMiR-NBI. Dataset
1 (SM2miR1) contained 831 small molecules and 541 miRNAs.
Dataset 2 (SM2miR2) contained 39 small molecules and 286
miRNAs. Only a part of the small molecules and miRNAs
were involved in the known 664 SMiR associations from the
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SM2miRdatabase in dataset 1; however, all small molecules and
miRNAs were fully involved in the known 664 SMiR associations
in dataset 2.

An adjacency matrix Msm was used to indicate the known
SMiR associations. The value of Msm(i, j) was 1/664 if a small
molecule s(i) interacted with an miRNA m(j), and otherwise it
was 0. Furthermore, variables s andmwere defined as the number
of small molecules and miRNAs, respectively.

Msm(s(i),m(j)) =

{

1/664 s(i) is related tom(j)
0 otherwise

(1)

2.2. Human miRNA-Disease Associations
Human miRNA-disease association data was obtained from
the HMDD database (v2.0) (Li et al., 2013). We performed
the same preprocessing as TLHNSMMA and deleted disease-
related miRNAs that were not involved in the known 664
SMiR associations. As a result, we downloaded 6,233 miRNA-
disease interactions and constructed an adjacency matrix Mmd

to indicate miRNA-disease associations. The value of Mmd(i, j)
was 1/6, 233 if an miRNAm(i) interacted with a disease d(j), and
otherwise it was 0. Variablesm and d were defined as the number
of miRNAs and diseases, respectively.

Mmd(d(i),m(j)) =

{

1/6233 d(i) is related tom(j)
0 otherwise

(2)

2.3. Small Molecule Similarity
2.3.1. Side Effect Similarity
We downloaded side-effect information on small molecules from
the SIDER database (Kuhn et al., 2010). Two small molecules are
more similar if they share more side effects based on guilt-by-
association. The similarity value is 0 if two small molecules do
not share any side effects. Suppose that N(i) represents a side
effect set related to a small molecule s(i); SMside

s (i, j) indicates
side effect similarity between sm(i) and sm(j). We computed side-
effect similarity of small molecules based on the Jaccard formula
via Equation (3). |X| represents the cardinality of set X.

SM
side
s (sm(i), sm(j)) = Jaccard =

|N (i) ∩ N
(

j
)

|

|N (i) ∪ N
(

j
)

|
(3)

2.3.2. Chemical Structure Similarity
SIMCOMP (Hattori et al., 2003) (http://www.genome.jp/tools/
simcomp) is a graph-based tool that can be used to compute small
molecule similarity based on chemical structures extracted from
the COMPOUND and DRUG sections of the KEGG LIGAND
database (Kanehisa et al., 2012). We used the tool to search a
maximal share sub-graph isomorphism between small molecules
sm(i) and sm(j) and computed their chemical structure similarity
SM

ch
s (i, j).

2.3.3. Disease Phenotype-Based Similarity
We extracted small molecule-related diseases from Comparative
Toxicogenomics Database (CTD) (Davis et al., 2013), DrugBank
(Kuhn et al., 2010), and Therapeutic Targets database (TTD)
(Zhu et al., 2011). Based on the assumption that two small

molecules are more similar if they share more diseases, disease
phenotype-based similarity SMdis

s

(

i, j
)

between small molecules
sm(i) and sm(j) can be computed via Equation (4).

SM
dis
s

(

sm(i), sm(j)
)

=
|S (i) ∩ S

(

j
)

|

|S (i) ∪ S
(

j
)

|
(4)

2.3.4. Gene Functional Consistency-Based Similarity
We extracted target genes of small molecules from DrugBank
(Law et al., 2013) and TTD (Li et al., 2017). Based on the
assumption that two target genes tend to be more similar
if they share more functional consistency, we can compute
functional consistency-based similarity SM

tar
s (i, j) between two

small molecules sm(i) and sm(j) via the Gene Set Functional
Similarity (GSFS) method provided by Lv et al. (2011).

2.3.5. Fused Small Molecule Similarity
We designed a weighted combination technique to fuse small
molecule side effects, chemical structures, gene functions, and
diseases phenotypes. The weighted combination technique can
decrease the deviation of each separated similarity and balance
the four different similarities. The fused small molecule similarity
SMs can defined as shown via Equation (5).

SM =
(

δ1SM
side
s + δ2SM

ch
s + δ3SM

dis
s + δ4SM

tar
s

)

/

4
∑

i

δi (i = 1, 2, 3, 4)

(5)

Here, the default value δi = 1 indicates that the four different
similarities have the same weight.

2.4. miRNA Similarity
2.4.1. Disease Phenotype-Based Similarity
We extractedmiRNA-related diseases fromHMDD v2.0 (Li et al.,
2013), miR2Disease (Jiang et al., 2008), and PhenomiR (Ruepp
et al., 2010). Based on the assumption that two miRNAs are more
similar if they share more diseases, we could compute the disease
phenotype-based similarity of miRNAs by using the Jaccard
equation. Suppose that M(i) indicates the miRNA m(i)-related
disease set. The disease phenotype-based similarity MR

dis
s (i, j)

between two miRNAs mir(i) and mir(j) can be calculated
via Equation (6).

MR
dis
s

(

mir(i),mir(j)
)

=
|M (i) ∩M

(

j
)

|

|M (i) ∪M
(

j
)

|
(6)

2.4.2. Gene Functional Consistency-Based Similarity
We extracted the target genes of miRNA from the TargetScan
database (Friedman et al., 2009), and we calculated the functional
consistency-based similarity MR

tar
s (mir(i),mir(j)) between two

miRNAsmir(i) andmir(j) based on GSFS (Lv et al., 2011).

2.4.3. Fused miRNA Similarity
We designed a weighted combination technique to fuse
miRNA gene functions and diseases phenotypes. The weighted
combination technique can decrease the deviation of each
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separated similarity and balance the two different similarities.
The fused miRNA similarityMR can be defined as Equation (7).

MR =
(

γ1MRdism + γ2MRtarm

)

/

2
∑

i

γi (7)

where the default value γi =1 indicates that the two similarities
have the same weight.

2.5. Disease Similarity
We computed disease similarity based on the disease semantic
similarity model designed by Qu et al. (2018).

2.5.1. Disease Semantic Similarity Method 1
We downloaded disease semantic information from the U.S.
National Library of Medicine (MeSH) (http://www.nlm.nih.gov/
mesh/) and constructed a disease similarity matrix DS based on
its Directed Acyclic Graph (DAG) (Chen et al., 2016). Suppose
that DAG(Dis) = (Dis, Set(Dis),E(Dis)) represents a disease Dis,
where Set(Dis) is a node set containing Dis and its ancestors, and
E(Dis) is an edge set containing edges between child and parent
nodes. The semantic similarity of diseases based on DAG can be
computed via Equation (8):

DDis(d) =

{

1 if d = Dis
max{α ∗ DDis(d|d

′ ∈ children of d)} if d 6= Dis
(8)

where α represents the semantic contribution factor, and the
semantic contribution value of a disease to itself is 1. The
semantic contribution of disease d to Dis will decrease when
the distance between d and Dis increases. The semantic value of
disease Dis can be calculated via Equation (9).

DS1 (Dis) =
∑

d∈Set(Dis)

DDis

(

d
)

(9)

Based on the assumption that two diseases sharing more DAGs
are more similar, we computed the semantic similarity between
two diseases d(i) and d(j) as

SSd1

(

d(i), d(j)
)

=

∑

t∈Set(d(i))∩Set(d(j))

(Disd(i)(t)+ Disd(j)(t))

DS1(d(i))+ DS1(d(j))
(10)

2.5.2. Disease Semantic Similarity Method 2
According to the results provided by Qu et al. (2018), different
disease terms included in the same layer of aDAG(D) may appear
in multiple disease DAGs, and furthermore, the number of their
occurrences may be different. For example, for two diseases, d(i)
and d(j), that appear in the same layer of the DAG(D), d(i) may
appear less in disease DAGs than d(j). We can infer that d(i)
may be more specific than d(j). Therefore, the contribution of
d(i) to the semantic value of D should be higher than d(j). The
contribution can be represented:

DisD2(d(i)) = − log

[

The number ofDGAs including d(i)

The number of diseases

]

(11)

The semantic similarity between d(i) and d(j) based on disease
semantic similaritymethod 2 can be computed via Equation (12).

SSd2

(

d(i), d(j)
)

=

∑

t∈Set(d(i))∩Set(d(j))

(Disd(i)2(t)+ Disd(j)2(t))

DS1(d(i))+ DS1(d(j))
(12)

2.5.3. Gaussian Interaction Profile Kernel Similarity

for Disease Similarity
Based on the “guilt-by-association” principle, similar diseases
tend to associate with miRNAs that share more functions.
Suppose that a binary vector ID(d(u)) represents the interaction
profile of disease d(u) associated with miRNAs: its value is set
as 1 if d(u) associates with an miRNA, otherwise the value is 0.
The Gaussian interaction profile kernel similarity between d(i)
and d(j) is calculated as:

GS
(

d(i), d(j)
)

= exp
(

−γd||ID(d(i))− ID(d(j))||2
)

(13)

where parameter γd is applied to determine the kernel
bandwidth. This can be computed by standardizing a new
bandwidth γd

′:

γd =
γd

′

( 1
nd

nd
∑

n=1
||ID(d(i))||2)

(14)

2.5.4. Fused Disease Similarity
We could calculate the semantic similarity for many diseases
based on their DAGs. However, we could not obtain DAGs for
a few diseases and calculate their semantic similarity. Therefore,
the Gaussian interaction profile kernel was used to measure
the similarity for these diseases. Accordingly, we developed an
integrated disease similarity measurement Ds based on disease
semantic similarity method 1, disease semantic similarity method
2, and the Gaussian interaction profile kernel similarity. The
formulation can be computed as shown via Equation (15).

Ds(d(i), d(j)) =

{

SSd1(d(i),d(j))+SSd2(d(i),d(j))
2 if there is semantic similarity

GS(d(i), d(j)) otherwise

(15)

3. RWNS

We developed an SMiR association prediction pipeline, RWNS.
RWNS integrated a credible negative sample selection, random
walk with restart, and diverse biological information. First, small
molecule similarity, miRNA similarity, and disease similarity
were computed. Highly credible negative SMiR associations were
then selected based on the obtained similarity information, and
random walks with restart were iteratively performed on the
constructed triple-layer heterogeneous network to propagate
association information and discover SMiR candidates. The
details are shown in Figure 1.

3.1. Selecting Credible Negative SMiR
Samples
High-quality negative samples can improve predictive
performance. A lack of negative SMiR association samples
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FIGURE 1 | The flowchart of RWNS.

can result in predictive bias. Consequently, it is important to
integrate credible negative samples into the SMiR association
prediction model. However, there is currently no public
data repository that can provide negative SMiR association
samples. Therefore, inspired by the negative compound-
protein interaction selection method provided by Liu et al.
(2015), we developed a Credible Negative Sample extraction
method, CNSMiRS, to obtain high-quality negative SMiR
association samples.

Existing SMiR association prediction techniques are based
on the assumption that similar small molecules/miRNAs are
more likely to associate with miRNAs/small molecules that
are more similar to the corresponding known miRNAs/small
molecules. Based on the converse negative proposition of this
assumption, CNSMiRS assumes that a small molecule dissimilar
to every known small molecule targeting an miRNA is unlikely to
associate with this miRNA. Similarly, anmiRNA dissimilar to any
knownmiRNA interacting with a small molecule is unlikely to be
targeted by this small molecule. For simplicity, we represent them

as the small molecule dissimilarity rule and miRNA dissimilarity
rule, respectively. Both rules are used to select the most credible
negative SMiR samples. This process is summarized in Algorithm
1, as can be seen in Figure 2.

As shown in Algorithm 1, the fused similarity for each pair
of small molecules/miRNAs is firstly computed via Equations (5)
and (7). Known SMiR association data are then applied to build
positive sample assembly K in the preprocessing step. Potential
negative association between small molecule SM(k) and miRNA
MR(j) is denoted as (SMk,MRj, dkj) with dkj representing the
distance between small molecule SM(k) and miRNA MR(j). dkj
can be computed as follows.

a. For any small molecule SM(l) targeting miRNA MR(k) in
K, CNSMiRS calculates the weighted score SSMjkl = wkl ∗

SMjl that represents the probability of small molecule SM(j)
targeting miRNAMR(k) by considering the similarity between
SM(j) and SM(l). Integrating the similarity between SM(j)
and each known small molecule SM(l) targeting MR(j), i.e.,

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 March 2020 | Volume 8 | Article 131

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Liu et al. RWNS

Algorithm 1: Credible negative SMiR association sample
extraction (CNSMiRS).

Input: Matrix Sm(miRNA similarity), Ss(small molecule
similarity), B(SMiR association matrix)

Output: CNSMiRs (Credible Negative SMiR samples)
1: l = the number of small molecule targeting miRNA
MR(k)
2: wkl = B(k, l)
3: SMjl = Ss(j, l)
4: SSMjkl(SM(j),MR(k)) = wkl ∗ SMjl

5: SSMjk(SM(j),MR(k)) =
∑

l

SSMjkl.

6: i = the number of miRNA targeting small molecule
SM(j)
7: wij = B(i, j)
8:MRik = Sm(i, k)
9: SMRkji(MR(k), SM(j)) = wij ∗MRik

10: SMRkj(MR(k), SM(j)) =
∑

i
SMRkji

11: dkj = e−(SSMjk+SMRkj)

12: Rank the possible negative SMiR associations based
on dkj and select those with the highest dkj as CNSMiRs.
13: Return CNSMiRs

(SMk,MRj,wkl) ∈ K, CNSMiRS computes the associated
possibility by summing up the weighed scores SSMjkl related
to small molecule SM(l) and thus obtains SSMjk =

∑

l

SSMjkl.

b. Similarly, CNSMiRS calculates the weighed score
SMRkji = wij ∗MRik, which indicates the probability
of miRNA MR(k) targeted by small molecule SM(j) by
considering the similarity between MR(k) and MR(i).
Integrating the similarity between MR(k) and each known
miRNA MR(i)-targeted SM(j), i.e., (MRi, SMj,wij) ∈ K,
CNSMiRS computes the associated possibility by summing up
the weighed scores SMRkji related to miRNA MR(i) and thus
obtains SMRkj =

∑

i
SMRkji.

c. For small molecule SM(j) and miRNA MR(k), CNSMiRS
calculates the distance between SM(j) andMR(k):

dkj = e−(SSMjk+SMRkj) (16)

where dkj represents the final possibility that small
molecule SM(j) does not associate with miRNA MR(k).
The larger the dkj is, the higher the probability of SM(j) not
targetingMR(k) is.

Finally, CNSMiRS ranks negative SMiR association scores based
on dkj and selects those with the highest scores as negative
SMiR samples.

3.2. Random Walk on Triple-Layer
Heterogeneous Network
Peng et al. (2017) developed a protein function prediction
algorithm, ThrRW, based on unbalanced random walks on
three biological networks. ThrRW (Peng et al., 2017) obtained a

better predictive performance. Inspired by ThrRW (Peng et al.,
2017), we designed an SMiR association algorithm, RWNS,
based on the constructed triple-layer heterogeneous network
(Figure 3). Suppose that matrix B(M ∗ N) and C(N ∗ Z)
represent known SMiR and known miRNA-disease association
matrix, respectively. The values of entities in these matrices
are 1 (there are associations between corresponding entities)
and 0 (otherwise). Sd(Z ∗ Z), Ss(M ∗M), and Sm(N ∗ N) are
the fused disease similarity matrix, small molecule similarity
matrix, and miRNA similarity matrix, respectively. SM(M ∗

N), MD(N ∗ Z), and SD(M ∗ Z) represent predicted SMiR
associations, miRNA-disease associations, and small molecule-
disease associations, respectively. The value of SM(i, j) represents
the probability of a small molecule i associating with an
miRNA j. Similarly, MD(i, j) represents the probability that an
miRNA i associates with a disease j, and SD(i, j) represents
the probability that a small molecule i associates with a
disease j.

The aim of our study was to predict possible SMiR associations
according to known association information. We obtained
this information by iteratively updating matrix SM. The basic
assumption is that the higher the similarity between the two
small molecules, the higher the possibility that they interact with
the same miRNA. Similarly, the higher the similarity between
the two small molecules, the higher the possibility that they
are associated with the same disease. RWNS developed three
ways to update SM based on the assumption. Firstly, random
walk steps (denoted by l1) were conducted in small molecule
similarity network (Ss) to propagate small molecule association
information from their direct to level-l1 neighbors. Secondly,
several random walk steps (denoted by r1) were conducted in
the miRNA similarity matrix (Sm) so that miRNAs could interact
with common small molecules based on their direct to level-
r1 neighbor information. Thirdly, miRNA-disease associations
were transferred to small molecules through the known small
molecule-disease associations (SD). Considering the difference
between the small molecule similarity network and the miRNA
similarity network, it is clear that the steps walking in these
two networks are different (l1 steps in the small molecule
similarity matrix, and r1 steps in the miRNA similarity matrix).
Mathematically, the random walk process can be described
via Equations (17–19).

SM
t = α ∗ Ss ∗ SM

t−1 + (1− α) ∗ B (17)

SM
t = α ∗ SMt−1 ∗ Sm+ (1− α) ∗ B (18)

SM
t = SD ∗ (MD

t−1)′ (19)

As Equation (17) and (18) show, at each random walk step,
small molecule and miRNA paths were extended (obtained by
multiplying Ss on the left and Sm on the right), and some possible
SMiR associations were thus found (achieved by updating matrix
SM). The parameter t(t = 1, 2, . . . ) is the iteration steps.MatrixB
as prior knowledge controls the iteration process. The parameter
α ∈ [0, 1] is used to penalize longer paths and control the
weight of known associations in B. Because small molecules are
more likely to associate with similar miRNAs, several random
walks were conducted in both association networks to achieve
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FIGURE 2 | The flowchart of extracting credible negative SMiR samples.

FIGURE 3 | Small molecule-disease-miRNA association network.

association information of its local neighbors. Because Ss and Sm

are different in structure and topology, two parameters (r1 and l1)
were introduced to regulate maximal iteration steps in these two
similarity networks. As shown in Equation (19),MD

t−1 stores the
predicted miRNA-disease associations in the (t-1)-th step. There
are some SMiR associations (stored in matrix SD). Therefore,
if two small molecules associate with a common disease, they

may interact with a common miRNA, which is obtained by
multiplying matrix SD on the left hand of matrix (MD

t−1).
On the other hand, associationmatrixMD can also be updated

in the manner similar to that of SM. Mathematically, the random
walk process can be described as

MD
t = α ∗ Sm ∗MD

t−1 + (1− α) ∗ C (20)
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MD
t = α ∗MD

t−1 ∗ Sd + (1− α) ∗ C (21)

MD
t = (SMt−1)′ ∗ SD (22)

As shown in Equations (20) and (21), several random walks
were conducted in Sm and Sd, respectively. In each random walk
step, some potential miRNA-disease associations (obtained by
updating matrix MD) could be uncovered by extending miRNA
and disease paths in their corresponding networks (obtained by
multiplying Sm on the left and Sd on the right in each iteration).
Matrix C stores known miRNA-disease associations that are used
to control the iteration process. Different random walk steps
were conducted in two similarity networks (Sm and Sd), by
performing different iteration steps (l2 steps in Sm and r2 steps in
Sd). Based on small molecule-disease associations, the predicted
SMiR association information can also be transferred to diseases
associated with common miRNAs by Equation (22).

In summary, RWNS integrated a credible negative sample
selection, random walk on a triple-layer heterogeneous network,
and various biological information into a unified framework. The
details are shown in Algorithm 2. The predicted SMiR association
scores based on RWNS in SM2miR2 and SM2miR1 were listed in
Supplementary Material (Tables S1, S2).

4. RESULTS

4.1. Experimental Setup and Evaluation
Metrics
In this study, we performed extensive experiments to evaluate the
performance of RWNS. We used leave-one-out cross validation
(LOOCV) and 5-fold cross validation to compare RWNS
with two state-of-the-art SMiR association methods, namely,
TLHNSMMA and SMiR-NBI.

4.1.1. Experimental Setup
Parameter α with range [0,1] was used to determine whether
the known association state need change based on known SMiR
associations (or miRNA-disease associations). In the manuscript
provided by Peng et al. (2017), ThrRW obtained the best
performance when the parameter α was set as 0.45. Considering
the difference between ThrRW and RWNS, RWNS repeated the
experiment 100 times and obtained the optimal performance
when α was set as 0.4. Therefore, RWNS set α as 0.4. The four
parameters l1, r1, l2, and r2 ranged from 1 to 4. Parameters l1 and
r1 were used to regulate random walk steps in miRNA and small
molecule similarity matrices, respectively. Parameters l2 and r2
were used to regulate random walk steps in disease and miRNA
similarity matrix, respectively. The experiments were repeated
100 times. When parameters l1, r1, l2, and r2 were set as 4, 1, 1,
and 1, respectively, RWNS obtained the best performance. We
therefore set the five parameters as α = 0.4, l1 = 4, r1 = 1,
l2 = 1, and r2 = 1. The parameters TLHNSMMA and SMiR-NBI
were set as the values provided by their corresponding papers.

4.1.2. Evaluation Metrics
Recall, precision, accuracy, and AUC are extensively used to
evaluate different association prediction models. We used these
four metrics to measure the performance of RWNS. Recall is the

Algorithm 2: Identifying SMiR associations based on a
credible negative sample selection and random walk on
triple-layer heterogeneous network(RWNS).

Input: Matrix Sm(miRNA similarity), Sd (disease similarity),
Ss (small molecule similarity), SD (small molecule-disease
association matrix), B (known SMiR association matrix),
CNSMiR (selected negative sample matrix), C
(miRNA-disease association matrix); α, l1, r1, l2, r2.

Output: The predicted association score matrix SM (SMiR
association matrix) andMD (miRNA-disease association
matrix).
SM

0 = B
sum(B)

+CNSMiR;

MD
0 = C

sum(C)
;

for (t = 1 tomax(l1,r1,l2,r2)) do
M = max(l1, r1, l2, r2)
for t = 1 :M

x1 = 0, x2 = 0, x3 = 0
if t <= l1

SM1
t = α ∗ Ss ∗ SM

t−1 + (1− a) ∗ B
SM2

t = SD ∗MD
t−1

x1 = 1, x2 = 1
else

SM3
t = α ∗ SMt−1 ∗ Sm + (1− a) ∗ B

x3 = 1
end

SM
t = (x1 ∗ SM1

t + x2 ∗ SM2
t + x3 ∗ SM3

t)/
(x1 + x2 + x3)

x4 = 0, x5 = 0, x6 = 0
if t<=l2

MD1
t = α ∗ Sm ∗MD

t−1 + (1− a) ∗ C
MD2

t = SM
t−1′ ∗ SD

x4 = 1, x5 = 1
else

MD3
t = α ∗MD

t−1 ∗ Sd + (1− a) ∗ C
x6 = 1
end

MD
t = (x4 ∗MD1

t + x5 ∗MD2
t + x6 ∗MD3

t)/
(x4 + x5 + x6)
end

end

return(SM, MD)

proportion of successfully predicted SMiR associations. Precision
is the proportion of correctly predicted SMiR associations.
Accuracy is the proportion of correctly predicted positive and
negative SMiR associations. AUC is the area under ROC (the
Receiver Operating Curve). For these four metrics, higher
values indicate better prediction performance. We used these
four metrics to evaluate our proposed RWNS framework. In
the following two sections, experiments were performed under
RWNS considering credible negative SMiR association samples.
The metrics can be defined as

recall =
TP

TP + FN
(23)
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TABLE 1 | Confusion matrix of a binary classifier.

True class = 1 True class = −1

Predicted class = 1 True positive (TP) False positive (FP)

Predicted class = −1 False negative (FN) True negative (TN)

precision =
TP

TP + FP
(24)

accuracy =
TP + TN

TP + FP + TN + FN
(25)

where TP, FP, and FN are defined in Table 1.

4.2. Performance Evaluation Under LOOCV
We performed LOOCV based on the known SMiR associations
in the SM2miRdatabase (Liu et al., 2012) to measure the
performance of RWNS. RWNS was compared with two state-
of-the-art SMiR prediction methods: SMiR-NBI (Li et al.,
2016) and TLHNSMMA (Qu et al., 2018) in LOOCV. SMiR-
NBI designed a network-based inference method to identify
new SMiR associations. TLHNSMMA integrated SM similarity,
miRNA similarity, disease similarity, experimentally verified SM-
miRNA associations, and miRNA-disease associations into a
heterogeneous network. The same datasets were used in these
three methods. There were 664 known small molecule-miRNA
associations between 831 small molecules and 541 miRNAs in
dataset 1 (SM2miR1) and 664 known SMiR associations between
39 small molecules and 286 miRNAs in dataset 2 (SM2miR2).
In LOOCV, each known SMiR association was chosen as the
test sample in turn, and the remaining associations were used
as the training samples. We conducted a series of experiments
according to different negative sample selection proportion.
Table 2 showed the AUC values for these three methods based
on different negative sample selection proportion in two datasets.
The best performance was described in boldface in each row
in Table 2.

As a result, RWNS and TLHNSMMA were superior to
SMiR-NBI in two datasets. Moreover, RWNS is comparable to
TLHNSMMA in LOOCV. When the negative sample selection
proportion increased from 10 to 100%, the performance of the
three computational models were relatively steady, and that of
RWNS did not almost change in the SM2miR1 dataset. However,
the AUC values slightly changed when the proportion increased
in the SM2miR2 dataset, and these three methods obtained better
performances when the negative sample selection proportion was
1, i.e., the number of negative samples was equal to the number
of positive samples. AUCs in RWNS with dataset SM2miR1 and
SM2miR2 reached 0.9829 and 0.8938, respectively. The details are
shown in Figure 4.

4.3. Performance Evaluation Under 5-Fold
Cross Validation
We performed 5-fold cross validation based on the known SMiR
associations in the SM2miRdatabase (Liu et al., 2012) to evaluate
the performance of RWNS. Similarly, RWNS was compared

with two state-of-the-art SMiR prediction methods-SMiR-NBI
(Li et al., 2016) and TLHNSMMA (Qu et al., 2018)-using 5-
fold cross validation on two datasets. Tables 3, 4 showed AUC,
recall, precision, and accuracy of these three methods with 5-
fold cross validation based on two datasets. The best performance
was described in boldface in each row in Tables 3, 4. The
predicted SMiR association scores based on RWNS were shown
in Tables S3, S4.

Table 3 showed the performance of RWNS, TLHNSMMA,
and SMiR-NBI based on AUC, recall, precision, and accuracy
in the SM2miR1 dataset. As a result, regardless of negative
sample selection proportion, RWNS obtained the best AUC,
recall, and accuracy compared with SMiR-NBI and TLHNSMMA
in SM2miR1. Although the performance of RWNS was not
the best among these three methods according to different
negative sample selection proportions, it was still fit for
comparison. The results demonstrated that RWNS could better
identify possible SMiR associations. Moreover, RWNS and
TLHNSMMA outperformed SMiR-NBI on AUC, recall, and
accuracy. SMiR-NBI obtained the highest precision when
negative sample selection proportion increase from 10 to 100%.
It showed that SMiR-NBI could correctly predict more SMiR
associations. More importantly, RWNS achieved the highest
AUC of 0.9916, recall of 0.9955 and accuracy of 0.9879 when
the negative sample selection proportion was 100%. Based on the
comprehensive measurement of the experimental results, RWNS
gave the optimal performance, followed by TLHNSMMA and
SMiR-NBI. The details are shown in Figure 5.

Table 4 showed the performance of RWNS, TLHNSMMA,
and SMiR-NBI based on AUC, recall, precision, and accuracy
in the SM2miR2 dataset. None of these three methods
outperformed the other two methods when the negative sample
selection proportion changed, and this may be caused by different
data structures. Moreover, when the negative sample selection
proportion was 0.7, RWNS obtained a better performance, and
AUC, recall, precision, and accuracy were 0.9899, 0.9855, 0.9136,
and 0.8325, respectively. The details are shown in Figure 6.

4.4. Performance Comparison Considering
CNSMiRS or Not
In this section, we analyzed the effect of credible negative
sample selection on predictive performance. We compared
RWNS+CNSMiRS (RWNS considering negative sample
selection) with RWNS-CNSMiRS (RWNS not considering
negative sample selection). The results are shown in Table 5.
As shown in Table 5, RWNS+CNSMiRS resulted in a better
performance than RWNS-CNSMiRS in two datasets. In the
SM2miR1 dataset, RWNS+CNSMiRS obtained the AUC value
of 0.9916, while RWNS-CNSMiRS obtained 0.9875. In the
SM2miR2 dataset, RWNS+CNSMiRS obtained the AUC value
of 0.9899, while RWNS-CNSMiRS obtained 0.7865. The results
suggested that credible negative SMiR association samples may
help improve predictive performance. The best performance
was described in boldface in each row in Table 5. The predicted
negative SMiR association scores based on CNSMiRS were
shown in Tables S3, S4.
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TABLE 2 | The performance comparison of RWNS, TLHNSMMA, and SMiR-NBI under LOOCV on SM2miR1 and SM2miR2.

Negative sample selection proportion (%) SM2miR1 SM2miR2

RWNS TLHNSMMA SMiR-NBI RWNS TLHNSMMA SMiR-NBI

10 0.9825 0.9751 0.9015 0.7908 0.7954 0.7525

20 0.9826 0.9763 0.9016 0.8125 0.7614 0.7733

30 0.9825 0.9888 0.9016 0.7293 0.812 0.7619

40 0.9828 0.9945 0.9016 0.8134 0.7800 0.7851

50 0.9826 0.9787 0.9018 0.7586 0.8484 0.7837

60 0.9828 0.9891 0.9017 0.7726 0.7972 0.7851

70 0.9829 0.9911 0.9017 0.7980 0.8495 0.7829

80 0.9828 0.9965 0.9018 0.8835 0.9208 0.7866

90 0.9827 0.9736 0.9018 0.7908 0.7993 0.7885

100 0.9829 0.9981 0.9019 0.8938 0.8843 0.7993

FIGURE 4 | The performance comparison of RWNS, TLHNSMMA, and SMiR-NBI under LOOCV on SM2miR1 and SM2miR2.

TABLE 3 | The performance comparison of RWNS, TLHNSMMA, and SMiR-NBI under 5-fold cross validation in SM2miR1.

Negative sample

proportion (%)

AUC Recall Precision Accuracy

RWNS TLHNSMMA SMiR-NBI RWNS TLHNSMMA SMiR-NBI RWNS TLHNSMMA SMiR-NBI RWNS TLHNSMMA SMiR-NBI

10 0.9220 0.9114 0.7123 0.9955 0.9472 0.7123 1 1 1 0.9959 0.9520 0.7386

20 0.9548 0.9487 0.7154 0.9894 0.9661 0.7154 0.9969 0.9962 1 0.9887 0.9688 0.7632

30 0.9730 0.9545 0.7228 0.9955 0.9718 0.7229 0.9970 0.9775 1 0.9942 0.9610 0.7873

40 0.9780 0.9501 0.7048 0.9955 0.9624 0.7049 0.9941 0.9774 1 0.9925 0.9620 0.7897

50 0.9813 0.9397 0.7154 0.9925 0.9280 0.7154 0.9896 0.9720 1 0.9880 0.9449 0.8108

60 0.9861 0.9364 0.7289 0.9955 0.9435 0.7289 0.9925 0.9563 1 0.9925 0.9366 0.8311

70 0.9878 0.9540 0.7154 0.9925 0.9604 0.7154 0.9896 0.9181 1 0.9894 0.9249 0.8332

80 0.9899 0.9636 0.7269 0.9855 0.9699 0.7169 0.9837 0.9010 1 0.9883 0.9230 0.8434

90 0.9904 0.9530 0.7093 0.9955 0.9547 0.7093 0.9895 0.8590 1 0.9905 0.8895 0.8477

100 0.9916 0.9638 0.7193 0.9955 0.9679 0.7229 0.9808 0.8821 1 0.9879 0.9163 0.8615

There were 449,571 and 11,154 small molecule-miRNA
pairs in SM2miR1 and SM2miR2, respectively. However, there
were only 664 experimentally validated SMiR associations in
two datasets. In the SM2miR1 dataset, unobserved samples
were more than that of SM2miR2, and thus selected negative
samples were more than of SM2miR2. More negative samples
may have helped improve predictive accuracy. Therefore,

RWNS+CNSMiRS exhibited a better performance in the
SM2miR1 dataset than SM2miR2.

4.5. Case Study
In this study, we extracted the top 50 SMiR associations with
the highest scores and validated these associations from the
published references in the PubMed database by retrieving
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TABLE 4 | The performance comparison of RWNS, TLHNSMMA, and SMiR-NBI under 5-fold cross validation in SM2miR2.

Negative sample

proportion (%)

AUC Recall Precision Accuracy

RWNS TLHNSMMA SMiR-NBI RWNS TLHNSMMA SMiR-NBI RWNS TLHNSMMA SMiR-NBI RWNS TLHNSMMA SMiR-NBI

10 0.8638 0.8963 0.8428 0.9549 0.9398 0.7379 0.9784 0.9803 0.9860 0.9399 0.9506 0.7524

20 0.9027 0.8944 0.8876 0.9337 0.9608 0.7656 0.9658 0.9246 0.9749 0.9172 0.9481 0.7882

30 0.8947 0.8748 0.9009 0.8841 0.8851 0.7575 0.9515 0.8881 0.9602 0.8763 0.8830 0.7896

40 0.9027 0.8813 0.9498 0.9720 0.8926 0.7682 0.9494 0.8637 0.9791 0.8756 0.8214 0.8230

50 0.9141 0.8630 0.9589 0.8645 0.8985 0.7770 0.9384 0.8142 0.9670 0.8719 0.7950 0.8338

60 0.9133 0.8514 0.9560 0.8569 0.9020 0.8582 0.9409 0.7882 0.9611 0.8771 0.7878 0.8705

70 0.9899 0.9636 0.9679 0.9855 0.9699 0.8373 0.9136 0.8105 0.9600 0.8411 0.8168 0.8843

80 0.8856 0.9028 0.9686 0.7892 0.8889 0.8494 0.8971 0.8076 0.9610 0.8325 0.8206 0.8975

90 0.8818 0.9251 0.9681 0.7862 0.9255 0.8720 0.8917 0.8442 0.9464 0.8382 0.8728 0.9086

100 0.9048 0.9581 0.9655 0.7636 0.9530 0.8901 0.8728 0.9304 0.9338 0.8261 0.9408 0.9134

FIGURE 5 | The performance comparison of RWNS, TLHNSMMA, and SMiR-NBI under 5-fold cross validation on SM2miR1.

the related documents. The details are shown in Table 6.
Among the predicted top 10, 20, and 50 associations with the
highest scores, there are 9, 17, and 37 SMiR associations that
can be validated by the other documents, respectively. That
is to say, among the predicted 10, 20, and 50 associations
with the highest scores, 90, 85, and 74% associations can
be confirmed by the published references in the PubMed
database, respectively. The results demonstrated that RWNS

can effectively identify SMiR association candidates. For
TLHNSMMA, among the predicted top 10, 20, and 50 SMiR
associations with the highest scores, there are only 2, 4, and 14
associations that can be validated by the published documents,
respectively. There are three SMiR associations that can be
simultaneously identified by RWNS and TLHNSMMA. The
results suggest that RWNS may more accurately find possible
SMiR associations.
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FIGURE 6 | The performance comparison of RWNS, TLHNSMMA, and SMiR-NBI under 5-fold cross validation on SM2miR2.

Among the predicted top 10 SMiR associations, 10 different
small molecules were associated with the same miRNA (hsa-
mir-21). Mir-21 is a kind of non-protein-coding RNA and
can regulate the expression of related target genes to control
tumorigenic processes (Esteller, 2011). This clinical study has
shown that overexpression of mir-21 plays an essential role
in primary breast cancer, lung cancer (Bica-Pop et al., 2018),
gastric cancer (Zhang et al., 2008; Tsujiura et al., 2010), and
normal adjacent tumor tissues (Negrini and Calin, 2008; Markou
et al., 2013). Higher expression of mir-21 is related to lower
overall survival rates of patients (Teixeira et al., 2014). The nine
known small molecules are confirmed to associate with mir-
21 and are used to control cancer initiation and progression
(Krichevsky and Gabriely, 2009). The remaining small molecule
(CID:3229) is predicted to interact with mir-21. Therefore, we
have inferred that small molecule (CID:3229) probably interact
with mir-21 and can be applied to control cancer initiation
and progression.

Among the predicted top 20 SMiR associations, we

discovered new interactions related to mir-155 and

mir-146a. Mir-155 can control and regulate various
physiological and pathological processes (Friedman et al.,
2009). Some clinical studies have found that mir-155 is
overexpressed in pancreatic juice samples from pancreatic

TABLE 5 | Performance comparison considering CNSMiRS or not.

SM2miR1 SM2miR2

RWNS+CNSMiRS 0.9916 0.9899

RWNS-CNSMiRS 0.9875 0.7865

cancer patients, and mir-155 may control pathological
processes related to pancreatic cancer (Sadakari et al.,
2010).

Among the predicted results, gemcitabine (CID:60750),
doxorubicin (CID:31703), etoposide (CID:36462), and fluoracil
(CID:3385) are small molecules associated with mir-21. They
have similar functions and can destroy DNA molecular
structures to inhibit DNA synthesis, reconstruct DNA topological
structures, and prevent cell entry into the mitotic phase of
cell division and thus lead to cell death. The process arrests
tumor growth and result in apoptosis. Associations between
these four small molecules and mir-21 are ranked as one,
two, three, and five, respectively. The functions of enoxacin
(CID:3229) are similar to the above small molecules. It can
inhibit DNA topoisomerase type II (atp-hydrolyzing) activity.
DNA topoisomerase type II plays an essential role in relaxing
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TABLE 6 | The predicted top 50 SMiR associations with the highest scores.

Number Small molecule miRNA Confirmed Number Small molecule miRNA Confirmed

1 CID:60750 hsa-mir-21 24331411 26 CID:3385 hsa-mir-17 21516486

2 CID:31703 hsa-mir-21 19412672 27 CID:3229 hsa-mir-155 No

3 CID:36462 hsa-mir-21 17554199 28 CID:5331 hsa-mir-17 No

4 CID:3229 hsa-mir-21 No 29 CID:9444 hsa-mir-125b-1 No

5 CID:3385 hsa-mir-21 22382630 30 CID:451668 hsa-mir-125b-1 No

6 CID:451668 hsa-mir-21 16530703 31 CID:60953 hsa-mir-125b-1 20370587

7 CID:5757 hsa-mir-21 25179838 32 CID:9444 hsa-mir-21 25939322

8 CID:10635 hsa-mir-21 20945501 33 CID:3229 hsa-mir-125b-1 No

9 CID:5288826 hsa-mir-21 30680008 34 CID:36462 hsa-mir-125b-1 27174811

10 CID:3121 hsa-mir-21 24126255 35 CID:9444 hsa-mir-20a No

11 CID:60750 hsa-mir-155 22399498 36 CID:451668 hsa-mir-20a 17660710

12 CID:451668 hsa-mir-155 No 37 CID:5288826 hsa-mir-20a 28070858

13 CID:5288826 hsa-mir-155 26072390 38 CID:3385 hsa-mir-20a 25960225

14 CID:5311 hsa-mir-155 19513533 39 CID:448537 hsa-mir-20a 28131841

15 CID:448537 hsa-mir-21 27521771 40 CID:451668 hsa-mir-145 24283360

16 CID:5311 hsa-mir-21 27557899 41 CID:448537 hsa-mir-155 No

17 CID:5288826 hsa-mir-146a 30827946 42 CID:9444 hsa-mir-145 26440147

18 CID:5757 hsa-mir-146a 18634034 43 CID:5311 hsa-mir-34a 23759592

19 CID:3229 hsa-mir-146a No 44 CID:448537 hsa-mir-34a 27659519

20 CID:9444 hsa-mir-17 22072491 45 CID:451668 hsa-mir-34a 21323860

21 CID:451668 hsa-mir-17 17660710 46 CID:9444 hsa-mir-125b-2 No

22 CID:448537 hsa-mir-17 No 47 CID:36314 hsa-mir-21 24137413

23 CID:3385 hsa-mir-155 21516486 48 CID:451668 hsa-mir-125b-2 28105425

24 CID:5757 hsa-mir-155 26771440 49 CID:31703 hsa-mir-145 21217773

25 CID:5757 hsa-mir-17 24658544 50 CID:60953 hsa-mir-125b-2 No

supercoiled DNA. Therefore, we inferred that enoxacin may be
associated with mir-21.

Moreover, gemcitabine (CID:60750) and vorinostat
(CID:5311) can inhibit the process of cell division and
thus lead to cell death. The process arrests tumor growth
and result in apoptosis. Decitabine (CID:451668) can be
incorporated into DNA during replication and RNA during
transcription. The process can regulate way of proteins binding
to the RNA/DNA substrate and control the process of cell
division. Decitabine (CID:451668), gemcitabine (CID:60750),
and vorinostat (CID:5311) have similar pharmacodynamics
functions. Gemcitabine (CID:60750) and vorinostat (CID:5311)
associate with mir-155. Therefore, we have inferred that
decitabine (CID:451668) may interact with miRNA-155.

5. CONCLUSION AND FURTHER
RESEARCH

The overexpression of miRNA can result in various complex
human diseases. Identifying possible SMiR associations help
genomic pharmacy studies. However, experimental methods for
SMiR association prediction are still expensive, time-consuming,

and laborious processes. Many computational methods have
therefore been developed to address this problem.

In this study, we developed an SMiR association prediction
method, RWNS, integrating various biological information,
credible negative sample selection, and random walk on triple-
layer heterogeneous network into a unified framework. We
compared the performance of RWNS with TLHNSMMA and
SMiR-NBI based on AUC, recall, precision, and accuracy. The
results showed that RWNS obtained better performance and
could effectively predict possible SMiR associations. Moreover,
we analyzed the predicted top 50 SMiR associations with
the highest scores and found that enoxacin and decitabine
may be associated with mir-21 and mir-155, respectively.
Therefore, RWNS could be an effective tool for SMiR
association prediction.

Biological information help find SMiR candidates in a more
accurately way. RWNS fused different biological information
related to small molecules and miRNAs. However, it may be
improved by integrating more data, for example, functional
associations between microRNAs and long non-coding RNAs
(Zhang et al., 2018b). More importantly, how to integrate
these data is still an ongoing challenge. In the future, we will
further consider deep learning-based models to better integrate
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diverse biological data and improve predictive performances.
Finally, the linear neighborhood propagation method (Zhang
et al., 2018a, 2019c) may be efficiently applied to SMiR
association prediction.
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