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ABSTRACT Lysobacter capsici VKM B-2533T and Lysobacter gummosus 10.1.1 are promising
strains for use in biomedicine as sources of new antimicrobial agents. Here, we report the
whole-genome sequences of both strains (total lengths, 6,239,188 bp and 6,056,609 bp,
respectively), obtained using the Illumina and Nanopore platforms.

Some bacteria of the genus Lysobacter are capable of producing various antimicrobial
agents, such as antibiotics, bacteriolytic enzymes, and peptides (1–7). Despite their great

promise for biomedicine, these bacteria have been studied very poorly. It is imperative to
search for, isolate, and characterize new lytic agents, as well as to conduct genetic studies
of Lysobacter strains active against living pathogenic bacteria.

Lysobacter capsici VKM B-2533T (=KCTC 22007T = DSM 19286T) is a promising strain with
antimicrobial activity (8). It was isolated in 2008 from the rhizosphere of peppers at Gyeongsang
National University (Jinju, South Korea) (9). Previously, we conducted draft genome sequencing
of this strain (10). Here, we report its whole-genome sequence.

Lysobacter gummosus 10.1.1 is also a promising strain with antimicrobial activity. It
was isolated from a disease suppressive soil at Wageningen University and Research (Ijzendijke,
Netherlands) (11). It has been shown that L. gummosus 10.1.1 has protease, glucanase, and
chitinase activities, as well as antifungal and antibacterial activities against Xanthomonas
campestris (12).

L. capsici VKM B-2533T was obtained from the All-Russian Collection of Microorganisms
(VKM). L. gummosus 10.1.1 was supplied by Joeke Postma (Wageningen University and
Research, Netherlands). Both strains were cultivated in a modified LB medium (13) at 29°C
with aeration for 18 h. DNA was extracted using the Wizard genomic DNA purification kit
(catalog number A1125) according to the manufacturer’s instructions.

Sequencing on the MinION platform was performed by the Institute of Cell Biophysics,
Russian Academy of Sciences (Pushchino, Russia). Libraries for sequencing were prepared
using the ligation sequencing kit (SQK-LSK109; Oxford Nanopore Technologies) and native
barcoding expansion 13-24 kit (EXP-NBD114; Oxford Nanopore Technologies) according to
the manufacturer’s protocol. The resulting libraries were loaded onto a MinION flow cell
R9.4.1 (FLO-MIN106; Oxford Nanopore Technologies) and sequenced using MinKNOW v21.10.4
for 16 h.

Short-read sequencing for L. gummosus 10.1.1 was performed by the Genomics Core
Facility at the Skolkovo Institute of Science and Technology. The library was prepared with
the NEBNext Ultra II kit (New England Biolabs, USA) according to the manufacturer’s recom-
mendations. The library was sequenced on the HiSeq 4000 platform (Illumina, USA) to
obtain 151-bp paired-end reads. Short-read data for L. capsici VKM B-2533T was reused from
our previous work (10).

Default options and recommended procedures were used for all software unless
otherwise noted. Long-read base calling was performed using Guppy v4.5.4 (Oxford Nanopore
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Technologies) with the options “-c dna_r9.4.1_450bps_hac.cfg –barcode_kits EXP-NBD114
–trim_barcodes.” Short and low-quality reads were removed using Filtlong v0.2.1 (https://
github.com/rrwick/Filtlong) with the options “–min_length 3000 –keep_percent 90.” The ge-
nome backbone was assembled using Canu v2.2 (14) with the options “genomeSize =
6050k -nanopore” (for L. gummosus) or “genomeSize = 6270k -nanopore” (for L. capsici)
and then manually circularized. The assembly was polished with the long reads using
Nanopolish v0.13.3 (15) with the option “–fix-homopolymers.” Further polishing was car-
ried out using the short reads. Adapter sequences and low-quality regions in the short
reads were removed using Trimmomatic v0.39 (16) with the options “ILLUMINACLIP:
TruSeq3-PE-2.fa:2:30:10 SLIDINGWINDOW:4:20 MINLEN:50.” The assembly was polished
using Polypolish v0.5.0 (17) and Pilon v1.24 (18) with the options “–fix bases –mindepth 5.”
The annotation was performed using the NCBI PGAP v6.0 (19).

Statistical information for the whole-genome sequences of L. capsici VKM B-2533T and
L. gummosus 10.1.1 is given in Table 1. The whole-genome sequence of the Lysobacter
strains obtained in this work will make it possible to find the genes of new lytic agents
and to study them. All this will enable the creation of antimicrobial drugs against superbugs
in the future.

Data availability. These whole-genome shotgun projects have been deposited at
DDBJ/ENA/GenBank under the accession numbers listed in Table 1. The versions reported
here are the first versions.
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