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Abstract: Nearly one-third of patients with high-grade serous ovarian cancer (HGSC) do not respond
to initial treatment with platinum-based therapy. Genomic and clinical characterization of these
patients may lead to potential alternative therapies. Here, the objective is to classify non-responders
into subsets using clinical and molecular features. Using patients from The Cancer Genome Atlas
(TCGA) dataset with platinum-resistant or platinum-refractory HGSC, we performed a genome-wide
unsupervised cluster analysis that integrated clinical data, gene copy number variations, gene somatic
mutations, and DNA promoter methylation. Pathway enrichment analysis was performed for each
cluster to identify the targetable processes. Following the unsupervised cluster analysis, three distinct
clusters of non-responders emerged. Cluster 1 had overrepresentation of the stage IV disease and
suboptimal debulking, under-expression of miRNAs and mRNAs, hypomethylated DNA, “loss
of function” TP53 mutations, and the overexpression of genes in the PDGFR pathway. Cluster
2 had low miRNA expression, generalized hypermethylation, MUC17 mutations, and significant
activation of the HIF-1 signaling pathway. Cluster 3 had more optimally cytoreduced stage III patients,
overexpression of miRNAs, mixed methylation patterns, and “gain of function” TP53 mutations.
However, the survival for all clusters was similar. Integration of genomic and clinical data from
patients that do not respond to chemotherapy has identified different subgroups or clusters. Pathway
analysis further identified the potential alternative therapeutic targets for each cluster.

Keywords: serous ovarian cancer; chemotherapy response; TCGA; iCLusterPlus; Unsupervised clustering

1. Introduction

Epithelial ovarian cancer is the fifth leading cause of cancer death among women in the United
States and it has the highest mortality rate of all gynecologic cancers [1]. The majority of patients present
with advanced disease at diagnosis. While most of the patients respond to the initial combination
treatment of surgical debulking and platinum-based chemotherapy, nearly one-third of patients will
not respond. Significant effort has been expended to define platinum resistance in epithelial ovarian
cancers at both the histologic and biologic levels. For instance, increased chemoresistance has been
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described in low grade tumors [2] and in mucinous and clear cell histologic subtypes [3,4]. Epithelial
ovarian cancer patients with germline and/or somatic BRCA mutations have improved survival, which
is likely due to increased sensitivity to platinum-based DNA damming chemotherapy [5]. Various
mechanisms for platinum resistance have been described, both spontaneous and acquired [6–10],
though the exact mechanism for resistance is potentially tumor-dependent.

Despite this improved understanding of platinum resistance on the molecular level, clinical
outcomes remain poor for ovarian cancer patients. Recently published data from The Cancer Genome
Atlas (TCGA) high-grade serous ovarian cancer (HGSC) dataset showed that responders to initial
chemotherapy experience a more than two year increase in median overall survival when compared to
non-responders (p < 10−14) [11]. Previous studies have used epithelial ovarian cancer patients’ serum
biomarker data to predict the response to initial chemotherapy with an area under the curve (AUC) of
70–77%. When combined with clinical data, the classification capacity in these studies could increase
the AUC to 91% [12,13]. However, these prediction models are limited in their clinical application due
to the heterogeneity of histologic subtype and stage, as well as the lack of validation in independent
datasets. In a previously published prediction model using the TCGA dataset, we identified a 34-gene
signature that predicts chemosensitivity specifically in HGSC, with an AUC approaching 80%. This
34-gene signature was then validated in six independent gene expression datasets [14].

However, as our ability to predict chemo-response becomes more accurate, the lack of alternative
or adjuvant therapies for patients who are predicted to fail standard first-line platinum-based therapies
has become acutely apparent. Through the integration of clinical and molecular data, our objective in
this pilot study was to characterize the HGSC patients that do not respond to initial chemotherapy,
which would, in turn, inform the design of personalized treatment combinations.

2. Results

2.1. Data Preprocessing

Evaluation of clinical data revealed that non-responders were more often diagnosed at a later stage
(p = 0.01) and had suboptimal surgical outcomes (p < 0.001), but there were no differences in histological
grade or usage of platinum-based chemotherapy when compared with responders. In Table 1 we
described clinical characteristics of all non-responders. Patients were categorized according to the
clusters that they belonged following the analysis with the integrative cluster method, iClusterPlus.
None of the clinical characteristics were statistically significant between the three groups, and they
were therefore not accounted for in the clustering process.

Table 1. Clinical characteristics of 88 non-responder HSGC patients. Non-responders ‡ were divided
by their resulting clusters after the iClusterPlus analysis. All of the clinical characteristics were not
statistically different between the resulting clusters.

Cluster #1 Cluster #2 Cluster #3 p-Value

Number of Patients 29 26 33

Average Age (years) 61 59 57 0.149

Grade 0.744
Grade 2 2 4 3
Grade 3 27 21 28

Stage 0.081
Stage II 0 0 1
Stage III 20 22 27
Stage IV 9 3 5

Surgical Outcome 0.079
Optimal (<1 cm) 15 13 24

Suboptimal (>1 cm) 12 10 7
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Table 1. Cont.

Cluster #1 Cluster #2 Cluster #3 p-Value

Residual Disease 0.136
Microscopic 1 0 4
Macroscopic 26 23 27

Optimal Treatment 0.063
Optimal (Surgery + 6 cycles) 9 11 18

Suboptimal 20 15 15

Chemotherapy 0.151
Platinum 29 25 * 31 **

Platinum +Taxane 27 24 31
‡ Non-responders were those who had progressed during the first platinum-based chemotherapy
(platinum-refractory) or those who recurred within 6 months of treatment completion (platinum-resistant). * One
patient had no information about drugs delivered; all other had initial platinum-based chemotherapy. ** Two
patients had no information about drugs delivered; all other had initial platinum-based chemotherapy.

Results of the univariate analyses between responder and non-responder groups for all types of
biological data are represented in Figure 1. All of the significant variables between groups were used
for clustering analysis: 1023 differentially expressed genes, 960 differentially methylated promoters,
21 differentially expressed miRNAs, 56 somatic mutations, and more than 8000 gene copy number
alterations (CNA). Initial evaluation with the clustering tool demonstrated that the miRNA variables
did not influence the clustering process; thus, only the other four classes of biological data were
included in the final analysis: gene expression, DNA methylation, somatic mutations, and gene copy
number alteration.
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Figure 1. Univariate Analysis between Responders and Non-Responders. Heatmaps and graphics of
molecular variables that were different between groups of responders and non-responders, with color
codes and significance levels for each class of data. These variables were used for the integrative cluster
analysis with iClusterPlus: (A) Differentially expressed genes; (B) Differentially methylated promoters;
(C) Differentially expressed miRNAs; (D) Somatic mutations; (E) Altered gene copy numbers: green
means gain of copy number, red is loss of copy number.
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2.2. Integrative iClusterPlus Analysis

Eighty-eight non-responders from TCGA who had complete information for outcome, gene
expression, mutation analysis, gene copy number, and DNA methylation were included in the cluster
analysis. The optimization of the clustering method identified three differentiated clusters within
non-responders (Figure 2). To build the final model, we used a threshold, or cut-off value, which
selected the most discriminative features for the three-cluster model solution. The threshold was the
95th percentile. Only those features that passed this threshold were included in the representation
of the final three-cluster model. Clinical information, including surgical outcomes along with type
of TP53 somatic mutation, and independently significant miRNAs were added to each cluster in a
supervised manner for further characterization (Figure 3).
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Figure 2. Optimization of cluster number. To assess the number of clusters we plotted the number of
tested clusters vs. percent of explained variation. Optimal k or cluster number is the point at which
percent of explained variation begins to level off after initial rapid ascent. Here, k = 3 [15].

A significant portion of Cluster 1 patients had > 2cm of residual visible disease following their
primary debulking surgery. Additionally, they more often received suboptimal initial treatment. When
classifying the TP53 somatic mutations within each cluster, the most loss-of-function TP53 mutations
were seen in Cluster 1. Low levels of miRNA expression, significant hypomethylation, a high rate of
somatic mutations, and CNA at chromosome 19 further characterized cluster 1.

Cluster 2 patients have mixed clinical characteristics and types of TP53 mutations. However, this
group has extremely low levels of miRNA expression and higher expression of representative genes,
as well as greater DNA hypermethylation, when compared to Cluster 1 and 3 patients. Further, unlike
Clusters 1 and 3, there were no somatic mutations in the DNAH5 and ODZ1. Cluster 2 patients were
more often diagnosed at stage III, received optimal primary treatment, and had optimal cytoreductive
surgery, with the greatest percentage of completely cytoreduced patients as compared to other clusters.
Cluster 3 patients had the greatest number of “oncogenic” gain-of-function (GOP) TP53 mutations.
Cluster 3 was further characterized by high miRNA expression and DNA hypermethylation.
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Figure 3. Clinical-molecular characteristics of the three clusters. At the top are the different clusters: 1 in
yellow, 2 in green, 3 in purple. Below them are the clinical profiles with the variable in the left margin
(age, stage, optimal treatment, optimal surgery and residual disease after surgery) and the color-code
for each category in the right margin. Underneath clinical information there is a representation of
TP53 somatic mutation features: presence or status, variant, and mutation type. The last five heatmaps
represent the top molecular features with specific color codes for their respective values at the right
margin. Only molecular features that were most discriminating for this three-cluster model and passed
a selection with a threshold value of > 95th percentile were included in the representation of the final
3-cluster model. Names of all features are detailed in Appendix A.

2.3. Pathway Enrichment Analysis

Pathway analysis findings were significant for the overrepresentation of the platelet derived
growth factor receptor (PDGFR) in different pathways in Cluster 1 (Table 2). Overrepresentation
of the HIF-1 signaling pathway was seen in Cluster 2; the Wnt/β-catenin pathway was close but
not statistically significant in this cluster (p-value = 0.089). Pathways that are involved in cellular
senescence were found to be overrepresented in Cluster 3. Despite significant variation in clinical
and molecular profiles between the clusters, survival differences were not observed among clusters
(Figure 4).

Table 2. Pathway Enrichment Analysis. Given a list of genes, the pathway enrichment analysis using
the Kyoto Encyclopedia of Genes and Genomes (KEGG) database will select those pathways that are
overrepresented in the gene list for each one of the clusters. It will also compute a p-value for the
resulting pathways. * Statistically non-significant.

KEGG ID Description p-Value Gene ID

Cluster 1

hsa04510 Focal Adhesion <0.001 COL1A2/COL5A1/COMPATGA5/PDGFRA
hsa05214 Glioma 0.015 PDGFR1/PDGFRB/IGF1
hsa05218 Melanoma 0.019 PDGFR1/PDGFRB/IGF1
hsa05215 Prostate Cancer 0.034 PDGFR1/PDGFRB/IGF1
hsa04540 Gap Junction 0.034 PDGFR1/PDGFRB/PRKX
hsa05414 Dilated cardiomyopathy 0.034 ITGA5/PRKX/IGF1
hsa04512 ECM-Receptor Interaction 0.005 COL1A2/COL5A1/COMP/ITGA5
hsa04270 Vascular Smooth Muscle Contraction 0.013 ACTG2/CALD1/EDNRA/PRKX
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Table 2. Cont.

KEGG ID Description p-Value Gene ID

Cluster 2

hsa04218 Cellular senescence 0.001 NFATC2/RASSF5/SERPINE1/FBXW11
hsa04066 HIF-1 signaling pathway 0.040 SERPINE1/EGLN1
hsa00450 Seleno-compound metabolism 0.053 * TXNRD2
hsa0 1040 Biosynthesis of unsaturated fatty acids 0.083 * SCD5
hsa04390 Hippo signaling pathway 0.086 * SERPINE1/FBXW11
hsa04310 Wnt signaling pathway 0.089 * NFATC2/FBXW11

Cluster 3

hsa04218 Cellular senescence 0.003 NFATC2/RASSF5/SERPINE1
hsa00512 Mucin type O-glycan biosynthesis 0.056 * GALNT13
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Figure 4. Survival analysis by clusters. Kaplan–Meier survival curves of the three clusters from
iClusterPlus analysis showed no differences by log-rank analysis (p = 0.48).

3. Discussion

While understanding the biologic mechanism for platinum resistance in ovarian cancer is
extremely valuable, this information has not yet been translated into effective therapeutic strategies.
To date, the most widely used molecular inhibitors in the treatment of ovarian cancer are the
VEGF inhibitor bevacizumab and poly (ADP-ribose) polymerase (PARP) inhibitors. Even with the
incorporation of these drugs into the accepted treatment paradigm for ovarian cancers, molecular
analysis of tumors is not routine. Here, our goal was not to assess the mechanism of platinum resistance
but, rather, to characterize non-responders. Our unsupervised cluster analysis of HGSC patients that
did not respond to primary platinum-based chemotherapy revealed three distinct groups.

Even though specific clusters did not predict survival, unique differences between the clusters
could eventually be used for treatment planning. For example, non-responders in Cluster 1 were more
often diagnosed at stage IV and receive suboptimal treatment. From the progression-free survival
(PFS) and overall survival (OS) results of ICON7 and GOG 218, we now know that patients with poor
prognosis disease, defined in the studies as those with stage IV disease, inoperable stage III disease,
or suboptimally debulked stage III disease, have a slightly higher PFS and OS advantage with the
addition of bevacizumab to standard chemotherapy [16,17].

We hypothesized that the combination of cluster analysis, clinical and mutational characteristics,
and pathway analyses may reveal some of the biology behind each cluster. Indeed, pathway
analysis of molecular characteristics can be used to gain insight into the common biological processes
that contribute to disease pathophysiology for each cluster [18]. For example, Cluster 1 seems to
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overrepresent pathways that are involved in growth factor signaling (PDGFR and VEGF), which
contributes to cell proliferation. Pathways that regulate cellular survival, particularly in the setting of
stress (HIF-1 signaling pathway and cellular senescence), dominate Cluster 2. Finally, the significantly
altered pathway in Cluster 3 was related to cellular senescence. Not only do these distinct alterations
hint at the potential mechanisms of chemoresistance, but they can also be used to suggest alternative
treatments to override the dominant signaling pathways.

Since Cluster 1 tumors have an overrepresentation of growth factor signaling pathways, a logical
treatment choice for these patients would be a tyrosine kinase or angiokinase inhibitor. Indeed, a
recent phase 3 trial using nintedanib (an oral triple angiokinase inhibitor of VEGF receptor, PDGFR,
and fibroblast growth factor receptor), in addition to platinum based chemotherapy showed improved
PFS for ovarian cancer (17.2 months vs 16.6 months; p = 0.024) [19]. Additionally, a recent phase II
trial for platinum-resistant ovarian cancer patients has identified a group of patients with increased
PFS after treatment with nintedanib [20]. In ICON6, the use of cediranib, another oral angiokinase
inhibitor that targets VEGFR and PDGFR, in addition to platinum-based chemotherapy for platinum
sensitive, recurrent ovarian cancer showed a PFS benefit of almost three months (p < 0.0001) [21].
Through the identification of Cluster 1 patients prior to initial treatment, we could potentially single
out those patients that are likely to benefit from the addition of angiokinase inhibitors or bevacizumab
to chemotherapy in the front-line setting and potentially improve survival.

The overrepresented pathways in Cluster 2 are involved in cell survival. Notably, the HIF-1
signaling pathway is intimately related to the PI3K/AKT/mTOR pathway, which is one of the most
important signaling pathways in cell survival [22]. In pre-clinical studies, the chemoresistant ovarian
cancer cells are highly sensitive to mTOR inhibitors [23]. However, Phase II trials in ovarian cancer,
including resistant cases, have demonstrated a diverse range of responses to mTOR inhibitors, such
as temsirolimus [24], indicating that better criteria are necessary to determine which patients are
the best candidates for mTOR inhibitors. Our study may shed insight into this important clinical
question. In the pathway enrichment analysis of Cluster 2, the Wnt/β-catenin signaling pathway was
not significant (p-value = 0.09), but cellular senescence was (p-value = 0.001). It has been reported that
Wnt signaling antagonizes oncogene-induced cellular senescence as a tumor suppression mechanism
in vivo [25]. Suppressing Wnt signaling pathway may improve in response to treatment in some
tumors. Not only are multiple Wnt inhibitors under preclinical development, but Wnt inhibitors, such
as LGK974 and OMP18R5, have entered phase 1 clinical trials for solid tumors with aberrant Wnt
signaling [26], and PRI-724 is currently being used in a phase II trial in metastatic colon cancer [27].
Additionally, recent phase 1 evaluation of the Wnt/β-catenin signaling pathway within melanoma has
shown that overactivation of the Wnt pathway conveys resistance to immunotherapy with anti-PD-L1
monoclonal antibody [28], a treatment that has been recently extrapolated for use in gynecologic
tumors [29,30].

The most significantly overrepresented pathway in Cluster 3 was the cellular senescence pathway.
In cancer transformation, the cell needs to bypass cellular senescence to become immortal [31]. TP53,
which is a key tumor suppressor gene, is one of the most well-known components of this pathway.
Gain-of-function TP53 mutations were most frequent in Cluster 3 patients. In addition to targeted
agents that are focused on the reactivation of null TP53, there are many investigational compounds
that induce gain-of-function (GOF) mutant TP53 degradation, such as histone deacetylase (HDAC)
inhibitors [32]. As described by Yan et al., the activity of HDAC inhibitors extended to decreasing not
only GOF TP53, but also wild-type TP53 expression, indicating that knowledge of the mutant type of
TP53 is critically important before the application of these targeted therapies [33].

This study is circumscribed by available TCGA data and the potential systematic biases from
retrospective data involving selected patients. Therefore, before we can apply this classification model
to patients with advanced stage HGSC and design new alternative treatments, it is necessary to validate
the classification in a prospective study and within other, representative datasets. We are currently
recruiting patients and processing tumors with this in mind. However, despite these limitations, our
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study has successfully classified patients that failed initial chemotherapy for HGSC based on clinical
and molecular characteristics and postulated new targeted treatment strategies for patients with very
poor outcomes that have few therapeutic options.

4. Material and Methods

4.1. Outcomes Definition

Patients were categorized as responders or non-responders. The responders were defined as
those with progression-free survival six months after the completion of six cycles of platinum-based
chemotherapy. Non-responders were those who had progressed during the first platinum-based
chemotherapy (platinum-refractory) or those who recurred within six months of treatment completion
(platinum-resistant) [34–36]. Data from 450 patients with serous epithelial ovarian, fallopian tube, or
primary peritoneal cancer were extracted from TCGA. The clinical characteristics of the study cohort
are shown in Table 1. There was a total of 292 responder patients and 158 non-responders.

4.2. Source of Data

TCGA genomic data, including copy number variation, single nucleotide polymorphisms (SNPs),
miRNA expression, gene expression (mRNA), and DNA methylation, as well as clinical and outcome
information, were downloaded, normalized, formatted, and organized for the analysis, in accordance
with the precepts of the TCGA data sharing agreements. All data collection and processing, including
the consenting process, were performed after approval by the University of Iowa Institutional
Review Board and they were in accord with the TCGA Human Subjects Protection and Data Access
Policies, adopted by the National Cancer Institute (NCI) and the National Human Genome Research
Institute (NHGRI).

4.2.1. Copy Number Alterations (CNA)

Samples from Agilent Human Genome CGH Microarray 244A (Agilent Technologies, Santa Clara,
CA) were processed and DNA sequences were aligned to NCBI Build 36 version of the human genome.
Circular Binary Segmentation was used to identify the regions with an altered copy number in each
chromosome [37]. The copy number at a particular genomic location was computed based on the
segmentation mean log ratio data. We found regions with frequent CNA among all the samples
by performing genomic identification of significant targets in cancer (or GISTIC) analysis [38]. The
significance of CNA at a particular genomic location was determined based on false discovery rate
(FDR), as previously described [39]. A total of 16,918 chromosomal loci were included in the analysis.
CNA was available for 447 patients (CR = 290, IR = 157).

4.2.2. Mutation Analysis

Somatic mutation detection, calling, annotation, and validation have been extensively described
elsewhere [39]. Somatic mutation information resulting from Illumina Genome Analyzer DNA
Sequencing GAIIx platform (Illumina Inc., San Diego, CA) was downloaded and formatted for
analysis. Mutation information was downloaded from TCGA Data Portal (Level 3, i.e., validated
somatic mutations). Somatic mutation information was available from 171 samples from patients with
CR and 89 with IR. For those patients, there were 6716 unique genes that presented some types of
validated somatic mutation. These included: frame shift insertions and deletions, in-frame insertions
or deletions, missense, nonsense and nonstop mutations, silence, splice site, and translation start
site mutations.

4.2.3. Gene Expression

Raw gene expression data were downloaded from the TCGA Data Portal (Level 1), extracted,
loaded, and normalized and annotated with the National Center for Biotechnology Information (NCBI)
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Build 36 of the human genome. There were 450 (CR = 292, IR = 158) Affymetrix HT Human Genome
U133 arrays with gene expression and clinical information about the chemo-response. A total of
12,718 genes passed the filtering criteria for percentage of values missing (<50%) and they were
included in the analysis.

4.2.4. DNA Methylation

DNA methylation data with beta-values and methylated (M) and unmethylated (U) intensities
were downloaded from the TCGA Data Portal (Level 2), extracted, loaded, and normalized. There were
438 (CR = 286, IR = 152) unique DNA-methylation of Illumina Infinium Human DNA Methylation
27 (Illumina Inc., San Diego, CA, USA) arrays from HGSC with clinical information regarding
chemo-response. Differential DNA methylation of gene promoters was computed based on beta-values.
The beta-values for each sample and locus were calculated as (M/(M+U)) [39]. A total of 14,473 DNA
methylation probes passed filtering criteria for percentage of values missing (<50%) and they were
included in the analysis.

4.2.5. MicroRNA (miRNA) Expression

Raw miRNA expression data were downloaded from the TCGA Data Portal (Level 1), extracted,
loaded, and normalized with the analytical software, BRB-ArrayTools. There were 448 (CR = 290, IR158)
Agilent Human miRNA Microarray Rel12.0 (Agilent Technologies Inc., Santa Clara, CA, USA) arrays
from HGSC with clinical information regarding chemo-response [39]. A total of 619 miRNAs passed
filtering criteria for the percentage of values missing (<50%) and they were included in the analysis.

4.3. Statistical Analysis

4.3.1. Variable Selection

Our objective was to characterize HGSC patients that do not respond to initial chemotherapy by
clustering clinical and biological data. Initially, we selected those variables that were associated with
the defined outcome (non-response to chemotherapy) for all types of data: clinical, gene and miRNA
expression, CNA, somatic mutations and DNA methylation. Variables that were not different between
responders and non-responders do not inform the characterization of non-responder patients.

For a selection of variables that are associated with non-response, we performed a univariate
two-sided t-test analysis, comparing the groups of chemo-response (responders versus non-responders)
with respect to differential gene expression, DNA methylation, miRNA expression (cut off for
significance p-value < 0.05), and CNA (p-value < 0.001). Logistic regression analyses were performed to
determine the association between chemo-response, somatic gene mutations, and clinicopathological
variables (cut off value for significance p < 0.05). A more stringent cut-off p-value was chosen for CNA
(with elevated number of variables and overlap between them) to reduce false positives and minimize
features in the cluster analysis. For all biological comparisons, 10,000 random permutations were
performed to determine the p values. Significant variables in univariate analyses were included in the
integrative cluster analysis, or iClusterPlus [40].

4.3.2. iClusterPlus Analysis

Only using data from the non-responder group, an unsupervised cluster analysis was performed
with the iClusterPlus framework within the R statistical software package. The goal of this method is to
generate a classification of tumors (or clusters) by capturing patterns from diverse classes of genomic
data. The tumors were only clustered from non-responders. Initially, data from all biological classes
were introduced in the model to optimize the clustering analysis. During the optimization process, no
miRNAs made a significant contribution to the clustering solution; so, it was concluded that miRNA
expression was not relevant to the clustering process. The remaining four biological/genomic classes
were introduced for the final clustering analysis: gene expression, CNA, somatic mutations, and DNA
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methylation. All variables that were found to be significant in the univariate analysis were used. A
total of 88 patients with information for all classes of biological data were used for the final analysis.

Before performing the final iClusterPlus analysis, we optimized or tuned the parameters to be
applied. First, we determined the number of clusters (k) by repeatedly partitioning the samples into a
learning and a test set. Subsequently, we evaluated the degree of agreement between the predicted and
the observed cluster assignment [40]. For results visualization, we plotted the number of clusters vs.
percent of explained variation. The optimal k is the point at which the curve of the percent explained
variation levels off [15]. Afterwards, for each k, we used Bayesian information criteria to select the best
sparse model with the optimal combination of penalty parameters, or lambdas (L) [40]. We ran the
final model with the combination of optimized number of clusters (k), penalty parameters (L), and
all classes of variables. Finally, we selected the top features (95th percentile) that were based on lasso
coefficient estimates for the k-cluster solution.

Important clinical information, including demographic data, stage, surgical, and treatment
information, along with TP53 mutation status was added to the representation of each cluster. The
TP53 mutations were grouped into three categories based on predicted functional consequence:
gain-of-function (GOF), loss-of-function (LOF), or wildtype (WT). The GOF mutations were those that
have been shown to cause an oncogenic phenotype: P151S, Y163C, R175H, L194R, Y220C, R248Q,
R248W, R273C, R273H, R273L, and R282W [41]; LOF mutations were those that resulted in the lack of
protein expression and WT mutations were those that did not alter the amino acid sequence of TP53.
The remaining mutations were single missense mutations, or “variants of unknown significance”, in
which the functional effect of the mutation is currently not known [42]. Residual disease after surgery
was recorded in centimeters. Patients with residual disease >1 cm in largest diameter after surgery
had suboptimal surgery. Optimal treatment was considered to be the sum of optimal surgery with the
administration of six cycles of platinum-based chemotherapy.

Because miRNA expression did not contribute to the clustering process, in the representation
of results, we only added miRNAs that were independently associated with chemo-response in the
multivariate analysis. This analysis was performed using additive logistic regression modeling with
backward elimination.

4.3.3. Pathway Analysis

To further characterize the molecular characteristics of each resulting cluster, a pathway
enrichment analysis was performed using KEGG and clusterProfiler [18,43]. All of the analyses were
performed using R environment for statistical computing and graphics (www.r-project.org) [44].

5. Conclusions

The integration of genomic and clinical data is a variable-based approach to cluster
non-responders into distinct categories. Subsequent pathway analysis of the components of these
clusters may be used to identify the potential alternative therapeutic targets and strategies for
each cluster.
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Appendix A

Table A1. Clinical-molecular characteristics from the resulting cluster analysis in Figure 3. The order
of the variables is the same than in the figure.

Clinical

Age

Stage

Optimal treatment

Optimal surgery

Residual

TP53
Mutation status

Variant type

TP53 Mutation type

Gene expression

ADAM12

ECM2

NUAK1

PCOLCE

PMP22

RGS4

SERPINE1
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Table A1. Cont.

Methylation

C1orf65

CORO6

DDR1

FBLN7

FLJ20444

FXYD7

GALNT13

GMPR

GPR157

IGFBP1

LAMC2

NFATC2

PPL

RASSF5

RGPD5

RNF8

SLC1A2

SLC24A3

SLC25A39

SLC30A3

SNAI1

SPATA16

SPDEF

TNFRSF18

Mutations
DNAH5

MUC17

ODZ1

Copy number alteration Chr19: 12,108,685-12,180,988
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