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the epididymis, including luminal acidification and regulation of 
the proximal epididymis by luminal factors, and describes a novel 
role for CFTR in the regulation of epithelial cell proliferation and 
differentiation.

LUMINAL ACIDIFICATION IN THE EPIDIDYMIS
Early micropuncture studies revealed that the luminal environment of 
the epididymis was remarkably distinct from blood.13,15,16 In particular, 
an acidic luminal pH and low bicarbonate concentration contribute to 
maintaining spermatozoa in a dormant state during their maturation 
and storage in the epididymis.4,17–21 During ejaculation and transit 
to the female reproductive tract, elevations of pH and bicarbonate 
concentration induce sperm capacitation, which involves modulation 
of key ion channels, activation of the sAC/cAMP‑signaling pathway, 
and protein phosphorylation events in spermatozoa.22,23

Defective luminal acidification in the epididymis results in male 
infertility owing to the inability of spermatozoa to move through 
the female reproductive tract and fertilize an oocyte.24–26 Luminal 
acidification depends on several processes, including bicarbonate 
reabsorption and proton‑secretion that occur in different cell 
types, depending on their location in the epididymis. Bicarbonate 
reabsorption is achieved by principal cells in the initial segment,20,27 
and proton‑secretion occurs in clear cells, which become progressively 
more abundant in the more distal regions, especially the cauda 
epididymidis and the proximal vas deferens.4,28 Clear cells express 

INTRODUCTION
After being produced by the testis, spermatozoa acquire their capacity 
to reach and fertilize an oocyte while in the epididymis, a small organ 
located downstream of the testis.1–5 Epididymal sperm maturation is, 
therefore, essential for the establishment of male fertility. However, 
this process is often overlooked, and between 40% and 50% of male 
infertility cases diagnosed in the clinic are still labeled “idiopathic.”6 
The epididymis is a long and single tubule that is organized into four 
major segments, the initial segment (IS), the caput, the corpus, and 
the cauda epididymidis, which are further divided into intra‑segmental 
regions that are delineated by connective tissue septa and express a 
distinct set of genes.5,7–9 Epithelial cells with specific functions and 
morphological characteristics are located in these regions; they form 
the so‑called blood‑epididymis barrier,10,11 and establish a unique 
luminal microenvironment for the concentration, maturation, and 
storage of spermatozoa.2,12,13

The pseudostratified epithelium that lines the epididymal tubule 
includes principal, narrow, clear, and basal cells.1–5 Principal and 
basal cells are present throughout the epididymis, but narrow cells 
are located exclusively in the initial segment while clear cells are 
present in the caput, corpus, and cauda epididymidis. An elaborate 
communication network between these cells contributes to the 
regulation of various transport mechanisms in the epididymis.4,14 
This review focuses on some aspects of epithelial cell function in 
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the proton pump V‑ATPase in their apical membrane and sub‑apical 
recycling vesicles28  (Figure 1). The V‑ATPase is a complex enzyme 
that is composed of several subunits. A particular set of V‑ATPase 
subunit isoforms, including the transmembrane a4 and the cytoplasmic 
subunits B1, A and E2, is highly enriched in clear cells.29,30 Foxi1 is a 
master regulator of V‑ATPase subunit expression, and Foxi1 KO male 
mice have abnormally elevated epididymal luminal pH and are infertile, 
illustrating the importance of the V‑ATPase in male fertility.24,25

REGULATION OF LUMINAL ACIDIFICATION BY LUMINAL 
FACTORS
Proton‑secretion by clear cells is regulated via recycling mechanisms.4 
The activation of the cAMP and cGMP pathways in clear cells 
induces the redistribution of V‑ATPase from sub‑apical vesicles to 
the apical membrane, leading to an increase in proton‑secretion.4,20,31 
This process is accompanied by the formation and extension of 
numerous V‑ATPase‑rich apical membrane extensions. From their 
appearance revealed by transmission electron microscopy  (TEM) 
and immunofluorescence, these membrane protrusions were initially 
named “microvilli,” but recent advances in high‑resolution helium 
ion microscopy techniques have revealed the presence of membrane 
“ruffles” or “microplicae” that increase in number and become more 
numerous when clear cells are activated32 (Figure 2). These protrusions 
are analogous to the “leaf‑like” structures previously described by the 
Hamilton group’s scanning electron microscopy (SEM) study.33

Clear cells respond to changes in their luminal environment, 
such as an increase from the physiological pH of 6.6 to the alkaline 
7.8, by accumulating V‑ATPase in their apical membrane, which 
increases proton‑secretion.34,35 Depolymerization of the cortical actin 
cytoskeleton, via inhibition of RhoA and its effector ROCKII, favors 
the recruitment of V‑ATPase from sub‑apical vesicles to the apical 
membrane in clear cells.36 V‑ATPase apical accumulation also requires 
intracellular calcium and is phospholipase C‑dependent.34

While clear cells are involved in the maintenance of an acidic 
luminal pH in the steady state cauda epididymidis, principal cells have 
the ability to secrete bicarbonate upon basolateral stimulation.37–42 
The subsequent increase in luminal bicarbonate concentration is 
proposed to “prime” spermatozoa before ejaculation.39,41 Bicarbonate 
secretion by principal cells is mediated by CFTR, and it induces an 
alkalinization of the luminal environment.39,43,44 However, a sustained 

elevation of luminal pH and bicarbonate concentration may be 
considered detrimental to spermatozoa, by maintaining them in 
a preactivated state during storage. This should be prevented by 
subsequent stimulation by luminal bicarbonate of proton‑secretion in 
clear cells, via the bicarbonate‑activated soluble adenylyl cyclase (sAC) 
and activation of the cAMP/PKA pathway.35,45

In addition to mediating bicarbonate secretion, CFTR participates 
in ATP secretion in principal cells.43 Luminal ATP and its hydrolysis 
product adenosine act as extracellular messengers that activate 
proton‑secretion in clear cells via principal cell/clear cell crosstalk.46 
Several purinergic receptors are expressed in epididymal epithelial 
cells isolated by laser cut micro‑dissection (LCM).46 These include the 
P1 A2B receptor, which activates the cAMP pathway upon adenosine 
stimulation47 and the P2X4 receptor, which is activated by alkaline 
pH and triggers an elevation in intracellular calcium.48 Whether 
these receptors are involved in the activation of clear cells will require 
additional studies.

Taken together, these results indicate that activation of 
proton‑secretion in clear cells occurs via crosstalk with principal cells 
and involves a dual mechanism that depends on ATP and bicarbonate 
secretion by principal cells. We are currently investigating the potential 
role of principal cells as direct modulators of luminal pH in the cauda 
epididymidis, in addition to their indirect role in the modulation of 
clear cells.

ROLE OF LUMINAL FACTORS IN THE MAINTENANCE AND 
REMODELING OF EPITHELIAL CELLS IN THE INITIAL 
SEGMENT
The epididymis is an immature organ at birth, and epithelial cells 
continue to develop and differentiate over an extended postnatal 
period.49–54 Failure of IS epithelial cells to differentiate results in 
male infertility.26,54–60 The IS epithelium receives luminal testicular 
factors from its junction with the efferent ducts. The establishment 

Figure 1: Expression of the water and solute channel aquaporin 9 (red) in 
principal cells, and the proton pumping V‑ATPase (green) in clear cells of 
the cauda epididymidis. In this segment, numerous clear cells express the 
V‑ATPase in their apical membrane and sub‑apical vesicles (arrows). Nuclear 
and spermatozoa are visualized in blue with DAPI. Scale bar: 20 µm, Inset: 
5 µm.

Figure  2: Helium Ion Microscope  (HIM) imaging of the apical surface of 
the epididymal tubule. (a) Low‑magnification image of a control rat cauda 
epididymidis, after removal of spermatozoa by in vivo luminal perfusion. Darker 
clear cells of various sizes (arrows) are interspersed among principal cells, which 
appear brighter owing to their apical stereocilia. The inset shows the apical 
surface of a rat cauda epididymidis immunolabeled for the V‑ATPase (green). 
The arrow indicates a large clear cell. (b–e) High‑magnification images of the 
apical surface of rat cauda epididymidal clear cells perfused under control 
conditions  (b and d), and in the presence of the permeant cAMP analog, 
cpt‑cAMP (c and e). Under control conditions, the clear cell shows a few 
microvilli and relatively short microplicae, and a large part of the membrane 
appears smooth and devoid of protrusions. cAMP induced the formation of 
numerous microplicae and the apical membrane did not show any smooth 
surface. In b and c, brighter principal cell stereocilia surrounding clear cells 
are evident. Scale bars: (a) 50 µm, Inset: 15 µm; (b and c): 4 µm; (d and e) 
1 µm. Modified from Paunescu et al. Mol Hum Reprod 2014.
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and maintenance of the IS epithelium require both androgen and 
lumicrine factors,8,61–65 which include several hormones, ligands, and 
unknown factors that contribute to maintaining the MAPK pathway in 
an activated state in this segment58 (Kim et al. unpublished). Another 
protein that is potentially activated by luminal factors is the orphan 
receptor tyrosine kinase ROS1, which was originally described as 
an oncogene receptor, but was later identified as a key player in the 
initiation of epithelial cell differentiation.66 In the epididymis, ROS1 
expression is very low at birth, but it becomes activated in the IS 
at the onset of epithelial cell differentiation.67,68  Male mice KO for 
the c‑ROS1 oncogene 1 (c‑ros1 KO), or ROS1KM/KM mice carrying a 
kinase‑dead allele of ROS1, the protein that is encoded by the c‑ros1 
gene, have an undifferentiated IS and are infertile, but have normal 
spermatogenesis.26,67 Impaired differentiation of IS epithelial cells in 
the ROS1KM/KM mice was demonstrated by a reduction of expression of 
AQP9, a “terminal differentiation” protein (Figure 3), and a reduction 
in epithelial height, a hallmark of immature cells in this segment.67

The ligand for ROS1 remains unknown, but an unbiased 
phosphoproteomics approach (Bio‑Plex) has shown that the lack of 
ROS1 kinase activity in ROS1KM/KM mice induces a decrease in the 

phosphorylation of MAPK targets, including phosphoMEK1/2 (Ser217, 
Ser221), phosphoERK1/2 (Thr202/Tyr204), phosphoCREB (Ser133), 
phosphop90RSK (Ser380), and phosphoSTAT‑3 (Ser727), but does not 
affect the AKT, p38 MAPK, or Src pathways.67 As the MAPK pathway 
is constitutively activated in the adult IS59,69 (Kim et al. unpublished), 
these data indicate that ROS1 participates, with other effectors, in 
maintaining MAPK activation. Spermatozoa from both c‑ros1 KO 
mice and ROS1KM/KM mice display hairpin morphology, and CASA 
showed significantly reduced progressive and total sperm motility in 
ROS1KM/KM males (Figure  4).26,67 A pharmacological approach with 
Crizotinib during the prepubertal period (postnatal days 17–28) has 
shown that transient inhibition of ROS1 kinase activity delays, but 
does not permanently inhibit IS differentiation.67 However, when 
administered to adult animals for 7 or 14  days, Crizotinib has no 
effect on the architecture of the IS epithelium and fertility, and it 

Figure  4: ROS1 kinase mutant spermatozoa exhibit abnormal morphology 
and reduced motility. Top panels: Spermatozoon isolated from the cauda 
epididymidis of a WT mouse or an ROSKM/KM mouse and suspended in Biggers, 
Whitten and Whittingham (BWW) medium containing polyvinyl alcohol (PVA). 
The ROSKM/KM spermatozoon shows flagellar angulation compared with the 
WT spermatozoon. Bottom panels: Computer‑aided sperm analysis  (CASA) 
showed decreases in the percentage of spermatozoa with total motility (left) 
and progressive motility (right) in ROSKM/KM mice compared with WT mice. 
Experiments were performed on three independent animals/genotype. Bars 
represent mean ± s.e.m. (*P < 0.05 by t‑test), n = 3 mice per group. Scale 
bar: 10 µm. Modified from Jun et al. Endocrinology 2014.

Figure 5: Three‑dimensional reconstruction of a mouse initial segment by laser 
scanning confocal microscopy. BCs are labeled for keratin 5 (KRT5; green) and 
TJs are labeled for ZO1 (red). A BC with an intercellular projection that has 
crossed the TJs and is in contact with the luminal content is visible (arrow). 
Nuclei and spermatozoa are labeled with DAPI  (blue). Scale bar: 5 µm. 
Modified from Kim et al. Biol Reprod 2015.

Figure 6: Effect of EDL on the number of BCs with intercellular projections in 
the mouse initial segment. BCs were labeled for KRT5 (green). (a) Numerous 
BCs with a long intercellular projection are visible in a control mouse. (b) No 
BC projections are detectable in a mouse initial segment 5 days after EDL. 
Scale bars: 15 µm. Modified from Kim et al. Biol Repro 2015.

ba

Figure 3: Impairment of terminal differentiation of principal cells in the initial 
segment of ROS1KM/KM mice. (a) Strong immunofluorescence labeling for AQP9 
is detected in the initial segment (IS) and efferent ducts (ED) of an ROSKM/+ 
normal mouse. (b) AQP9 is not detectable in the corresponding segment “IS,” 
while AQP9 expression is not affected, in an ROSKM/KM mouse. Scale bars: 
100 µm. Modified from Jun et al. Endocrinology 2014.
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was concluded that sustained ROS1 inhibition in the ROS1KM/KM 
mice is required to induce a permanent undifferentiated IS infertility 
phenotype.

In the IS epithelium, principal cells are the more‑studied and 
better‑characterized cell type in the IS, and they require lumicrine 
factors for their survival and differentiation.8,58,62–65 However, very 
little is known of the regulation of narrow cells and basal cells (BCs) 
by luminal factors in this segment. In the mouse IS, BCs send a narrow 
body projection between adjacent epithelial cells in the direction of 
the lumen.70,71 Labeling with the tight‑junction protein ZO1 shows 
that BC projections, identified by their positive labeling for keratin 5, 
have the ability to cross the blood‑epididymis barrier, so that the tip 
of the projection is in contact with the luminal content (Figure 5). 
The presence of BCs with intercellular projections in the mouse 
IS is compatible with their luminal sensory role, which has been 
shown in the rat epididymis.31 The formation of BC projections is 
segment‑specific and species‑dependent. In the rat, BC projections are 
present in the distal corpus and proximal cauda regions but are absent 
from the IS.31,72 In the mouse, they are exclusively present in the IS.70,71 
Factors that regulate this segmental regulation of BC plasticity are for 
the most part unknown. Flutamide treatment reduces the number of 
BCs with projections in the rat epididymis,52 but not in the mouse 
epididymis.70 In the mouse IS, BC projections start to appear relatively 
soon after birth, at postnatal week 3,70 but in the rat epididymis BC 
projection formation is coincident with puberty.52 These results suggest 
a role for androgens in the formation and elongation of BC projections 
in the rat but not in the mouse. Mouse epididymal BCs progressively 
lose their projections after efferent duct ligation (EDL), a procedure that 
blocks luminal fluid entry to the epididymis without affecting blood 
flow (Figure 6).70 These results indicate the role of luminal factors in 
the maintenance of BC projections in the mouse IS.

Epithelial cell proliferation and apoptosis are very low in the 
control epididymis. However, EDL triggers a wave of apoptosis in 
BCs and principal cells with a maximum effect observed 1 day after 
EDL, followed by a progressive decrease in the number of apoptotic 
cells, 2 and 5 days after EDL.62,70,73 Treatment with the anti‑androgen 
flutamide  (without EDL) does not induce apoptosis but it further 
reduces the low proliferative activity of BCs.70 A subset of the BCs that 
survive EDL in the mouse epididymis show an increase in proliferation 
2 days after EDL, followed by a return to a low proliferating state after 
5 days. Flutamide treatment prevents the increase in BC proliferation 
induced 2 days after EDL, indicating the involvement of androgens in 
the maintenance and survival of this cell type. In contrast, EDL (Kim 
et  al. data not shown) or castration74 does not affect narrow cell 
morphology, proliferation, and apoptosis. Thus, androgens may have 
a pro‑proliferative effect on mouse epididymal BCs, similar to their 
well‑recognized role in principal cell proliferation.75 We observed 
similar proliferative indices of IS epithelial cells in ROS1KM/KM and 
WT mice, indicating that ROS1 is not directly involved in the control 
of cell proliferation.67

REGULATION OF PRE‑ AND POST‑NATAL EPIDIDYMAL 
DEVELOPMENT – AN UNEXPECTED ROLE OF CFTR
During tubulogenesis, epithelial cells receive signals that induce a 
switch between proliferation and differentiation. This switch depends 
on cell density and is partially initiated at the cell‑cell junctions. 
Upon tight junction (TJ) formation, the TJ‑associated protein ZO1 
participates in the retention of a transcription factor  (ZO1 nucleic 
acid binding protein; ZONAB) outside of the nucleus in TJs.76 
ZONAB controls the expression of a subset of genes involved in cell 

growth and differentiation,77–79 and its relocalization to TJs decreases 
cell proliferation and promotes differentiation. We recently made 
the unexpected observation that CFTR was located in epididymal 
TJs, in addition to its being expressed in the apical membrane of 
principal cells (Figure 7).80 CFTR is a cAMP‑activated anion channel 
previously implicated in anion secretion, followed by water transport, 
in several organs, including the epididymis.81–86 CFTR contains a 
PDZ‑binding domain in its C‑terminus,86 and we have shown that 
this motif participates in the interaction between CFTR and ZO1, 
which contains three PDZ domains.80 Using the epididymal cell culture 
DC2, developed in the laboratory of Marie‑Claire Orgebin‑Crist,87 
we have shown that the absence of, or mutations in, CFTR reduces 
the stability of ZO1, leading to TJ disassembly and the release of 
ZONAB from TJs to nuclei.80 This promotes the transcription of the 
proliferation‑associated gene cyclin D1 (CCND1)79 and represses the 
transcription of the differentiation‑associated gene ErbB2.77 When 
DC2 cells are cultured on a matrigel layer, they form well‑established 
tubular structures  (Figure  8 Left). In contrast, a disorganized cell 
growth is induced after CFTR knockdown (KD) (Figure 8 Right) or 
inhibition,80 supporting the notion that CFTR plays an important role 
in tubulogenesis.

These results revealed a novel connection between CFTR and 
epithelial morphogenesis and differentiation. Mutations in CFTR 
cause dysfunction of tubular organs, resulting in cystic fibrosis (CF), 

Figure  7: Co‑localization of CFTR with ZO1 in TJs of the mouse initial 
segment. (Left panels) Confocal laser scanning microscope images showing 
CFTR (green) and ZO1 (red) labeling in TJs. (Right panels) Higher magnification 
images of the regions delineated in the boxes in the left panels. Co‑localization 
of CFTR with ZO1 is indicated by the yellow/orange labeling in the merged 
panels. Scale bars: Left – 10 µm, Right – 2.5 µm. Modified from Ruan et al. 
J Cell Sci 2014.
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the most common autosomal recessive disease in the Caucasian 
population. Almost all male CF patients have congenital bilateral 
absence of the vas deferens (CBAVD) or absence or atrophy of the 
epididymis.81–86,88 Defects in chloride, bicarbonate and water secretion, 
leading to increased viscosity of luminal fluid and blockage of Wolffian 
duct elongation, have been proposed as the primary cause of CF and 
CBAVD. However, this concept is challenged by the absence of luminal 
obstruction in the vas deferens and epididymis of human CF fetuses; 
they have normal microscopical morphology, with obvious lumen 
formation.89,90 CFTR expression precedes ZO1 in the TJs of the Wolffian 
duct,80 consistent with the participation of CFTR during embryonic 
development and tubulogenesis. We have, therefore, proposed that 
impairment of the ZO1/ZONAB interaction, secondary to the absence 
of or mutations in CFTR, affects the switch between proliferation 
and differentiation that occurs during development (Figure 9). The 
most common CF‑associated mutation  ‑  deletion of phenylalanine 
at position 508  (ΔF508)  ‑  induces the retention of CFTR in the 
endoplasmic reticulum. According to our model, this would prevent 
its interaction with ZO1 in TJs and induce the nuclear translocation 
of ZONAB. Indeed, we have shown an increased level of ZONAB 
in nuclear extracts from mice expressing ΔF508‑CFTR.80 We have 
also shown that the epididymis of adult CFTR KO mice has a lower 
expression of ZO1, AQP9 (in principal cells) and V‑ATPase (in clear 
cells), indicating impaired epithelial cell differentiation in the absence 
of CFTR.80

At 26 weeks of gestation (which corresponds to the initiation of 
epithelial differentiation and apical localization of CFTR), destruction 
of the epithelial wall and infiltration of inflammatory cells was detected 
in a human CF fetus.90 In another CF‑affected organ, the trachea,  
reduced airway caliber and reduced cross‑sectional area were observed 
in newborn CFTR KO pigs and young CF patients.91 Of note, CFTR 
has recently been shown to regulate TJ‑associated epithelial functions 
in a variety of organ systems, including the small intestine,92 colon,93 
airway,94,95 and testis.96 Taken together, these results are consistent with 
the hypothesis that CFTR mutations affect TJs and restrict epithelial 
development and differentiation, leading to progressive deterioration 
of tissues that become more susceptible to stress and injury.

CONCLUSION
The epididymis, located downstream of the testis, is a complex organ 
that plays a crucial role in the maturation and storage of spermatozoa. 
However, only a few laboratories in the world study the posttesticular 
reproductive tract. Male infertility is often associated with dysfunctional 

spermatozoa that are produced in normal numbers, indicating 
impairment of the male excurrent duct, including the epididymis. The 
generation of transgenic mice and the development of novel imaging 
microscope modalities have allowed a better understanding of how 
the different cell types that line the epididymal tubule establish the 
unique environment, in which spermatozoa mature and are stored, 
and how their differentiated characteristics are regulated. However, 
much remains to be elucidated on how the epididymis operates in 
health and how it is affected in disease states.
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