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Abstract

Interest in the gut–brain axis and its implications for neurodegenerative diseases, such as Alzheimer’s disease and related dementias, is growing. 
Microbial imbalances in the gastrointestinal tract, which are associated with impaired cognition, may represent a therapeutic target for 
lowering dementia risk. Multicomponent lifestyle interventions are a promising dementia risk reduction strategy and most often include diet 
and exercise, behaviors that are also known to modulate the gut microbiome. A better understanding of the role of the gut microbiome in 
diet and exercise effects on cognition may help to optimize these lifestyle interventions. The purpose of this review is to summarize findings 
from diet and exercise interventions that have investigated cognitive changes via effects on the microbiome. We aim to discuss the underlying 
mechanisms, highlight current gaps in the field, and provide new research directions. There is evidence mainly from rodent studies supporting 
the notion that microbiota changes mediate the effects of diet and exercise on cognition, with potential mechanisms including end-product 
metabolites and regulation of local and systemic inflammation. The field lacks whole diet and exercise interventions, especially those involving 
human participants. It is further limited by heterogeneous rodent models, outcome assessments, and the absence of proper mediation analyses. 
Trials including older adults with dementia risk factors, factorial designs of diet and exercise, and pre and post measures of microbiota, end-
product metabolites, and inflammation would help to elucidate and potentially leverage the role of the microbiome in lowering dementia risk 
through lifestyle modification.
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Alzheimer’s disease (AD) and related dementias are among the 
world’s most prevalent and costly medical conditions (1). Over 
the last 2 decades, the gut microbiome has emerged as an im-
portant contributor to human health with implications for 
neurodegenerative diseases (2,3). Microbial imbalances in the 
gastrointestinal (GI) tract are associated with impaired cognition, 
which suggests a potential role of the gut microbiota in the de-
velopment of dementia, including AD (4). The gut microbiome is 
modified by factors such as diet and exercise, and targeting the 
microbiome through lifestyle modification may be a valid strategy 
for lowering dementia risk (5).

The gut microbiome consists of all microorganisms, bacteria, 
viruses, protozoa, and fungi, and their cumulative genome within 
the GI tract (6). The microbiota in the GI tract comprised pri-
marily 4 main phyla: Firmicutes, Bacteroidetes, Actinobacteria, and 
Proteobacteria (7). They play an important role in nutrient and min-
eral absorption, and synthesis of enzymes, vitamins, amino acids, 
and neurotransmitters. A  well-functioning microbial environment 
also produces metabolites such as short-chain fatty acids (SCFAs; 
eg,  acetate, propionate, and butyrate), which promote epithelial 
barrier integrity, modulation of the immune system, and protec-
tion against pathogens (8). A healthy gut microbiome is generally 
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characterized by a high diversity of bacterial communities and is 
maintained by a symbiotic relationship between pathogenic and 
nonpathogenic bacteria, and host-derived factors (eg, mucins, anti-
microbial peptides, and immunoglobulins) (9). Gut microbial imbal-
ances, referred to as dysbiosis, are implicated in the development 
of metabolic, autoimmune, and neurological diseases (7). Dysbiosis 
can result from aging, poor diet (10), antibiotics, or infections and is 
associated with increased intestinal permeability and inflammation 
(11,12). A dysbiotic intestinal environment can negatively affect the 
brain via the gut–brain axis.

The gut–brain axis refers to communication between the intes-
tinal environment and the brain via neural pathways (vagus nerve), 
endocrine signaling (hypothalamus–pituitary–adrenal [HPA] axis), 
and the immune system (cytokines) (13). Microbial dysbiosis leads 
to increased gut permeability and the release of endotoxins (eg, 
lipopolysaccharide [LPS]) into the bloodstream triggering a neural 
immune response (14). The gut communicates its dysbiotic state 
with the brain via the vagus nerve causing increased HPA axis ac-
tivity and the release of cortisol and proinflammatory cytokines 
(15). Chronic high cortisol and circulating proinflammatory cyto-
kines can impair the blood–brain barrier and promote atrophy and 
neuroinflammation, affecting brain health and cognition (16–18). 
Microbial dysbiosis is associated with impaired cognition and is ob-
served in individuals with AD (19). A diverse, well-functioning mi-
crobial environment is associated with improved learning/memory 
and behavioral flexibility (4).

As no curative treatment for dementia exists, focus has shifted 
toward targeting modifiable risk factors for cognitive decline and 
engaging in healthy lifestyle behaviors. In particular, the synergistic 
effects of multicomponent lifestyle interventions, including diet and 
exercise, are becoming increasingly studied. Aside from their effects 
on cognition, long-term dietary habits are a primary contributor 
to gut microbiome composition and function, and changes to diet 
and uptake of exercise can rapidly alter the gut microbiome (20,21). 
Thus, links between diet and exercise, microbiome health, and cog-
nition are likely; however, very few intervention studies have been 
conducted to triangulate these relationships, and the results from 
these studies have yet to be disseminated in a review focusing on 
cognition. Determining the role of the gut microbiome in diet- and 
exercise-associated cognitive changes may help to optimize lifestyle 
interventions aimed at reducing dementia risk. The objective of this 
review is to discuss the findings from diet and exercise interventions 
that have investigated changes to both gut microbiota and cognition 
in order to highlight the current evidence, identify gaps in the litera-
ture, and provide future research directions.

Diet, Cognition, and the Microbiome

The Western diet is characterized by foods high in saturated fats 
and simple sugars, low in fiber, and is associated with cognitive im-
pairment and increased risk of dementia (22,23). Conversely, the 
Mediterranean (MED) diet, which emphasizes increased intake of 
nonrefined grains, fruits and vegetables, legumes, nuts, fish, and 
lower intake of red meat and processed foods, is associated with 
improved cognition and reduced dementia risk (24). The MED diet 
benefits the brain by reducing inflammation and oxidative stress 
(25), promoting neurogenesis, and improving neuronal connectivity 
(26). Furthermore, contrary to the Western diet, the MED diet is as-
sociated with improved gut microbiome composition and diversity 
and decreased gut permeability and inflammation (27).

The MED diet is high in fermentable dietary fibers and is as-
sociated with enhanced abundance of fiber-fermenting bacteria 
leading to increased SCFAs in the gut and bloodstream (28). In add-
ition to promoting gut health, SCFAs play a role in maintaining the 
blood–brain barrier (29) and exhibit neuroactive properties such as 
support of glial cells (30) and modulation of neurotrophic factors 
(31). Altered SCFA production has been demonstrated in a variety 
of neuropathologies, including AD (32). Another key feature of the 
MED diet is omega-3 polyunsaturated fatty acids (PUFAs) found in 
fatty fish (eicosapentaenoic acid and docosahexaenoic acid) and de-
rived from alpha-linolenic acid found in nuts, seeds, legumes, and 
green leafy vegetables (33). The intake of omega-3 PUFAs correlates 
with improved microbiome composition and diversity and increased 
SCFA-producing bacteria (34). Omega-3 PUFAs are essential in 
maintaining gut epithelial integrity (35) and act as intra- and inter-
cellular signaling mediators in the GI tract and brain, influencing im-
mune regulation, inflammation, and homeostasis (36). Polyphenols 
found in plant foods such as fruits, vegetables, herbs, and wine are 
abundant in the MED diet and promote beneficial bacteria in the 
gut (37,38). When processed by gut microbiota, they increase the 
bioavailability of polyphenol-derived metabolites, which protect 
against neurotoxic injury, suppress inflammation, and promote cog-
nitive functions (39,40).

The majority of diet interventions measuring both microbiome 
and cognitive outcomes have been conducted in rodents and have 
investigated individual components of Western and MED diets. One 
human study has investigated the impact of a MED diet on the gut 
microbiome and cognition in older adults. The following is a review 
of the intervention literature.

Diet Interventions Associated With a Western 
Eating Pattern

High-Fat Diets
Diets high in saturated fat are the most commonly studied inter-
ventions associated with a Western eating pattern (Supplementary 
Table S1). They appear to consistently alter microbiota, but simul-
taneous cognitive changes are not always observed. Middle-aged 
male Sprague Dawley rats fed a high-fat diet (HFD; 45% fat by 
kcal) for 8 weeks presented with changes to gut microbiota but no 
differences in working memory compared with rats fed a low-fat 
diet (10% fat by kcal) (41). HFD yielded a greater relative abun-
dance of genera from Firmicutes phylum and lower abundance of 
genera from Bacteroidetes phylum. Microglial characterization 
and counts in the cortex, hippocampus, and hypothalamus did not 
identify differences in neuroinflammation between groups. In ado-
lescent male Sprague Dawley rats, altered microbiota composition 
(specifically Clostridium sensu stricto genus) and impaired place 
recognition memory were observed following a 2-week HFD (48% 
fat by kcal) intervention (42). Bacteria from Lachnospiraceae and 
Ruminococcace families were correlated with memory. No differ-
ences in neuroinflammation or brain-derived neurotrophic factor 
(BDNF) expression were observed.

In adult male C57BL/6J mice, a 6-week HFD (42% fat by kcal, 
30% sucrose) resulted in microbiota shifts (increased Clostridiales, 
Erysipelotrichales and decreased Bacteroidales), but no differences in 
object recognition or spatial memory compared with a control chow 
diet (13% fat by kcal, 3% sucrose) (43). Associations were observed 
between altered taxa and cognitive flexibility. Following a 16-week 
HFD (60% fat by kcal), adult male C57BL/6J mice displayed large 
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shifts in gut microbiota (increased relative abundance of taxa from 
Firmicutes phyla and decreased relative abundance of taxa from 
Bacteroidetes and Tenericutes phyla), but no differences in con-
textual or cued memory compared with a low-fat diet (10% fat by 
kcal) (44). Research utilizing HFD-induced obese male C57BL/6J 
mice showed that 15 weeks of HFD (55% fat by kcal) led to reduced 
memory performance, decreases in microbiota richness and diver-
sity (decreased relative abundance of Bacteroidetes and increased 
abundance of Firmicutes and Protobacteria), and increased colonic, 
systemic, and hippocampal inflammation compared with mice on a 
control chow diet (5% fat by kcal) (45,46).

Adolescent male C57BL/6J mice fed a HFD for 9-weeks dis-
played microbiota shifts and impaired spatial recognition memory 
compared with controls (47). HFD increased Proteobacteria popu-
lation, increased fecal and plasma LPS, and suppressed BDNF ex-
pression in the hippocampus. Following a 3-week HFD (45% fat by 
kcal) in adolescent male C57BL/6J mice, no behavioral differences 
from control were observed in adulthood (10 weeks), but HFD re-
sulted in changes in gene expression related to neuroinflammation 
and myelination (48).

Inconsistent findings may be due to variations in rodent age, 
strain, and diet composition. For instance, some studies did not 
match for caloric value, fiber, sucrose, or protein content (43). In 
HFD interventions with calorie-matched designs (41,42), HFD 
groups eat less food overall compared with controls and are less 
exposed to certain nutrients (eg, sucrose). Other studies substituted 
fat calories with sucrose in control diets (44,47). Thus, the negative 
effects of HFD may be offset by negative effects of sucrose.

Rodents fed detrimental diets for prolonged periods will develop 
various cardiometabolic impairments, making it difficult to dir-
ectly link diet to microbiota and cognition. To address this, Bruce-
Keller et  al. (49) used a microbiota transplant approach in which 
nonobese adult male C57BL/6J mice, maintained on a normal chow 
diet (13% fat by kcal, 3.7% sucrose by weight), were subjected to 
microbiota depletion via antibiotics and then were recolonized with 
microbiota from mice fed either a HFD (60% fat by kcal, 8.9% su-
crose by weight) or normal chow diet for 10 weeks. HFD transplant-
ation altered microbiota diversity and composition (mainly shifts of 
Firmicutes phylum) and led to greater intestinal inflammation and 
permeability. Memory performance was significantly lower in HFD 
recipient mice who also showed neuroinflammation and disrupted 
cerebrovascular homeostasis in the medial prefrontal cortex. Post-
transplantation, there were no significant differences in body weight, 
blood glucose, or hormones/lipids between groups, suggesting that 
diet-associated microbiome changes influence brain health inde-
pendent of cardiometabolic changes.

High-Sucrose Diets
Diets high in sucrose appear to consistently affect gut microbiota 
and cognition. Adult male C57BL/6J mice fed a high-sucrose diet 
(HSD; 12% fat by kcal, 66% sucrose) for 6 weeks showed greater 
microbiota shifts and worse spatial memory compared with mice 
fed a HFD (42% fat by kcal, 30% sucrose) or normal chow diet 
(13% fat by kcal, 3% sucrose) (43). HSD increased bacteria from 
Clostridiales and Lactobacilllales orders and decreased bacteria 
from Bacteroidales order. Altered taxa were related to poorer 
cognitive flexibility; however, the diets in this study were not nu-
trient matched, which makes it difficult to determine which nutri-
ents are responsible for differences between groups. In adolescent 
male Sprague Dawley rats, a 2-week HSD (29% sucrose by kcal) 

intervention led to differences in microbiota composition (specific-
ally Porphyromonadaceae family) and impaired place recognition 
memory compared with a control diet (16% sucrose) (42). Bacteria 
from Lachnospiraceae and Ruminococcace families were correlated 
with memory, but no differences in neuroinflammation or BDNF ex-
pression were observed. An intermittent (2 h/d) HSD (20% fat [lard], 
39.6% sucrose) added to a chow diet (12% fat, 65% carbohydrates) 
led to deficits in social and object recognition memory compared with 
a chow diet alone in adolescent male Sprague Dawley rats (50). The 
HSD group displayed increases in bacteria from Lachnospiraceae 
and Ruminococcace families, and decreased BDNF expression and 
genes regulating catecholamine metabolism in the prefrontal cortex.

Cafeteria Diets
The cafeteria diet is an experimental rodent diet of unhealthy human 
foods, which are highly processed and high in saturated fat and su-
crose. Compared with a control chow diet (65% kcal by carbo-
hydrates, 22% protein, 13% fat), continuous cafeteria (access to 
commercially produced cakes, biscuits, and savory foods) and inter-
mittent cafeteria diets (3 days cafeteria, 4 days chow) reduced gut 
microbiota richness and diversity in adult female Sprague Dawley 
rats (51). Both diets increased hippocampal cytokine expression, 
but only the continuous cafeteria diet was associated with impaired 
short-term memory. Limited access to unhealthy foods may spare 
cognition, as intermittent caloric restriction has shown to improve 
cognition in mice (52). In adolescent male C57BL/6JOIaHsd mice, 
cafeteria diet intake was associated with late-life microbiota com-
position (48) but did not affect cognition compared with a chow 
diet. Genes related to neuroinflammation and neurotransmission 
in adulthood were also affected. In this study, mice were switched 
back to a normal chow diet following adolescence. Switching to a 
chow diet after HFD intervention has shown to reverse behavioral 
effects (53), which may explain the lack of cognitive differences in 
adulthood.

Diet Interventions Associated With 
Mediterranean Eating Patterns

Fiber
The foods typical in a MED diet are high in fiber. β-Glucans, sol-
uble fibers found in fungi, yeast, and cereal grains such as oats 
and barley, have shown to alter microbiota and cognition in sev-
eral rodent models (Supplementary Table S2). Aβ 1-42-induced adult 
male C57BL/6J mice supplemented with yeast-derived β-glucan for 
4 weeks exhibited memory improvements, which correlated with 
alterations in beneficial and inflammatory-related microbiota (in-
creased relative abundance of Bacteroidetes and decreased relative 
abundance of Firmicutes) (54). Increases in hippocampal SCFAs 
and reductions in neuroinflammation and brain insulin resistance 
were also observed. In adult male C57Bl/6J mice, 15 weeks of oat-
derived β-glucan supplementation (7%) added to a HFD (55% kcal 
by fat) prevented recognition memory impairments and abrogated 
microbiome alterations (increased relative abundance of Bacteroides 
and decreased relative abundance of Proteobacteria) observed with 
HFD alone (45). Oat-derived β-glucan also countered HFD-induced 
upregulation of inflammatory cytokines in the hippocampus and de-
creased endotoxin translocation in the colon. A  substudy of these 
mice found that microbiota changes preceded cognitive changes, and 
cognitive effects of β-glucan were eliminated in an additional study 
arm receiving antibiotics in combination with the oat β-glucan diet.
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Similar effects of β-glucan-rich foods have been observed. Male 
low-density lipoprotein receptor knockout C57Bl/6J mice were fed 
either a high-fat/cholesterol diet (46% kcal by fat) with or without 
0.8% oat fiber (22% β-glucan, 22% insoluble fiber, 20% starch, 5% 
lipids, 20% protein, 4% ash, 5% water) for 14 weeks (55). Oat fiber 
ameliorated impairments in spatial learning and memory, and im-
proved microbiota diversity, increasing SCFA-producing microbiota 
(increased Actinobacteria and decreased Rikenellaceae). Oat fiber 
also increased the expression of SCFA receptors and tight junction 
proteins in the distal colon. Barley, a β-glucan-rich food, has shown 
to ameliorate cognitive impairments and alter gut microbiota in a 
rodent model of age-related cognitive decline (56). Male 4-week-old 
senescence-accelerated prone 8 (SAMP8) mice were fed a purified 
chow diet (AIN-93G) for 4 weeks, and from then until death, fed 
a mild HFD (27% fat by adding lard) with either barley (7.9% sol-
uble β-glucan) or rice starch components. The barley diet  altered 
microbiota (increased Bacteroides to Firmicutes ratio) and reduced 
age-associated spatial memory decline compared with the rice diet. 
Microbiota-accessible carbohydrates (MAC) are supplements rich in 
a variety of fermentable fibers. In adult male C57Bl/6J mice, MAC 
added to a HFD prevented dysbiosis (increasing relative abundance 
of Bacteroidetes, and decreasing abundance of Proteobacteria) and 
memory impairments observed with HFD alone (46), while reducing 
endotoxemia and colonic and systemic inflammation. MAC effects 
on cognition were eliminated when combined with antibiotics in an 
additional study arm.

Purified fiber supplementation has shown to alter microbiota and 
cognition in a small sample of healthy young adult females. Participants 
received either 12.5  g LitesseUltra (>90% ploydextrose polymer 
[PDX]) or maltodextrin for 4 weeks (57). PDX resulted in modest cog-
nitive improvements and compositional microbiota changes (increased 
relative abundance of Firmicutes). Minor changes to CD62L receptor 
expression, a marker of acute stress responsiveness, suggest that PDX 
benefits the brain by reducing inflammatory status. PDX, however, is a 
synthetic polymer, not naturally found in foods and may not represent 
the effects of fiber as part of a MED diet.

Omega-3 Polyunsaturated Fatty Acids
PUFA-enriched diet interventions positively affect gut micro-
biota, with simultaneous cognitive effects most often observed. 
In stress-induced adolescent male Wistar rats, a diet enriched in 
omega-3 PUFAs prevented memory impairments, normalized de-
clines in hippocampal BDNF, and attenuated shifts in microbial 
composition (increased relative abundance of Ruminococcacea 
and Lachnospiraceae) compared with a control diet (58). These 
effects were maintained throughout adulthood, long after the 
stressful environment was terminated. When provided to pregnant 
female C57BL/6J mice and their offspring, an omega-3 PUFA diet 
led to beneficial microbiota development (Bifidobacterium and 
Lactobacillus), better memory, and dampened HPA axis activity in 
offspring that persisted until adulthood (59). Behavioral changes 
were closely associated with alterations in gut microbiota. In con-
trast, 2 weeks of a PUFA-enriched diet in adolescent male Sprague 
Dawley rats led to significant differences in microbiota composition 
(specifically taxa from Ruminococcaceae family), but not object or 
recognition memory compared with controls (42).

Polyphenols
Sesamol, a polyphenol derived from sesame oil, has shown to alter 
microbiota while also reducing age-associated impairments in mice 

(60). Young (2  months old) and middle-aged (12  months) CD-1 
male mice on a standard chow diet (AIN-93M) were compared with 
middle-aged male mice on a chow diet with sesamol (0.1% w/w). 
Sesamol reduced cognitive impairments observed in aging mice on a 
chow-only diet and significantly increased microbiota diversity, with 
beneficial effects seen on aging- and inflammation-associated micro-
biota. Oxidative stress and neuroinflammation were significantly re-
duced compared with controls, likely related to alleviated intestinal 
barrier damage and inhibited gut microbiome-driven LPS entry into 
the blood.

Whole Diet
The NU-AGE study (new dietary strategies addressing the specific 
needs of the older adult population for healthy aging in Europe) 
is the only whole diet intervention in humans that has reported on 
measures of both gut microbiota and cognition. A sample of 1200 
older adults (aged 65–79 years) were randomized to either a MED 
diet intervention or control diet for 12  months (61). Participants 
with high MED diet adherence showed significant improvements in 
global cognition and episodic memory. Gut microbial communities 
were profiled in a subset of participants (323 on MED diet, 289 
controls). There were no significant differences in microbiota diver-
sity between groups; however, across all participants, greater MED 
diet adherence was associated with increased microbiome diversity, 
increased SCFAs, and decreased inflammation (62). Bacterial com-
munities enriched by the MED diet were positively associated with 
memory and visual-spatial abilities.

Exercise, Cognition, and the Microbiome

Most exercise examined in the context of the microbiome describes 
aerobic exercise. Aerobic exercise throughout the life span is as-
sociated with better cognitive function and reduced dementia risk 
(63). It is proposed to benefit the brain both indirectly, by improving 
health conditions, and directly, by increasing brain neurotrophic 
factors, improving cerebrovascular function, and enhancing brain 
plasticity (64–66). Exercise also increases key antioxidant enzymes, 
anti-inflammatory cytokines, and antiapoptotic proteins, leading to 
reduced inflammation (67,68).

Aerobic exercise improves microbial diversity and intestinal bar-
rier permeability in humans (20,69,70). BDNF is elevated by exer-
cise and has shown to regulate GI tight junction proteins, which are 
crucial for maintaining the epithelial integrity, thereby reducing the 
translocation of proinflammatory endotoxins (eg, LPS) into circu-
lation (71). Greater exercise and cardiorespiratory fitness are posi-
tively associated with SCFA-producing bacteria and fecal SCFA 
concentrations independent of diet (72,73).

The effects of aerobic exercise on gut health appear to vary by 
exercise intensity. Moderate-intensity aerobic exercise maintains in-
testinal blood flow, positively modulating GI motility (74) and redu-
cing inflammation (75). Conversely, long-duration, strenuous aerobic 
exercise (>60%–70% VO2max) produces an acute stress response, 
increasing levels of cortisol and epinephrine (76), reducing blood 
supply to intestinal epithelium (77), and promoting gut permeability 
and inflammation (78,79). High-intensity interval training, which in-
volves short-duration bursts of strenuous aerobic exercise, has shown 
to beneficially alter microbiota composition and diversity in mice 
(80–82) and reduce systemic and adipocyte inflammation in rats (83).

A better understanding of the effects of varying types and in-
tensities of exercise on the gut–brain axis in humans is required. 
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Very few exercise interventions (rodent only) met the criteria for 
inclusion in this review. The following is a review of the interven-
tion literature.

Aerobic Exercise interventions

Aerobic exercise interventions alter gut microbiota and positively in-
fluence brain health in rodents, but evidence in humans is unexplored 
(Supplementary Table S3). Running wheel exercise for 16 weeks was 
associated with altered microbiota (increased relative abundance of 
Firmicutes and decreased relative abundance of Bacteroidetes and 
Tenericutes) and increased contextual memory compared with con-
trols in adult male C57BL/6J mice (44). Memory performance was 
associated with bacterial abundances from Ruminococcaceae and 
Lachnospiraceae families. In a rat model of metabolic syndrome, 
preoperative treadmill exercise increased microbiome diversity 
(increased abundance of Firmicutes and decreased abundance 
of Bacteroidetes) and alleviated postoperative cognitive impair-
ments (84), a common issue in older adult patients with metabolic 
syndrome. Male high- and low-capacity running rats were randomly 
assigned to receive preoperative exercise (6 weeks) with surgery 
(tibia fracture with internal fixation under anesthesia) or sham sur-
gery (anesthesia only), or no exercise with surgery or sham surgery. 
Preoperative exercise attenuated memory impairments and lowered 
neuroinflammation in low-capacity running rats postsurgery. In a 
mouse model of AD (APP/PS1), high-intensity interval treadmill 
running altered gut microbiota and decreased progression of AD 
pathology (80) compared with nonexercised controls. Exercise in-
creased the abundance of SCFA-producing bacteria and elevated 
levels of Lactobacillus reuteri, a vitamin B12 producer. No differences 

in spatial memory were observed, but the exercise group showed 
decreases in the size and number of beta-amyloid plaques in the 
hippocampus.

Synthesis of Findings

The findings mostly from rodent trials provide evidence for the 
mediating effect of gut microbiota on diet and exercise effects on 
cognition (Figure 1). Western-type diets were associated with de-
creased microbiota richness and diversity (45,51) and poorer spa-
tial and object recognition memory (42,43,46,47,49–51), as well 
as increased intestinal and neural inflammation (45–47,49,51), and 
decreased BDNF expression (50). Interventions associated with 
MED eating patterns often resulted in greater microbiota diver-
sity (46,60,62) and spatial and object recognition memory (54–57). 
Following a MED diet intervention in older adults, correlations 
between diet-associated microbiota changes and global cognition 
were observed (62). Increased SCFAs and tight junction proteins 
(45,54,55,62), hippocampal BDNF expression (58) and reduced 
endotoxin translocation (45,46,60), brain insulin resistance (54), 
and neuroinflammation (45,54,60,62) were identified as potential 
mediating mechanisms in these studies. Not all diet interventions ob-
served cognitive effects however, and these inconsistencies are likely 
due to heterogeneity of diets, rodent models, and cognitive assess-
ments. The most promising evidence comes from high-fiber interven-
tions where increased SCFAs and reduced inflammation along with 
cognitive changes were commonly observed (45,46,54–57).

Evidence from a limited number of preclinical exercise trials have 
shown compositional microbiota changes that were associated with 
cognition in healthy mice (44) and reduced postoperative cognitive 

Figure 1. Summary of intervention results. Dashed arrows denote mixed evidence for cognitive effects. LPS  =  lipopolysaccharide; BDNF  =  brain-derived 
neurotrophic factor; PFC  =  prefrontal cortex; AD  =  Alzheimer’s disease; LDLR−/−  =  low-density lipoprotein receptor knockout mice; SAMP8  =  senescence-
accelerated mouse-prone 8; PUFAs = polyunsaturated fatty acids, SCFAs = short-chain fatty acids; HPA axis = hypothalamic–pituitary–adrenal axis, HIIT = high-
intensity interval training.
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impairment and neuroinflammation in a rat model of metabolic 
syndrome (84). In AD mice, high-intensity treadmill exercise led to 
increases in SCFA-producing bacteria and reductions in AD path-
ology (80), but not cognitive differences. The lack of cognitive effects 
in AD mice may be related to their advanced disease progression and 
aligns with the notion that interventions should be applied early in 
the course of cognitive decline (85).

Supporting the mediating the role of the microbiome are micro-
biota changes that precede cognitive changes (45), antibiotic elimin-
ation of cognitive effects related to diet (45,46), microbiota transplant 
effects (49), and potential mechanistic links such as SCFA, BDNF, 
and inflammatory changes. Associations between altered microbiota 
and cognition were also frequently observed (42–44,51,54,59,62). 
In particular, bacteria from the Clostridia class and Bacteroidales 
order, such as Lachnospiraceae, Ruminococcaceae, Coprobacter, and 
Rikenella, as well as Lactobacillus and Bifidobacterium genera. The 
field is predominantly dominated by rodent studies, but their find-
ings set the stage for future human trials in this area. Several ongoing 
human studies are described in the following section.

Ongoing Human Trials

The DGA4ME trial (86) will assess the impact of a 32-week MED 
diet on cognitive performance and microbiota in females under age 
65 (n = 168) with obesity and cardiovascular risk factors. Participants 
will be randomly assigned to one of the following groups: MED diet 
to maintain body weight; MED diet to achieve weight loss; typical 
American diet to achieve weight loss. The 3-group design could give 
insight on whether the MED diet affects microbiome and cognition 
independent of adiposity and metabolic changes.

The COMBAT study (87) will investigate the impact of 12 weeks 
of cranberry intake, rich in polyphenols, on gut microbiota and cog-
nition. Participants aged 55 and older will be allocated to a treat-
ment or control group (n = 30 each). Blood, urine, and fecal samples 
will be collected to assess diet and microbiome, and all participants 
will undergo cognitive testing and magnetic resonance imaging 
(MRI). Secondary analyses of inflammatory and metabolic markers, 
BDNF levels, and cerebrovascular hemodynamics will be conducted. 
Strengths of this study include the recruitment of older adults and 
a comprehensive brain health assessment. The use of a single nu-
trient intervention, however, only informs us about one attribute of 
a healthy diet.

The Lifestyle Intervention for Alzheimer’s Disease study (88) will 
recruit 100 participants with mild cognitive impairment or early AD 
to participate in a 40-week lifestyle intervention. The intervention 
will consist of a low-fat vegan diet, aerobic and resistance exercise, 
stress management, and group support. A waitlist control group will 
be used, and after 20 weeks, those in the control phase will receive 
the lifestyle intervention. Cognition and microbiome changes will 
be assessed at 20 and 40 weeks. The intervention design limits the 
ability to assess individual lifestyle components and may only be 
able to inform on the overall combined effects of the intervention.

A study from Sun Yat-sen University in China (89) aims to 
examine the effects of a combined diet and exercise intervention 
versus either intervention alone on executive function and intestinal 
microbiota in 200 undergraduate students. Exercise training will 
consist of rope skipping (3 cycles of 20 minutes skipping: 10-mi-
nute breaks) 3 times per week. The diet intervention consists of 10 
hours of restricted eating of a high-fiber diet. Secondary outcomes 
will include BDNF, CRP, and a variety of inflammatory cytokines. 
Limitations of this study include the young study sample, lack of a 

true control group, and the assessment of only one cognitive domain. 
Additionally, restricted eating does not necessarily reflect a healthy 
diet, and rope skipping for long durations does not seem appropriate 
for adults without a moderate fitness level at baseline.

The aforementioned studies speak to the growing interest in the 
effects of lifestyle modification on the gut–brain axis, but are limited 
by various sample populations, intervention protocols, and outcome 
measures. Strengths of these studies include the study of at-risk 
populations, high-intensity exercise, and multicomponent interven-
tion effects. They also provide a sense of appropriate designs and 
outcome measures. There are still, however, many gaps in the field 
that need to be addressed.

Gaps and Recommendations

The role of the microbiome in the effects of diet and exercise on cog-
nition is emerging from preclinical trials, but inferences to human 
physiology, especially in the context of dementia prevention, are un-
certain (Figure 2). There is a need for more human trials—especially 
with individuals experiencing early signs of cognitive impairment 
and/or presenting with dementia risk factors. A  major limitation 
of rodent research is the narrow selection of cognitive tests. Spatial 
and object recognition are most always reported due to the frequent 
use of maze testing and fear conditioning paradigms. Thus, little 
is known about other cognitive domains, which can be differently 
impaired in humans experiencing dementia. Human trials provide 
the opportunity to comprehensively study cognition through neuro-
psychological assessment and the use of advanced measurement 
techniques such as MRI. There are numerous studies investigating 
the effects of diet and exercise on cognition in older adults, but 
lacking investigation into the microbiome. We encourage researchers 
working on these studies to collaborate with microbiome scientists, 
and attempt to include simple, cost-effective measures of micro-
biota composition, diversity, and function. Fecal samples are an easy, 
cost-effective collection strategy, and labs can be outsourced to store 
and/or analyze fecal samples.

The majority of studies investigated singular components of 
Western and MED eating patterns, and the effects of whole diet 
interventions on microbiota and cognition are underexplored. High-
fat and high-sucrose diets are common in North America; thus, 
there is a lot of research interest in their effects. Furthermore, the 
frequent use of single nutrient interventions may reflect the desire 
to discover simple forms of treatment. The general consensus, how-
ever, is that the combined attributes of a diet are more important for 
microbiome composition and cognition than individual components 
(15). Nutrients that target SCFA-producing bacteria and inflamma-
tion appear to have the greatest impact on cognition. Thus, whole 
diets such as the MED diet, which comprised fruits, vegetables, and 
healthy fats, are recommended for future studies.

The number of exercise interventions in this field is quite limited 
compared with dietary interventions. Additional preclinical trials 
are needed to corroborate the current evidence from a handful 
of rodent studies and inform the designs of human trials. Little is 
known about how exercise intensity influences the gut–brain axis, 
and thus is an important endeavor for future research, as differing 
intensities have shown to have varying effects on gut health and 
other physiological outcomes (77–79). Researchers should also 
consider investigating other types of exercise, such as resistance 
training. Microbiota transplant and antibiotic treatment designs 
should also be considered in rodent exercise studies. None of the 
reviewed exercise interventions measured BDNF, but given that 
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BDNF is elevated by exercise and associated with gut health and 
cognition, it is recommended that future exercise trials include this 
as an outcome.

The diet interventions included in this study could warrant their 
own review entirely; however, it was our intent to present findings 
from both diet and exercise interventions as there is accruing evi-
dence supporting the synergistic effects of multicomponent lifestyle 
interventions, and it is of interest whether these are replicated when 
assessing microbiome and cognitive outcomes (90,91). Diet and 
exercise-associated microbiome and cognitive changes are accom-
panied by many of the same physiological changes; thus, it is reason-
able to predict that synergistic effects may occur. Factorial designs 
comparing diet, exercise, and diet combined with exercise are highly 
encouraged to tease apart these relationships.

The majority of studies reviewed included heterogeneous, mostly 
male rodent models. Findings from adolescent, young adult, and 
stress-induced mice may not generalize to at-risk populations, while, 
conversely, AD rodent models may be too far along in their disease 
progression. Most studies used healthy adult rodents, a group of 
interest considering many risk factors for dementia begin early in 
adult life, and lifestyle behaviors during adulthood are associated 
with cognition in late life (92). Findings from studies including 
middle-aged, senescence-accelerated, and cardiometabolic risk ro-
dent models are perhaps the most relevant to dementia prevention 
and are recommended for future studies. Researchers also tend to 
use male mice exclusively as they are concerned that estrous cycles 
in female mice will increase variability; however, these claims have 
been refuted (93). The underrepresentation of female rodents limits 
our understanding of female biology and may lead to inadequate 
treatment for females. Given there are sex and gender differences in 
cognitive trajectories (94) and lifestyle preferences (95,96), it is im-
portant to study the effects of diet and exercise on the gut–brain axis 

as a function of both sex and gender. Despite these limitations, we 
believe that for a research area still in its infancy, it is appropriate to 
consider findings from all studies available that investigate the inter-
play between diet, exercise, and the gut–brain axis.

Lastly, a major focus of this review was to infer the mediating 
role of the microbiome; however, no studies conducted proper me-
diation analyses. Instead, our conclusions are drawn from evidence 
of potential mediating mechanisms, correlations between altered 
microbiota and cognition, and novel designs such as microbiota 
transplant and antibiotic treatment. Most studies did not assess 
microbiota and cognition at baseline, a requirement for running 
proper mediation analyses. Figure 3 provides an example of a trial 
design for future exercise and diet investigating the mediating role of 
the gut microbiome on cognitive changes in older adults. In addition 
to baseline and postintervention assessments, midpoint assessments 
are useful for identifying whether microbiota changes precede cog-
nitive changes. Measuring potential mediating mechanisms such as 
SCFAs and tight junction proteins, BDNF, and measures of local, 
systemic, and neural inflammation are highly recommended.

Conclusion

The intervention literature supports the notion that the gut 
microbiome, at least in part, mediates diet and exercise effects on cog-
nition. In contrast to Western-style diets, interventions encompassing 
features of the MED diet, and uptake of exercise were associated 
with improved microbiota diversity, increased SCFA production, and 
reduced local and systemic inflammation. The evidence is mainly de-
rived from rodent studies; however, one large MED diet intervention 
found diet-associated microbiota changes to be correlated with cog-
nitive performance in older adults. Several diet and exercise interven-
tions assessing both microbiome and cognitive outcomes in humans 

Figure 2. Findings, gaps, and recommendations.
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are underway, but are limited by heterogeneous populations and 
interventions. We encourage the inclusion of baseline and follow-up 
measures of microbiome composition, diversity, and function in life-
style interventions aimed at reducing dementia risk in older adults. 
This effort would help to elucidate the mechanisms by which life-
style modification affects cognition and may help to develop more 
targeted dementia prevention strategies.

Supplementary Material

Supplementary data are available at The Journals of Gerontology, 
Series A: Biological Sciences and Medical Sciences online.
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