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HDAC and HDAC Inhibitor: From Cancer to Cardiovascular 
Diseases
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Histone deacetylases (HDACs) are epigenetic regulators that regulate the histone tail, 
chromatin conformation, protein-DNA interaction, and even transcription. HDACs are 
also post-transcriptional modifiers that regulate the protein acetylation implicated in 
several pathophysiologic states. HDAC inhibitors have been highlighted as a novel cat-
egory of anti-cancer drugs. To date, four HDAC inhibitors, Vorinostat, Romidepsin, 
Panobinostat, and Belinostat, have been approved by the United States Food and Drug 
Administration. Principally, these HDAC inhibitors are used for hematologic cancers 
in clinic with less severe side effects. Clinical trials are continuously expanding to ad-
dress other types of cancer and also nonmalignant diseases. HDAC inhibition also re-
sults in beneficial outcomes in various types of neurodegenerative diseases, in-
flammation disorders, and cardiovascular diseases. In this review, we will briefly dis-
cuss 1) the roles of HDACs in the acquisition of a cancer’s phenotype and the general 
outcome of the HDAC inhibitors in cancer, 2) the functional relevance of HDACs in car-
diovascular diseases and the possible therapeutic implications of HDAC inhibitors in 
cardiovascular disease.
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INTRODUCTION

Histone deacetylases (HDACs) are the group of enzymes 
that remove the acetyl group from lysine residue. To date, 
18 mammalian HDACs have been identified and are char-
acterized into four classes: class I HDACs (HDACs 1, 2, 3, 
and 8), class II HDACs (HDACs 4, 5, 6, 7, 9, and 10), class 
IV (HDAC 11) and class III (sirtuin family: sirt1-sirt7). 
Class II HDACs are further divided into two subgroups: 
class IIa, which has a large C-terminus, and class IIb, which 
has two deacetylase domains. Class I, II, and IV HDACs 
need a zinc ion (Zn2＋) and share a similar catalytic core for 
acetyl-lysine hydrolysis,1 while class III HDACs require a 
nicotinamide adenine dinucleotide for their enzyme 
activity. 

Even though both class I and class II HDACs have a con-
served HDAC domain, they have quite different charac-
teristics. Class I HDACs are present ubiquitously, whereas 
class II HDACs are expressed in a tissue-specific manner 

relatively. The class I HDACs are located mainly in the nu-
cleus, whereas class II HDACs undergo shuttling from the 
nucleus to the cytoplasm after phosphorylation by protein 
kinase C or by protein kinase D. The class IV HDAC, 
HDAC11 shares the catalytic domain both of class I and II 
HDACs. The specific role of class IV HDAC, however, still 
remains unclear. 

Because of the Zn2＋-dependent nature of the HDAC do-
main in class I, II, and IV HDACs, the intrinsic activity of 
HDACs is suppressed by inhibitors which occupy the cata-
lytic core of the zinc-binding site.2 The specific motif of 
HDAC inhibitor, which fits into the tubular pocket where 
the Zn2＋ existed originally, then interferes with the bind-
ing of the Zn2＋. HDAC inhibitors can be categorized by the 
structure of their Zn2＋-binding group: hydroxamic acids, 
carboxylic acid, benzamides, and cyclic peptides.3 For ex-
amples, potent non-selective HDAC inhibitors, trichosta-
tin A (TSA) and suberanilohydroxamic acid (SAHA) are in 
the hydroxamic acid group, while valproate is a member of 
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FIG. 1. The role of HDACs in cancer biology. Generally HDACs par-
ticipate in the expression of malignant phenotypes in cancer cells.
Class I HDACs promote cell proliferation and inhibit both apopto-
sis and differentiation. Class II HDACs provoke tumor 
angiogenesis. HDAC6 specifically increase in cell motility which 
results in distant metastasis. The bar indicates suppression 
whereas the arrow depicts stimulation.

the carboxylic acid group, MS-275 is widely used benza-
mide group inhibitor, and Romidepsin is the representa-
tive inhibitor having a cyclic peptide structure. 

HDACs have an important role both in transcription reg-
ulation and in protein modification. As HDACs remove the 
acetyl moiety from lysine residues at histone tails, which 
tighten the interaction between the positive-charged histo-
nes and the negative-charged DNA. Therefore, histone de-
acetylation leads to chromatin compaction and inhibits the 
binding of transcription machinery at the promoter region, 
which results in repression of mRNA synthesis. Besides 
the role in transcription-repression, HDACs also function 
as regulators in posttranslational modification (PTM). 
HDACs deacetylate non-histone proteins including both 
transcription factors, such as E2F, p53, c-Myc, and NF-B, 
and signal mediators, such as Stat3, Smad7, and -catenin 
which regulate cellular homeostasis.4 Since PTM de-
termines protein activity, stability, subcellular local-
ization, and protein-protein interactions, these diverse 
protein modifications by PTM modifiers are important for 
a proteins fate. PTM determines disease prognosis, and 
drugs that modulate PTM has been investigated as poten-
tially therapeutic for several pathological disease. 
Imatinib mesylate successfully interrupts Abl kinase ac-
tivity by blocking the tyrosine kinase domain and thereby 
induces apoptosis of malignant cells in chronic myeloid leu-
kemia patients. HDACs are one of the important enzymes 
that regulate the PTM of other proteins, HDAC inhibitors 
also have therapeutic potential for refractory diseases. On 
the basis of the studies demonstrated that HDAC in-
hibition could reverse cardiovascular diseases, in the pres-
ent review, we will discuss the role of HDAC and HDAC in-
hibitors as an important therapeutic target in car-
diovascular disease beyond the anticancer properties of 
HDAC inhibitors.

THE ROLE OF HDACS IN TUMORIGENESIS

Incidentally somatic mutations allowed cells to acquire 
novel capacities, which benefitted their survival. After the 
accumulation of aberrant phenotypes in single cell in se-
quential events, a malignant cancer cell can be developed. 
According to recent studies, many HDACs are increased in 
malignant cells and HDACs have been closely linked with 
acquisition of malignant phenotypes in cancerogenesis. 
Class I HDACs are considered to stimulate cell prolifera-
tion and survival based on preclinical and clinical studies. 
For example, increased expression of HDAC1 was reported 
in gastrointestinal cancer,5,6 prostate,7 and breast8 carcin-
omas. Aberrant upregulation of HDAC2 has been reported 
in uterine, cervical,9 and gastric10 cancers. HDAC2 is re-
garded as the responsible factor for the loss of APC ex-
pression in colorectal carcinoma.11 Other groups have 
found that HDAC3 or HDAC6 was also highly overex-
pressed in colon and breast cancer cells, respectively.6,12 
HDACs expression is increased in solid tumors and in hem-
atological cancers, which correlates with a poor prognosis. 

The functional relevance of aberrant overexpression of 
HDACs is somewhat diverse among the specific subtypes. 
Class I HDACs generally induce cell proliferation. Fur-
thermore both HDAC1 and HDAC2 inhibit apoptosis of 
cancer cells. Other HDACs, HDAC3, 4, 5, and 8, tend to in-
hibit differentiation and HDAC4, 6, 9, and 10 are closely 
linked with cancer angiogenesis while class IIb HDACs, 
both HDAC6 and 10, provoke cell motility, which results 
in metastasis (Fig. 1). Inhibitors of HDAC targeting pro-
liferation, differentiation, angiogenesis and migration are 
a potential cancer therapeutic strategy.

1. Proliferative phenotype
Uncontrolled proliferation is the most distinct pheno-

type in cancer. The p21 gene, a potent cell-cycle arrester, 
seems to be correlated with HDACs. The transcription level 
of p21 is significantly decreased by the upregulation of 
HDACs in many cancer cell types. Transient overexpre-
ssion of HDAC2, HDAC3, or HDAC6 induces p21-promoter 
silencing and subsequent down-regulation of proteins in 
various cell types.6,13,14 Similarly, an increase in p21-ex-
pression and thereby reduced adenoma formation is ob-
served either by knockdown of HDAC2 or HDAC3 by the 
specific siRNA or by HDAC inhibitors such as sulforap-
hane,13 valproate (VPA),11 and sodium butyrate.15 Another 
important gene for proliferation, cyclin D1, which is over-
expressed in cancers, is also decreased by treatment with 
TSA, a non-selective HDAC inhibitor.16

2. Undifferentiated features
The cancer cells frequently remain undifferentiated sta-

tus, which accords malignancy to the tumor cells. For the 
responsible mechanism, down-regulation of differenti-
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ation factor, GATA family, is pointed to in several cancers. 
Treatment with TSA in ovarian cancer cells robustly in-
creases histone acetylation on promoters of GATA4 and 
GATA6.17 The restoration of both GATA4 and GATA6 re-
sults in differentiation of ovarian cancer cells. It may im-
prove the survival rate of cancer patients because differ-
entiated cancer cells are more susceptible to chemo-
therapy. HDACs have also been found to be involved in 
leukemogenesis. Runx1 is the definitive factor in hema-
topoietic linage differentiation. In the case of t(8;21), 
Runx1 fuses to ETO then generates the Runx1-ETO chi-
meric protein. Runx1-ETO (also known as AML1-ETO) 
chimera represses transcription both of p14ARF and c-fms 
by performing as a dominant negative actor against to 
wild-type of Runx1 which recruits HDACs for transcri-
ption-repressor complex.18,19 BCL6, a BTB/POZ member 
which is critical for survival and differentiation, is the sup-
pressed transcription factor both by class I and class II 
HDACs in B-cell lymphoma.20

3. Tumor vessel formation
Neoangiogenesis is required for both nutrient and oxy-

gen supply in solid tumors and HDACs perform crucial 
roles in these processes. HDAC1 overexpression induces 
angiogenesis by secreting both vascular endothelial growth 
factors and hypoxia inducible factor-alpha. Immunohisto-
chemical analysis reveals that HDAC1 is highly expressed 
in hypoxic regions of tumors whereas TSA treatment suc-
cessfully inhibits hypoxia-induced neoangiogenesis, in 
vivo.21 Besides TSA, apicidin, and VPA are useful to pre-
vent neoangiogenesis.22,23

4. Distant metastasis
Metastasis, the spread cancer cells across tissues, occurs 

in many malignant tumors. Unfortunately, aberrant upre-
gulation of HDACs allows an increase in distant meta-
stasis of cancer cells. Forced expression of HDAC1, 6, or 8 
increases cell motility in MCF-7 cells.24 E-cadherin, an im-
portant gene for cell-cell adhesion, is regulated by class I 
HDACs. HDAC1 and HDAC2 repress the transcription of 
E-cadherin correlated with Snail and mSin3A. TSA treat-
ment abolishes Snail-mediated repression.25 HDAC3 also 
binds to the E-cadherin promoter after making a complex 
with PPAR, and VPA depresses promoter binding of 
HDAC3-PPAR which restores E-cadherin expression.26 
Similarly, treatment of HDAC inhibitors using low doses 
suppresses local invasion of fibroblasts,27 B16-BL6 mela-
noma cell invasion of matrigels,28 and breast cancer cells. 

5. Aneuploidy
Aneuploidy, or an abnormal number of chromosomes, is 

identified as a negative prognostic factor for epithelial 
malignancies. It is reported that aneuploidy is observed in 
approximately 90% of both solid tumors and hematopoietic 
neoplasias.29 HDAC2 was highly expressed in aneuploidy 
cell lines than diploid cell lines. HDAC2 nuclear immuno-
positive cells increased in aneuploidy colorectal cancer 

specimens than in diploid carcinomas.30 According to a pre-
vious study, HDAC inhibitors lead to a decrease in aneu-
ploidy of malignant cells and an increase in euploidy. It is 
unclear, however, whether HDAC inhibition specifically 
induces apoptosis of cancer cells or induces recovery of 
euploidy.31

APPROVAL HDAC INHIBITORS

To date, the United States Food and Drug Administrat-
ion (US FDA) has approved four HDAC inhibitors for the 
anti-cancer drugs: Vorinostat, Romidepsin, Belinostat, 
and Panobinostat (Table 1). Furthermore, more than five 
HDAC inhibitors are in clinical trial phase III including re-
positioning of already approved HDAC inhibitors.

1. HDAC inhibitors
Vorinostat (SAHA, trade name; ZolinzaⓇ) is a linear hy-

droxamate compound that was approved for the treatment 
of cutaneous T-cell lymphoma (CTCL) in October 2006. The 
objective response rate, which was determined by clinical 
responses, was 30%.32 Thrombocytopenia and anemia, 
however, were reported as severe hematologic side effects 
which was more frequently reported in the patients who re-
ceived intravenous administration of Vorinostat.33 Several 
combination therapies of Vorinostat with a conventional 
regimen for various solid tumors are now in clinical trials 
up to phase III.

Romidepsin (FK228 or depsipeptide, trade name; 
IstodaxⓇ) is a cyclicpeptide HDAC inhibitor and was ap-
proved in November 2009. Originally the US FDA ap-
proved it for CTCL and decided to expand the indication to 
include peripheral T-cell lymphoma (PTCL) in November, 
2011. The overall response rate was 34 % in CTCL34 and 
the objective response rate of PTCL was 25%.35 Additional 
clinical studies in solid tumors using combination therapy 
for pancreatic, breast, non-small cell lung cancer, and thy-
roid cancers are in progress. 

Third FDA approval was given for the HDAC inhibitor 
in July 2014. Belinostat (PXD101, trade name; BeleodaqⓇ) 
which is a hydroxamic acid compound licensed for the treat-
ment of relapsed or refractory PTCL. The overall response 
rate was 26%.36 Like the other two FDA approved HDAC 
inhibitors, Belinostat is also in the clinical trial phase for 
solid tumors; anticancer effects against solid tumors, how-
ever, was disappointing. The effect concentration of 
Belinostat was not high enough because of an insufficient 
blood supply caused by its anti-angiogenic effects.37

The most recently approved HDAC inhibitor is Panobi-
nostat (LBH-589, trade name; FarydakⓇ). Panobinostat 
was licensed in February 2015 for the treatment of multiple 
myeloma. Objective responses of Panobinostat is 27%.38 
Panobinostat is also a hydroxamic acid group. More cumu-
lative data is necessary. 

One carboxylate group HDAC inhibitor (VPA, as magne-
sium salt) and one benzamide HDAC inhibitor (Entinostat) 
are on phase III clinical trials. Wildly used as an anti-epi-
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TABLE 1. HDAC inhibitors approved by United States Food and Drug Administration

Tradename Chemical names
FDA approved 

indication
Classification Structure Clincal trials

ZolinzaⓇ Vorinostat
SAHA

CTCL Hydroxamate Multiple myeloma
Mesothelioma
Neuroblastoma
Glioblastoma
Non-Hodgkin lymphoma

IstodaxⓇ Romidepsin
FK228

CTCL
PTCL

Cyclicpeptide Multiple myeloma
Breast cancer
Lymphoma
Sarcoma
Small cell lung cancer

BeleodaqⓇ belinostat,
PXD101

Multiple 
melanoma

Hydroxamate CUP
Ovarian cancer
Hepatocarcinoma
Soft tissue sarcoma
NSCLC
AML and MDS

FarydakⓇ Panobinostat
LBH-589

CTCL Hydroxamate Multiple myeloma
CML
Hodgkin’s lymphoma
Metastatic melanoma
Prostat cancer

DepaconⓇ Valproic acid Epilepsy
Seizures
Bipolar disorder
Migraine

Carboxylate Cervical cancer 
Ovarian cancer
Breast cancer
AML and MDS
Spinal muscular atrophy

On trial Entinostat
MS-275

Benzamide Hormone receptor-positive
advanced breast cancer

Breast cancer
Hodgkin’s lymphoma
NSCLC
Colorectal cancer

The FDA approved HDAC inhibitors are listed by chemical names, indications, classification, structures, and ongoing clinical trials.
Approved Information was cited from Drugs@FDA and http://www.clinicaltrial.gov.
AML: acute myeloid leukemia, CML: chronic myeloid leukemia, CTCL: cutaneous T-cell lymphoma, CUP: carcinoma of unknown pri-
mary site, MDS: myelodysplastic syndrome, NSCLC: non-small cell lung cancer, PTCL: peripheral T-cell lymphoma.

leptic drug, VPA is in phase III trials for solid tumors such 
as cervical cancer or ovarian cancer, and even for spinal 
muscular atrophy. Entinostat (MS-275) is in phase III for 
hormone receptor-positive advanced breast cancer and is 
in phase II for lung cancer, breast cancer, and Hodgkin 
lymphoma.

2. Possible limitation of HDAC inhibitors as an anticancer 
drug
Apparently, HDAC inhibitors induce cell cycle arrest 

and thereby apoptosis in cultured cancer cells. HDAC in-
hibitors not only increase the transcription level of p21, a 
potent cell cycle arrestor, but also activate the acetylation 

of p53. For general effects, HDAC inhibitors stimulate 
transcription of proapoptotic genes such as Bax, Bak and 
Apaf1.39

Anticancer properties in humans, however, seem to be 
somewhat limited. HDAC inhibitors non-specifically block 
angiogenesis, inflammation, and proliferation. Inhibition 
of tumor angiogenesis results in a failure of drug delivery 
to the solid tumors. Anti-inflammation activity also indu-
ces apoptosis of tumor-fighting immune cells. These unwa-
nted side effects are regarded as possible mechanisms of 
the marginal effect against solid tumors. General side ef-
fects of HDAC inhibitors in chemotherapy, however, seem 
to be beneficial in chronic cardiovascular diseases such as 
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atherosclerosis, myocardial infarction, arrhythmia, and 
transition of heart failure. A new era for HDAC inhibitors 
is now ready to extend to cardiovascular diseases.

THE ROLE OF HDACS IN CARDIOVASCULAR 
DISEASES

1. Atherosclerosis 
Atherosclerosis is a chronic and a progressive disease of 

the arteries caused by abnormal accumulation of lipid 
droplets, inflammation of multifactorial cells, generation 
of a fibrous cap, and reactive proliferation of vascular 
smooth muscle cells. According to several studies, HDACs 
are closely linked with in the progression of atherosclerosis 
and HDAC inhibitors which successfully prevent the pro-
gression of atherosclerosis. Our group40 already suggested 
that the pan-HDAC inhibitor, scriptaid or TSA, was useful 
for the prevention of neointima formation from balloon 
injury. The transcription of p21WAF1/Cip1 was significantly 
increased in the HDAC inhibitor-treated group.41,42 In con-
trast, a few groups found that HDAC inhibitors might stim-
ulate atherogeneisis. It is noteworthy that HDAC in-
hibitors effectively suppress vascular smooth muscle cell 
proliferation, which seems to be effective for preventing 
atherosclerosis. 

It is noteworthy that the characteristics of the certain 
HDAC inhibitor might result in these controversial 
outcomes. Global HDAC inhibitors, such as TSA, have a 
tendency to have a dual response: anti-inflammatory prop-
erties at low concentrations but pro-inflammatory effects 
at high concentrations.43 It is assumed that the role of di-
verse HDACs associated with single pathophysiology are 
quite different and the overall inhibition effect of HDAC in-
hibitors also somewhat varies according to its concen-
tration. Targeted regulation of specific HDACs by their 
own inhibitor would be an ideal regimen. 

2. Arrhythmia
Only a few reports have elucidated the therapeutic appli-

cation of HDAC inhibitors in cardiac arrhythmia. TSA dra-
matically corrected atrioventricular conduction abnor-
malities in mouse hearts which were induced by a genetic 
disruption of HopX.44 The dramatic effect of TSA might be 
associated with the HopX-HDAC2 axis when considering 
that HopX directly recruits HDAC2.45

More direct evidence that HDACs are responsible for 
cardiac arrhythmia have also been suggested; myocyte- 
specific ablation of both HDAC1 and HDAC2 results in an 
aberrant increase in the subunits of the calcium channel.46 
Our group also detected that ion channels such as Scn3b 
(sodium) and Kcne1 (potassium) were dysregulated when 
HDAC2 was overexpressed. Dysfunction of Kcne1 may 
participate in Long QT syndrome and the loss of function 
of Scn3b is responsible for Burgada syndrome,47 which im-
plicates that alteration of HDAC2 activity may lead to fatal 
cardiac arrhythmias. 

3. Myocardial infarction
Ventricular myocytes are supported oxygen and nu-

trients through the specialized circulation system: the cor-
onary arteries. Myocytes, however, are vulnerable to dam-
age even by short term ischemic events because of poor 
anastomosis in the coronary artery. Furthermore, the my-
ocytes received alternate damage after revascularization. 
This serial injury is termed ischemia-reperfusion (I/R) 
injury.

HDAC inhibitors have been highlighted as promising 
drugs to reduce I/R injury, to ameliorate cardiac dysfunc-
tion, and to minimize infarction size.48-50 An ex vivo study 
by use of the Langendorff system reveals that precondition-
ing of TSA preserves cardiac performance after I/R injury. 
Preconditioning by injection of TSA before the I/R injury 
reduces the infarction area and restores contractile 
dysfunction.48 Furthermore, HDAC inhibitors improve 
fatty acid oxidation by restoring PGC-1 in I/R injuries.51 
To date, it is regarded that the major advantageous effects 
of HDAC inhibitors in I/R injury is mediated by inhibition 
of generation of immature vasculatures, by reducing in-
flammation, or by facilitation of energy metabolism.

HDAC inhibitors are also beneficial for minimizing the 
scar size of myocardial infarction (MI). The infarction area 
generated by permanent ligation of the left anterior de-
scending artery is dramatically reduced by administration 
of HDAC inhibitors such as tributyrin, VPA, or TSA.49,50,52 
It has also been reported that administration of TSA for 2 
months markedly prevented cardiac dysfunction and sup-
pressed cardiac remodeling.52 Despite some contradictory 
reports about HDAC inhibitors in acute coronary syn-
dromes, it is more commonly shown that HDAC inhibitors 
are effective both for preventing cardiac dysfunction and 
cardiac remodeling after MI.

4. Cardiac hypertrophy
Cardiac hypertrophy is a kind of adaptation to the in-

creased hemodynamic demand from peripheral tissue or 
from another underlying diseases such as hypertension, 
valvular dysfunction, and MI.53 The initial adaption might 
be physiologic, however, cardiac hypertrophy is the begin-
ning of the global remodeling of the heart. The roles of the 
HDACs in cardiac hypertrophy are being widely studied by 
a number of research groups including ours.45,46,54-64 Both 
classes of HDACs, class I and class IIa, are associated with 
the development of cardiac hypertrophy, however, they 
perform definitely opposite roles. Genetic ablation of 
HDAC2 results in resistance to various hypertrophic 
stimuli.64 Heart-specific overexpression of HDAC2 itself 
induces cardiac hypertrophy.55,64 Although HDAC2 clearly 
provokes cardiac hypertrophy, the protein levels of HDAC2 
are not altered during the process. The intrinsic activity of 
HDAC2 is increased in response to hypertrophic stimuli by 
the activated-CK21.55,56 As for class I HDACs, there has 
been no clear evidence of class I HDACs other than HDAC2 
in cardiac hypertrophy found. Only HDAC3, however, 
might allow for a transient proliferative potential to car-
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diomyocyte in the perinatal period.65

By contrast, class IIa HDACs negatively regulates car-
diac hypertrophy. Global deletion of HDAC962 or HDAC559 
shows an exaggeration of hypertrophic phenotypes. In bas-
al conditions, class IIa HDACs capture MEF2 and interfere 
with the binding to its motif which results in the sup-
pression of the transcription activity of MEF2. Class IIa 
HDACs are recognized by a shuttling molecule named 
14-3-3 after phosphorylation by PKC/PKD or CaMKII and 
undergo shuttling out from the nucleus to the cytoplasm. 
The redistribution of class IIa HDACs causes reactivation 
of arrested-fetal gene programs which are regulated by 
MEF2, resulting in cardiac hypertrophy.59,61,66

Because those two classes of HDACs perform opposite 
functions, the overall efficacy of global HDAC inhibitors in 
cardiac hypertrophy is questioned. We58 and other re-
search groups60,63 have suggested that cardiac hyper-
trophy can be completely abolished either by non-specific 
HDAC inhibitors54,58,60 or even by selective class I HDAC 
inhibitors.58,63,67 To summarize this phenomenon, the an-
ti-hypertrophic properties of the non-selective HDAC in-
hibitor are mediated by specific regulation of class I 
HDACs. In addition, recently our group suggested cross-
talk between HDAC2 and class IIa HDACs in the develop-
ment of cardiac hypertrophy. Acetylation of HDAC2 pre-
ceded phosphorylation and those modifications were man-
datory for activation of HDAC2. HDAC5, a class IIa HDAC, 
functioned as an enzyme that regulated acetylation of 
HDAC2. HDAC2 was one of the important pro-hyper-
trophic mediators regulated by class IIa HDACs.68

A quite recent report clearly demonstrated the role of 
HDAC3 in high blood pressure and the therapeutic applica-
tions of HDAC inhibitors for hypertension control.69 One 
more report suggest that HDAC4 induces hypertension 
through vascular inflammation and TSA treatment dra-
matically ameliorates high blood pressure.70 Taken togeth-
er, this data suggests that HDAC is a novel therapeutic tar-
get for regulation of hypertension.

5. Cardiac fibrosis
Cardiac fibrosis associated with hypertrophy is notable 

in cardiac disease. Cardiac fibrosis results in a loss of elas-
ticity and in insufficient dilation of the contractile chamber 
in the diastole phase, which is regarded as the major patho-
physiology of heart failure with preserved ejection frac-
tions (HFpEF).71 HDAC inhibitors also dramatically blocks 
cardiac fibrosis.55,58,60 Fibrosis is directly inhibited by 
HDAC inhibitors rather than secondary changes after im-
proving cardiac hypertrophy. More evidence enforces the 
postulation that HDAC inhibitors directly regulate trans- 
differentiation of fibroblasts to myofibroblasts.72 During 
scar formation, the HDAC2 protein amount is dramatically 
increased73 and renal fibrosis is also successfully controlled 
by HDAC inhibitors.74,75

Very recently, the European society of cardiology and the 
American heart association alert the severity of HFpEF, 
respectively. They summarized the clinical outcomes of 

HFpEF patients during the last two decades who got the 
conventional regimen for heart failure with reduced ejec-
tion fraction (HFrEF). Strikingly, the standard strategy for 
HFrEF such as beta-blockers, angiotensin converting en-
zyme inhibitors/angiotensin receptor blockers, or aldoster-
one-antagonists did not sufficiently reduce the disease pro-
gression of HFpEF. According to rodent HFpEF, however, 
HDAC inhibition is the most promising and reproducible 
strategy to reverse and prevent HFpEF to normal heart. 
Therefore, HDAC inhibitors should be considered to start 
clinical trials for HFpEF.71

6. Angiogenesis
Besides general anti-neoplasmic potential, HDAC in-

hibitors also block angiogenesis. For example, it is well 
known that Vorinostat and TSA interfere with the sprout-
ing of capillaries from aorta76 Even though the diverse 
physiologic activity of HDACs, it is generally accepted that 
class II HDACs such as HDAC4,77 HDAC5,78 HDAC6,79,80 
and HDAC781,82 are pro-angiogenic.

In contrast with the general concept that HDAC in-
hibitors inhibit angiogenesis, several studies reported pos-
itive outcomes correlated with neoangiogenesis. Long- 
term treatments of VPA in cerebral infarction resulted in 
enhancement of neovascularization, reduction of infa-
rction size, and alleviation of cerebral functions.83 Inclu-
ding these reports, many studies suggested that long-term 
treatment with HDAC inhibitors induces neovascul-
arization.52,84

In summary, the global effects of HDAC inhibitors in an-
giogenesis seem to be controversial. According to recent da-
ta, HDAC inhibitor preferentially regulates immature vas-
cularization such as tumor vessels or acute ischemic spr-
outing.85 Long-term administration of HDAC inhibitors 
promote intact angiogenesis rather than weak and leaking 
vessels. More specific studies would be necessary to solve 
these problems.

7. Vascular calcification
It should be considered that in spite of the general bene-

fits of HDAC inhibitor in the cardiovascular diseases, 
HDAC inhibition may cause harmful results at least in 
some conditions. For example, HDAC inhibition seems to 
aggravate the progression of vascular calcification. TSA86 
and apicidin (Kwon et al., unpublished data) accelerated 
the calcification in vitro. E3 ligase MDM2 was dramatically 
increased in calcification-provocation stimuli, which in-
duced polyubiquitination and subsequent degradation of 
HDAC1. The loss of activity of HDAC1 plays a crucial role 
in the progression of vascular calcification. Hence, HDAC 
inhibitors that reduce HDAC activity in vivo may accel-
erate vascular calcification. Considering that one of major 
side effect of Vorinostat is vascular calcification, HDAC in-
hibitor should be carefully administrated to patients who 
suffer from atherosclerosis or have a proatherogenic con-
dition such as chronic renal failure or diabetes mellitus. 
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FIG. 2. The therapeutic potential of HDAC inhibitors in car-
diovascular disease. HDAC inhibitors have been reported to show
beneficial outcomes for cardiac arrhythmia, cardiac fibrosis, car-
diac hypertrophy, and myocardial infarction. Although several 
debates in atherosclerosis, HDAC inhibitors also significantly re-
duce the progression of atherosclerosis. Vascular calcification, 
however, may be aggravated by HDAC inhibitors. The bar in-
dicates suppression whereas the arrow depicts stimulation. The 
dash arrow reflects controversial effects.

MISCELLANEOUS DISEASES

Besides cancer treatment, HDACs has been studied in 
various non-cancer diseases including neurodegenerative 
disease, inflammatory disease, and osteoporosis beyond 
cardiovascular diseases. For example, a Danish group has 
tested HDAC inhibitors as an HIV treatment.87 In neuro-
logical diseases, HDAC inhibitors improve the perform-
ance of learning and memory,88 Alzheimer disease,89 ische-
mic stroke,90 Huntington’s disease.91

Several studies have implied that HDAC inhibitors may 
improve learning ability and memory formation. The brain 
slices which were acquired from Vorinostat-treated rat 
hippocampus showed increased synaptic functions ex 
vivo.92,93 Moreover, RGFP966, a class I HDAC inhibitor, 
treated rats tended to be faster than the vehicle group in 
learning and in acute memory formation.94 More specifi-
cally, the synapse number of HDAC2 overexpression mice 
was significantly decreased. The learning impairment of 
HDAC2 overexpression mice was alleviated by chronic 
treatment with Vorinostat.95

HDAC inhibitors also might be noteworthy for testing 
the therapeutic potential of bone diseases such as osteopo-
rosis and fractures. Both the protein stability and tran-
scription level of the master regulator of bone formation, 
RUNX2, are specifically regulated by HDAC inhibitors.96 
Furthermore, HDAC inhibitors suppress osteoarthritis 
using their anti-inflammation effects on joint inflamma-
tion and thereby cartilage degeneration.97

CONCLUSION AND FUTURE PERSPECTIVE

In this review, we summarize 1) the roles of HDAC in tu-
morigenesis and the current uses of HDAC inhibitors in 
cancer, 2) the functional relevance of HDACs and the ther-
apeutic potentials of HDAC inhibitors in cardiovascular 

diseases (Fig. 2). According to clinical and nonclinical stud-
ies, HDAC inhibitors might result in cell-cycle arrest, apop-
tosis, differentiation, anti-inflammation, anti-invasion, 
and anti-proliferation. In short, HDAC inhibitors have 
general anti-tumor activities. Four HDAC inhibitor ap-
proved by the US FDA are beneficial to hematological ma-
lignancy but are having disappointing results in solid tu-
mors as a single drug therapy. The limited effects on solid 
tumors seem to be a failure of the drug delivery into the can-
cer tissue because of insufficient blood supply caused by its 
anti-angiogenetic effect.37

HDAC inhibitors are also beneficial for preventing the 
disease progression of several cardiovascular diseases. 
According to studies using various HDAC inhibitors, sev-
eral cardiovascular diseases would be benefit from novel 
indications for HDAC inhibitors including cardiac arrhy-
thmia, myocardial infarction, global cardiac remodeling, 
HFpEF including hypertrophy, hypertension, and cardiac 
fibrosis. However, they may worsen vascular calcifi-
cations. Actually, thrombus is reported as a serious and 
quite frequent side effect of Vorinostat in patients.

To date, a great number of HDAC inhibitors are in clin-
ical trials. Four drugs, Vorinostat, Romidepsin, Belinostat, 
and Panobinostat are already approved by the U.S. FDA 
for CTCL, PTCL, and multiple melanoma. Entinostat and 
VPA are in phase III trials for solid tumors. MGCD0103, 
PCI-24781, SB939, 4SC-201, ITF2357, CI-994, SRT501, 
and JNJ-26481585 are in phase II trials.

HDAC inhibitors represent a novel, promising regimen 
in various refractory diseases. Ubiquitous expression of 
various HDAC isoforms, however, should be noted when 
HDAC inhibitors are developed for certain diseases. Ideal 
HDAC inhibitors for cancer treatment must not block good 
HDACs but inhibit bad HDACs. In some case, HDAC10 is 
closely linked with suppression of cervical cancer metas-
tasis.98 Hence, novel approaches should be considered to 
regulate bad HDACs specifically. We already reported that 
the inhibition of the HDAC2-activating enzyme, CK21, is 
as effective as an HDAC inhibitor in the development of car-
diac hypertrophy. When regarding that HDACs generally 
regulated by post-translational modification novel ther-
apeutics that target HDAC-regulating enzymes would be 
more ideal drugs. Novel therapeutics would be promising 
with the understanding of the certain PTM enzymes that 
regulate the specific HDACs.
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