Nucleic Acids Research, 2005, Vol. 33, No. 13 4335-4344
doi:10.1093/nar/gki739

mIiBLAST: scalable evaluation of a batch of
nucleotide sequence queries with BLAST

You Jung Kim, Andrew Boyd’, Brian D. Athey' and Jignesh M. Patel*

Department of Electrical Engineering and Computer Science, University of Michigan,
Ann Arbor, Ml 48109, USA and 1Michigan Center for Biological Information, University of Michigan,

3600 Green Court, Ann Arbor, MI 48109, USA

Received March 18, 2005; Revised May 26, 2005; Accepted July 11, 2005

ABSTRACT

A common task in many modern bioinformatics
applications is to match a set of nucleotide query
sequences against a large sequence dataset. Exis-
ting tools, such as BLAST, are designed to evaluate
a single query at a time and can be unacceptably slow
when the number of sequences in the query set
is large. In this paper, we present a new algorithm,
called miBLAST, that evaluates such batch workloads
efficiently. At the core, miBLAST employs a g-gram
filtering and an index join for efficiently detecting
similarity between the query sequences and data-
base sequences. This set-oriented technique, which
indexes both the query and the database sets, res-
ults in substantial performance improvements over
existing methods. Our results show that miBLAST
is significantly faster than BLAST in many cases.
For example, miBLAST aligned 247965 oligonuc-
leotide sequences in the Affymetrix probe set against
the Human UniGene in 1.26 days, compared with
27.27 days with BLAST (an improvement by a
factor of 22). The relative performance of miBLAST
increases for larger word sizes; however, it decreases
for longer queries. miBLAST employs the familiar
BLAST statistical model and output format, guaran-
teeing the same accuracy as BLAST and facilitating
a seamless transition for existing BLAST users.

INTRODUCTION

A common query in a number of bioinformatics applications is
to search a large nucleotide sequence database using a set of
nucleotide sequence queries. For example, when validating
the Affymetrix (oligonucleotide) probe set against the UniGene
(EST) database, one needs to search the quarter million
Affymetrix probes against the most recent UniGene release.

Another example is using one animal model microarray
against a different species, searching the chip probe set against
the ESTs of the new species to validate the probes in the new
species (1,2). A final example is in designing small interfering
RNAs (siRNAs) libraries, where one needs to validate that
the siRNAs only interfere with a single mRNA. A common
characteristic of these types of applications is that a large
batch workload of queries must be evaluated against a large
database. Often the databases that are being searched in such
scenarios are updated frequently (such as the periodic updates
to GenBank), which requires periodic re-evaluation of these
batch workloads.

One way of evaluating such batch workloads is to execute
each query in the workload one at a time using a local-sequence
alignment tool, such as BLAST (3,4). However, in practice,
with large batch sizes this method is computationally very
expensive. Clearly, a tool that can significantly speed up the
evaluation of such workloads is very valuable. The focus of
this paper is on the design of such a tool called miBLAST
(pronounced as ‘me-BLAST’).

We note that a number of previous research investigations
have developed techniques for efficiently evaluating batch
workloads. These tools (5-7) are designed for specialized
biological applications, such as aligning ESTs to a genome
of similar species, and improve performance by using an index
of non-overlapping g-grams. However, these approaches often
sacrifice some loss in sensitivity for performance gains.
MegaBLAST (8) uses a greedy algorithm and can be an order
of magnitude faster than regular BLAST. However, the use of
MegaBLAST is limited in aligning highly similar sequences
with large word sizes. MPBLAST (9) directly improves the
speed of NCBI BLAST and WU-BLAST (http://blast.wustl.
edu) by multiplexing query sequences, thus reducing the num-
ber of database searches. MPBLAST essentially concatenates
the queries in the workload and sends a single long query to
BLAST.

A new feature in NCBI BLAST essentially implements the
MPBLAST-like multiplexing technique for batch queries and
produces alignments that are identical to running the queries in

*To whom correspondence should be addressed. Tel: +1 734 647 1806; Fax: +1 734 763 8094; Email: jignesh@eecs.umich.edu

© The Author 2005. Published by Oxford University Press. All rights reserved.

The online version of this article has been published under an open access model. Users are entitled to use, reproduce, disseminate, or display the open access
version of this article for non-commercial purposes provided that: the original authorship is properly and fully attributed; the Journal and Oxford University Press
are attributed as the original place of publication with the correct citation details given; if an article is subsequently reproduced or disseminated not in its entirety but
only in part or as a derivative work this must be clearly indicated. For commercial re-use, please contact journals.permissions@oupjournals.org

http://blast.wustl

4336 Nucleic Acids Research, 2005, Vol. 33, No. 13

the batch one at a time. BLAST++ (10) exploits commonality
of short words among queries and shares results with queries
containing these common words. Consequently, the per-
formance of BLAST++ is highly dependent on the level of
commonality in queries. Another method for speeding up
the processing of batch workloads is to make use of parallel
processing techniques on a cluster of machines using the
mpiBLAST (11) method. This method essentially parallelizes
BLAST searches by segmenting a database and executing each
segmented portion of the database in a node in the cluster. The
drawback of this approach is that it requires access to a cluster.

In this work, we propose an efficient and practical method
for evaluating a batch workload, which consists of a large
number of queries. Furthermore, given the popularity and
familiarity of existing users with BLAST, we want our tool
to exactly mimic the behavior and functionality of BLAST.
In other words, we want our tool to have the same sensitivity
as BLAST and employ the same statistical model and data
formats for input and output.

While miBLAST is a general algorithm for sequence
similarity matching between a batch workload and a database
of sequences, it is especially useful in settings where the data-
base and the workload consist of a large number of sequences
(rather than a few very long sequences). Common examples
of relevant biological applications of miBLAST include
evaluating a large number of oligonucleotide probes, cDNA
sequences or ESTs against a large database of ESTs.

In order to develop a more suitable algorithm for efficiently
evaluating batch workloads, it is first necessary to identify the
reasons as to why the BLAST algorithm is not efficient for
such batch workloads. The BLAST algorithm essentially scans
the entire database for each query sequence. In each scan of the
database, the algorithm checks each database sequence to
find any common short words between the database and the
query sequences. In case of a word hit, the word alignment is
extended to produce a complete alignment. Consequently, to
evaluate a batch workload with n queries, the BLAST method
will require n scans of the database and will compare each
sequence in the batch with each sequence in the database.

This observation enables us to design the miBLAST algo-
rithm that speeds up the evaluation of batch workloads. At the
core, the algorithm employs a g-gram filtering and an index
join technique that processes two g-gram indices (12). In a
single scan of the two indices, the join method efficiently
computes an initial word hit list for all the query sequences.
The join also determines a set of filtered database sequences
that have potential matches for the queries. Then, miBLAST
only examines these filtered database sequences to produce the
actual alignments. In practice, only a few database sequences
match a given query, and consequently miBLAST does not
have to examine the majority of sequences in the database.

The use of the g-gram index has also been explored in
several sequence-searching applications (5-7). However,
these applications are limited by the database or the main
memory size, since they require that the whole index resides
in main memory. In contrast, our work uses disk-based indices
and can work with arbitrary large datasets.

We have evaluated miBLAST on an a number of actual
batch workloads, including a workload to validate the labels
of the Affymetrix probes (Human Genome U133A Set) with
the current version of UniGene. The Affymetrix probe set

consists of ~250000 queries, which are on average 25 nt
long. Each sequence in this workload is searched against
the UniGene Homo sapiens dataset, which has 5064621
sequences and ~3.19 gigabases. Using the default parameters
in the NCBI BLAST (including a word size of 11), this work-
load can be evaluated on a single machine in 27.27 days (9.50 s
per query). In contrast, miBLAST processes this same work-
load on the same machine in 1.26 days (0.44 s per query). The
resulting performance improvement achieved by miBLAST in
this case is about a factor of 22. However, depending on the
choice of parameters, miBLAST can outperform BLAST by
even larger margins. For example, using a word size of 23 can
result in a 45-fold performance improvement over regular
BLAST. These results clearly demonstrate the effectiveness
of our search tool.

Finally, miBLAST is built as an module that is integrated
with the existing NCBI BLAST source code. This design
allows miBLAST to reuse the alignment extension and result
formatting components of the BLAST code base. As a result,
miBLAST employs the traditional BLAST statistical model
and outputting format. Because many users are very familiar
with these aspects of BLAST, we expect that current BLAST
users who need to evaluate batch workloads can easily
transition to using miBLAST.

MATERIALS AND METHODS

The key strategy employed by miBLAST is to use g-gram
indices to quickly identify the set of database sequences that
contain word hits for each query sequence. Since for any query
sequence only a small fraction of the database sequences actu-
ally have a common word hit, miBLAST only has to examine
the small set of sequences that are filtered through the index
search. These filtered sequences are then retrieved and the
word hits are expanded to produce the actual alignments. In
the following sections, we first describe the g-gram index
structure, and then we describe the miBLAST filtering
algorithms in detail.

Notations

The miBLAST algorithm considers two sets of sequences: a
query sequence set O = {q1, ¢2,..-, ¢i»---» ¢,n} and a data-
base sequence setD = {d,,d,,...,d,,...,d,}, where g; and d;
represent sequences. All sequences in Q and D are assigned a
unique sequence ID. A word w is defined as a string having a
fixed length /. A word hit is defined as an ordered pair (i, j)
such that the query sequence ¢; and a database sequence d;
share a word in common.

Index structure and construction

The structure of the miBLAST g-gram index (12) is as follows:
the g-gram index over a set of sequences contains an entry
for every unique overlapping word of length / in the set. Each
index entry stores the list of sequence IDs that contain the
corresponding index word. Note that the reference to the
sequence is simply based on the sequence ID and does not
include the offset in the sequence where the word is located.
Consequently, if a word appears multiple times in a given
sequence, the index entry only refers to the sequence once.
This decision to not store the actual offset was made to reduce

the size of the miBLAST indices. (The algorithm can be
generalized to work with a g-gram index in which the offset
position is also stored.) An example of a g-gram index is
shown in Table 1.

A key advantage of this index structure is its efficiency. The
index construction time is linear [O(#n)] in the size of an input
sequence set. In addition, searches for a word hit is very
efficient as it takes constant time [O(1)].

Because the g-gram index has one index entry for every
unique word of length ¢, the size of the index can be large
and can exceed the size of the available main memory. To
overcome this problem, miBLAST employs a disk-based
implementation of the g-gram index. The index is stored on
disk, and index entries are fetched from disk on demand.
In addition, miBLAST is designed so that the index accesses
are largely sequential (as opposed to the much more expensive
random I/O). We note that the use of disk-based g-gram
index in miBLAST is in contrast to other g-gram-based
approaches (5,6), which employ an in-memory index scheme.
Since the g-gram index is typically larger than the actual
database, the use of in-memory indices implies that the
g-gram method (5,6) cannot be used with very large databases.

We also note that the g-gram index used by miBLAST
indexes all overlapping words. This scheme ensures that the
miBLAST algorithm has no loss in sensitivity over the BLAST
method. In contrast, the use of non-overlapping words in other
approaches (5,6) results in a loss in sensitivity, but produces
a smaller index. We believe that the use of a larger index
structure in miBLAST is justifiable since one of the design
goals of miBLAST is to provide the same sensitivity as
BLAST.

Furthermore, to ensure that there is not a big performance
penalty in using disk-based indexes, miBLAST makes careful
use of sequential accesses. The index entries are sorted by the
logical file offset positions provided by the operating system,
and miBLAST accesses these logical index blocks sequen-
tially. Such logical sequential access often closely corresponds
to a physically sequential disk access since operating sys-
tems try to store the data in a file in physically contiguous
disk blocks. This technique of using sequential access has
important performance implications since scanning physic-
ally adjacent disk blocks is much more efficient than rando-
mly accessing disk blocks that are spread across the disk. In
addition, operating systems often prefetch adjacent blocks of
data, which further improves the performance of sequential
accesses.

Word length is a critical BLAST parameter, which specifies
the size of a word that is used to detect a word hit. As different
queries may specify different word length, miBLAST must
employ a strategy for dealing with different word lengths. One

Table 1. An example of a g-gram index structure

Sequence ID Sequence Word (w) Sequence ID
1 ACAAAAA AAA 12

2 AAAAAAAAC AAC 234

3 CAACAACAA ACA 134

4 CAACAACAA CAA 134

The two left columns represent a sequence dataset and the two right columns
show the index built on the dataset using / = 3.

Nucleic Acids Research, 2005, Vol. 33, No. 13 4337

naive strategy that could be employed is to build a g-gram
index for all possible word lengths. However, the cost of
building all such indices can be prohibitively large. To avoid
this high cost, miBLAST employs methods that allow an index
to be reused even with queries that specify a different word
lengths.

In fact this flexibility in the use of the g-gram index for
different query word lengths is a key difference between the
use of g-gram index in miBLAST and previous g-gram-based
approaches (5,6). With miBLAST in practice one could store
just a single g-gram index based on the smallest supported
word length parameter. Alternatively, we could choose to
maintain a small number of g-gram indices and for a given
query pick the g-gram index with the ¢ value that is closest
to the specified query word size.

The miBLAST algorithm

The miBLAST algorithm consists of three primary steps. First,
two g-gram indices are constructed—one on the query set and
the other on the database set. Second, using these indexes, the
filtering algorithm selects database sequences that contain
potential word hits for each query sequence. Finally, the
BLAST alignment module is invoked on the filtered database
sequences to generate the actual alignment.

The miBLAST method is outlined in Algorithm 1.
miBLAST takes as input a set of query sequences, a set of
database sequences and a word length to be used in a BLAST
search. Based on this input, miBLAST starts by building a
database index. In practice, the database index is often pre-
built and is stored on disk so that the same index can be reused
for many searches.

Notice that in lines 3-7 of Algorithm 1 miBLAST runs
different filtering algorithms depending on the word length /.

Algorithm 1. miBLAST (Q, D, I)

INPUT:
e 0= 1{q1,q2- .., Gis -+ - - » qm} 1s a set of query sequences
oD ={dy,d>,...d,...d,)} is aset of database sequences

e [D is a unique number assigned to each sequence, ¢; and d; in Q and D
e m is the word length used in database index construction
e /is a word length in a BLAST search
VARIABLES:
e D;p = {1,2,...,n} is a set of database sequence IDs in D
e F; C Dyp is a set of sequence IDs that have word hits with ¢,
e Filtered = {F,, F,,..., F,} is a set of F for all ¢; in Q
o DiIndex is a g-gram index for D
e Olndex is a g-gram index for Q
e Dindex.L(w) is an operation returning the list of sequences
containing a word w from DIndex.

: Build a DIndex on D with a word length m, if the index don’t already exist.

. if [< m then

Filtered=INDEX-JOIN FILTER (DIndex, Q, I, m)

: else if / > m then

Filtered=SLIDING-WINDOW FILTER (DIndex, Q, I, m)
: end if

: for all sequence ¢; in O do
for all sequencelD j in F; of Filtered do
Find alignments with a ¢; in Q and a d; in D
end for
: end for

—_—
RO N AR

4338 Nucleic Acids Research, 2005, Vol. 33, No. 13

If the query word length / is smaller or equal to the index word
length m, then miBLAST uses an index join algorithm for
sequence filtering (shown in Algorithm 2). However, if
[> m, then miBLAST uses the sliding window filtering
method, which is shown in Algorithm 3.

Algorithm 2. INDEX-JOIN FILTER (DIndex, Q, I, m)

1: Build a QIndex on Q with a word length /
2: Create a bitmapl|Q|, IDI]

3:

4: for all word w in QIndex do

5: If QIndex.L(w) # NULL & DIndex.L(w) # NULL then
6: L, — Qlndex.L(w)

7: L, < DIndex.L(w)

8 for i < 1toIL,| do

9 for j — 1 to IL, do

10: bitmap[L,[i], L4[j1] = TRUE
11: end for

12: end for

13: end if

14: end for

15:

16: for i — 1 to 10l do
17: for j « 1 to IDI do
18: if bitmapli, j] = TRUE then

19: F=F,U)
20: end if

21: end for

22: end for

23:

24: Filtered = {F} U {F>} U ... U {F,}
25: return Filtered

Algorithm 3. SLIDING-WINDOW FILTER(DIndex, Q, [, m)

1: Create a bitmapllQ|, IDI]
2: Create a counter[IDI]

3:

4: for all sequences ¢; in O do

5: for all words w of length / in ¢; do

6: initialize the counter

7 for all all substrings w’ of length m in w do
8 if DIndex.L(w') # NULL then

9 L, < DIndex.L(w)

10: for j — 1 to IL,l do
11: counter[Lg4[j]] ++
12: end for

13: end if

14: end for

15: for j — 1 to IDI do

16: if counter [j] =1 — m + 1 then
17: bitmap [i,j] = TRUE
18: end if

19: end for

20: end for

21: end for

22:

23: for i — 1 to 10l do
24: forj < 1to DI do
25: if bitmap [i, j] = TRUE then

26: F=F,U)
27: end if

28: end for

29: end for

30:

31: Filtered = {F1} U {F,} U ... U {F,}
32: return Filtered

Index lookup

The index lookup operation, L(w), returns a list of sequence
IDs containing a query word w of length /. When the query
word length is the same as the index word length, i.e. [= m,
the list can be retrieved by a single index lookup. However,
when [< m, the index lookup function performs multiple
index lookups. These lookups search for all index words whose
prefix matches the entire query word. The final result list is
constructed by simply computing a union of the sequence lists
returned by each lookup. Since our g-gram index is lexico-
graphically sorted, these multiple index lookups essentially
result in a sequential index scan, making the multiple index
lookup step very efficient.

Index join filtering

In order to find all word hits between the query sequence set Q
and the set of database sequences D, miBLAST employs an
index join technique. Two indexes, one for each D and Q, are
built. After the index construction is completed, miBLAST
joins these indexes based on words. In our implementation of
the g-gram index, our index function simply uses the least-
significant bits of each character in the word, which essentially
produces index entries that are in lexicographically ordered.

Starting with the first word in the query index, for each
word w we probe the query index to obtain a list L,(w) =
(W, y, z,...) such that g, g, and ¢, contain a word w as its
substring. Next, the database index is probed with the same
word to obtain a list L,(w) = (p, g, 1,...). Then, we take the
cartesian product of the entries in these two lists, to generate
all the potential word hit pairs, (x, p), (x, q), (x, 1), (v, p),
o, q), (v, 1),... Each pair indicates a query sequence that
has a potential word match with a database sequence. These
sequences are then examined for actual alignments using
the BLAST alignment algorithm. This process continues
until we have examined all word hit pairs in Q and D.

Notice that the join of the two indices produces a complete
list of database and query sequence pairs that share a common
word hit. There are two interesting properties associated with
the entries in this complete list. First, this list can have a
number of duplicate pairs since a single database sequence
and a query sequence may share a number of common words.
Second, this list is not sorted by the query sequence number. A
naive way of producing actual alignment would be to simply
expand each sequence pair and output the result as alignments
are produced. However, because of the first property of
this list, a single database sequence may have to be fetched
multiple times for generating alignments for the same query,
which is inefficient. Second, the output that is produced will
have alignments that are not grouped by the query sequence
numbers. Consequently, the resulting output will have to be
sorted on the query sequence number before presenting the
results to the user. This sort operation can be expensive,
especially with a large batch workload.

To address these issues, we employ an efficient bitmap
approach. We employ a 2D binary bitmap data structure,
which has 10l X IDI entries, where |0l and IDI represent the
number of query and database sequences each. All bitmap
entries are initially set to FALSE. Then, whenever a word
hit pair, (i, j), is found, the corresponding entry (i, j) in the
bitmap is set to TRUE. At the end of the index join, the bitmap

entries that are set to TRUE represent database and query
sequence pairs that have at least one common word. By
sequentially scanning the rows of this bitmap, for each
query sequence we can generate a sorted list of database
sequence IDs that should be extended in the alignment
phase. The results that we produce are naturally grouped by
the query sequences (a local sort is still needed to order the
results for each query by the scores), and a database entry is
fetched at most once for each query sequence.

Sliding-window filtering

Since the cost of constructing a g-gram index for a large
database can be expensive, it is desirable to consider methods
that allow reusing an existing index whenever possible. How-
ever, since the word length for a search is a user-defined
parameter, reusing an index with a word length other than the
specified word length parameter is challenging. In this section,
we discuss the sliding-window technique, which allows
miBLAST to reuse an index when the query word length is
greater than the index word length.

To explain the sliding-window method, we will use the
following notations: let s[1..k] denote a word of length k in
a sequence s, and let m and / denote the lengths of the index
and query words, respectively.

The sliding-window method is based on the observation that
if a query word s[1../] exists in a database sequence d,, then all
of its substrings of length m, namely s[l..m], s[2..m+1],
s[3.m+2],...,s[/ — m+1..l], must also exist in the index of
the sequence d,;. Consequently, the index entry for each of
these substrings must contain the sequence ID i. This property
provides a necessary condition for the word s[1../] to be found
in a sequence d;. Note that this condition is not a sufficient
condition, which implies that this technique may produce false
positives. However, the false positives can be easily elimin-
ated by actually checking for the precise word hits when the
database sequence is retrieved. We note that a similar tech-
nique is also used in A/G BLAST (J. Klivington, personal
communication) to find word matches of length / between a
query and a database using a lookup table for words of length
m in a query sequence.

The algorithm for the sliding-window method is shown in
Algorithm 3.

Implementation

The miBLAST implementation consists of three main com-
ponents: g-gram index construction, filtering and alignment
generation components. The index construction component
takes a formatted database as its input, which is generated by
the NCBI formatdb utility, and then builds a g-gram index on
the database. The filtering component takes as inputs the data-
base index and a batch of query sequences and computes a
set of database sequences containing word hits for the query
sequences. Finally, the alignment generation component com-
putes the actual sequence alignments. The alignment genera-
tion component uses the standard NCBI BLAST alignment
generation component, which is modified so that it only needs
to examine a subset of database sequences produced by the
filtering component.

miBLAST is written in C using the NCBI toolkit. The
current miBLAST implementation uses NCBI BLAST

Nucleic Acids Research, 2005, Vol. 33, No. 13 4339

v.2.2.8 and supports querying on nucleotide datasets. These
modifications have added less than one hundred lines of source
code, and these modifications are clearly marked in our public
release.

RESULTS

In this section, we present results of an empirical evaluation
of miBLAST. The database that we used for our empirical
evaluation is the NCBI Human UniGene build #177.
This database contains 5064 621 sequences and roughly
3.19 gigabases.

For the empirical evaluation, we used a number of query
workloads to test the impact of the following parameters:
the batch workload size, word size parameter and the query
sequence length. The first two query sets are drawn from the
Human Genome U133A probe sets containing oligonucleotide
sequences from Affymetrix and the RefSet Oligos for the
human genome from Illumina Inc. The Affymetrix probe set
contains 247 965 sequences with an average length of 25. The
[llumina probe set contains 22 740 sequences with an average
length of 70. These query sets are used to see if the probe labels
given by the company are consistent with current UniGene
clusters, since the clusters change over time. In addition, we
also extracted query sequences of various lengths (from 16 to
512 bp) from the EST human database. We used these EST
query sets to measure the impact of query lengths on the
performance of various algorithms.

In evaluating the miBLAST performance, we considered
comparing miBLAST with other tools, such as MegaBLAST
(8), BLAST++ (10), NCBI-BLAST and MPBLAST (9). How-
ever, as described below a number of these methods are not
directly comparable with miBLAST.

We did not compare miBLAST with MegaBLAST, as it
is known that the sensitivity of MegaBLAST can be less than
the sensitivity of standard BLAST.

For BLAST++, the current version cannot handle the
UniGene database build #177 due to its large size, so we used
the first half of the UniGene database to compare miBLAST
with BLAST++.

In this paper, we extensively compare miBLAST with
NCBI BLAST v.2.2.8. For batch workloads, NCBI BLAST
can be used in two ways. The first approach, which we call
naive BLAST, iteratively runs BLAST for each query in the
workload. The second approach uses the relatively new ‘-B’
option in BLAST. This approach, which we call BLAST-B,
essentially implements the multiplexing method used in
MPBLAST (9). In this approach, a specified number of queries
in the batch are multiplexed (i.e. concatenated) to produce
a single large query string. Then, the traditional BLAST
method is invoked on this concatenated query string. While
BLAST-B reports all the alignments that are found with
naive BLAST, it produces slightly different output than
naive BLAST. BLAST-B does not produce summary statistics
for each query, but only produces a single summary statistics
for the entire concatenated query. In contrast, miBLAST
produces the same output as naive BLAST.

To run BLAST-B, the user must specify the number of
queries to be concatenated. In the current version of BLAST,
the upper limit on the number of concatenated queries is 255.
However, although a user can specify a batch size from

4340 Nucleic Acids Research, 2005, Vol. 33, No. 13

anywhere between 2 and 255, we have noticed that there is
often an optimal batch size. In general, the performance
initially improves as the degree of concatenation is increased,
but starts dropping gradually after a certain point. This optimal
point can change depending on query sizes, datasets and
BLAST search parameters. For BLAST-B, we ran several
experiments to manually find the optimal batch size for
each workload and used the optimal batch size for each
BLAST-B run.

Default BLAST parameters were used for running the three
different methods. All experiments were run on a machine
with a 2.2 GHz AMD Opteron processor and 4 GB RAM
running the Linux 2.6.9 kernel. All measurements are based
on the performance with a cold cache, which essentially means
that before each experimental run the system cache has no
pre-cached data. All times reported in the following experi-
ments are actual wall-clock time taken to run the queries.

Effect of batch workload size

To examine the effect of batch workload size on miBLAST,
naive BLAST and BLAST-B, we ran experiments by increas-
ing the batch workload size (the number of queries in the
batch) from 1000 to 4000. Figure 1a and b shows the relative
speedup to naive BLAST for the Affymetrix (25 bp) and
Illumina (70 bp) workloads, respectively.

As shown in Figure 1, miBLAST is significantly faster
than the other two methods. The performance of miBLAST
improves as the batch size increases, and for a batch size of
4000 queries, miBLAST is 21.6 and 9.9 times faster than naive
BLAST for the 25 and 70 bp queries, respectively, and 4.5 and
2.7 times faster than BLAST-B for the 25 and 70 bp queries,
respectively.

To understand why the performance of miBLAST improves
as the batch size increases (Figure 1), consider Table 2, which
shows the breakdown of the filtering cost (the index join com-
ponent), and the cost of calling the BLAST alignment method
for different workloads. As can be seen from this table, both
the filtering and alignment costs per query decrease as the
workload size increases. For the filtering cost, with a larger
workload size, the cost of the index join is amortized over a
larger number of queries, resulting a reduction in the per query
filtering cost. For the alignment cost, the reduction in per query
cost come from the benefits of using the operating system
cache. For the initial sequences in the batch, fetching a database
sequence often results in an actual disk I/O. However, as the
batch size increases the chances of a single database sequence
matching more than one query sequence increases. Repeated
accesses to the database sequence are likely to find the database
sequence in the operating system cache and does not have to
incur an expensive disk I/O. Consequently, as the batch size
increases, the alignment costs per query also reduce.

It is also notable that the database caching effect further
improves the relative performance of miBLAST. For instance,
when we ran five workloads of 4000 queries consecutively, the
relative speedup in processing the last workload increases up
to 25.4 times, while the relative speedup of the first batch
workload is 21.6 times. The reason for this improvement is
that the later runs benefit from seeing data in the cache that has
been retrieved by the processing of previous runs. miBLAST
benefits more from this caching as it is more disk I/O intensive,

(a) == naive BLAST
=0=—BLAST-B
== miBLAST
25
= -70'¢
ks
2 15
2,
2 -
= 10
=}
=
g 51o° o—
O ’: T ‘: T ‘: T ‘3
1000 2000 3000 4000
Batch workload size
(b) =t naive BLAST
=0=—BLAST-B
== miBLAST
25
2 20
T
é 15
210
= — <
%)
~ 5 o O O
0 l‘d T ; T ‘; T ‘:‘
1000 2000 3000 4000

Batch workload size

Figure 1. This graph shows the relative speedup of each method compared
with naive BLAST, for various workload sizes using a word size of 11.
(a) Affymetrix (25 bp). (b) Illumina (70 bp).

Table 2. The detailed execution time of miBLAST for the experimental results
shown in Figure 1

Workload Filtering

size

cost per
query (25 bp)

Alignment
cost per
query (25 bp)

Filtering
cost per
query (70 bp)

Alignment
cost per
query (70 bp)

1000 0.44 (54%) 0.37 (46%) 0.46 (31%) 1.02 (69%)
2000 0.23 (42%) 0.33 (58%) 0.25 (21%) 0.96 (79%)
3000 0.17 (36%) 0.31 (64%) 0.18 (16%) 0.94 (84%)
4000 0.14 (31%) 0.30 (69%) 0.17 (15%) 0.94 (85%)

All times reported here are in s.

as has a much larger data structure (the index). In fact, we can
expect that if there was enough space to hold the entire
miBLAST index in memory, its relative performance would
be even greater.

Effect of the BLAST word size parameter

In this section, we examine the effect of the query word size
parameter, which is a commonly tuned BLAST parameter.

For this experiment, we use the same dataset and query
workload as used in the previous experiment, but increase
the word size gradually from 11 to 23. In each case, miBLAST
used an index that had a word size of 11. The results of this
experiment are shown in Figure 2. As seen from this figure, the
performance of miBLAST improves significantly as the word
size increases. For a word size of 23, miBLAST is 45.2 (25 bp)
and 13.6 (70 bp) times faster than naive BLAST, and
7.5 (25 bp) and 2.2 (70 bp) times faster than BLAST-B.

To understand why a larger word sizes benefits miBLAST,
we measured a metric called filtration ratio. Filtration ratio is

(a) =f—naive BLAST
=0=—BLAST-B
50 =0=miBLAST
g 40
g /
Qé‘ ; /
220
=
é 10
0'_"‘— T A T A T A T A
11 14 17 20 23
Word size
(b) —f=—naive BLAST
=0=—BLAST-B
=0=miBLAST
50
g 40
gt
é 30
220
Eﬂj]0' R m— —
0 T A T A T A T A

Word size

Figure 2. This graph shows the effect of the BLAST word size parameter on the
query performance for each method, plotted as relative speedup over naive
BLAST. The batch size used in this experiment is 4000 queries. miBLAST uses
an index word size of 11 and uses a sliding-window filtering method for query
word sizes between 14 and 23. (a) Affymetrix (25 bp). (b) Illumina (70 bp).

Table 3. The effect of the BLAST word size parameter on the filtration ratio
and the alignment cost in miBLAST

Word size Average Alignment cost
filtration ratio per query

11 0.54964% 0.30

14 0.03924% 0.13

17 0.02231% 0.11

20 0.02115% 0.09

23 0.02009% 0.08

The query set used for collecting this data is 4000 queries from the Affymetrix
dataset. All times reported here are in s.

defined as the ratio of the number of sequences that are iden-
tified as potential results using the word hit over the total
number of sequences in the database (7). The filtration ratio
measures the proportion of the database that must to be
examined to generate actual alignments. With miBLAST a
lower filtration ratio leads to better performance as a smaller
fraction of the database is searched during the alignment
phase. As the word size increases, the probability of finding
a word hit decreases exponentially, leading to a exponential
decrease in the filtration ratio. This filtering behavior with
respective to word size and its effect on the performance of
miBLAST is shown in Table 3.

As shown in Figure 2, with miBLAST a larger word size
does lead to a reduction in the the number of retrieved
sequences. However, both naive BLAST and BLAST-B
scan the entire database (during the word hit generation
phase), so the lower filtration ratio does not reduce the number

Nucleic Acids Research, 2005, Vol. 33, No. 13 4341

Table 4. The average execution time per query for the results shown in
Figure 2a, for a batch size of 4000

Word size naive BLAST BLAST-B miBLAST
11 9.50 1.95 0.44
14 9.26 1.61 0.38
17 9.46 1.58 0.37
20 9.45 1.58 0.30
23 9.44 1.56 0.21

All times reported here are in s.

of database sequences that are retrieved. There is a reduction
in the number of alignments that are computed, but both
naive BLAST and BLAST-B spend most of their execution
time in the word hit generation phase. Consequently, the over-
all reduction in execution time with increasing word size is
very small for these two methods.

An astute reader may have noted that in Table 4 increasing
the word size does not have a significant impact on the per-
formance of naive BLAST and BLAST-B. While this effect
may seem contrary to the intuition of improved performance
for larger word sizes, it turns out that in the case of nucleotide
sequence searches, increasing the word size does not have a
significant impact on the performance of both naive BLAST
and BLAST-B due to the way the database sequence repres-
entation database is packed into bytes and interactions of
this packing with the processor word length. Increasing the
BLAST word size parameter may have negligible effect on
performances as the processor may still be doing equivalent
work, because it is fetching and processing data in block sizes
that are set by the underlying computer architecture. In fact, in
some cases increasing the word size may actually result in a
small decrease in performance (for example when the larger
BLAST word parameter requires the processor to operate on a
larger number of memory blocks). This effect of increasing
word size has also been reported for WU-BLAST (http://blast.
wustl.edu/blast/TOFLY .html).

Effect of query length

To measure the effect of query length on the performance of
miBLAST, we ran the following experiments. We generated
a number of query sets from the EST human database. Each
query set contained 1000 queries of a fixed length, which was
randomly picked from the EST database. We generated query
sets with query lengths ranging from 16 to 512 bp and each
query set is run against UniGene database. The results of this
experiment (see Figure 3) show that the performance speedup
of miBLAST decreases as query size increases. The reason
for this behavior is that miBLAST’s performance is highly
dependent on filtration ratio, as it primarily speeds up the
filtering component of BLAST searches. In general, a lower
filtration ratio leads to better relative performance for
miBLAST. As the query length increases, it is likely that the
query will have more word hits with sequences in the data-
base, increasing its filtration ratio, and resulting in a relative
reduced performance for miBLAST.

We also note that the comparisons with BLAST-B in
Figure 3 are based on the most optimal batch size for
BLAST-B, which we picked by manually trying various
batch sizes for each query set. For different workloads,

http://blast

4342 Nucleic Acids Research, 2005, Vol. 33, No. 13

=/ naive BLAST

-O== BLAST-B
=== miBLAST
15
£ 10
=
2
{="
w
]
=
E 5
D
~
Ix /s /s /s /s A
0 T T T T T

16 32 64 128 256 512
Query length

Figure 3. This graph shows the relative speedup to naive BLAST for various
query lengths, using a word size of 11. Queries are drawn from the EST human
dataset, and each batch has 1000 queries.

the optimal batch size changes and to get the best performance
using BLAST-B the user has to manually determine the opti-
mal batch size. For example, the optimal batch sizes are ~100,
50, 50, 25,25 and 12 for queries of lengths 16, 32, 64, 128, 256
and 512, respectively. In contrast, with miBLAST there is no
such manual tuning requirement. The optimal batch size can
have a significant impact on the performance for BLAST-B;
for example, with 256 bp queries, using a batch size 200
instead of 25 increases the total execution time by 50%.

Performance comparison with BLAST++

In this last experiment, we compare miBLAST with
BLAST++. As noted earlier, the current version of
BLAST++ cannot handle the size of the current Human Uni-
Gene dataset. Hence, for this experiment we used only half of
the Human UniGene data set (for all the methods). The query
set that we use in this experiment is the Affymetrix oligo-
nucleotide sequences (25 bp). The BLAST++ configuration
is similar to BLAST-B, and there is an optimal batch size,
which in this case is about 200 queries in a batch. The results of
this experiment are shown in Figure 4. As can be seen in this
Figure, BLAST++ only outperforms the naive BLAST and
is worse than miBLAST and BLAST-B in all cases. miBLAST
is 5 and 48 times faster than BLAST++ at a word size of 11 and
23, respectively. Also, note that as the word size increases, the
performance of BLAST++ generally degrades. The perform-
ance improvement for BLAST++ comes from sharing data-
base sequence information for common words in the queries.
However, when the word size is large, the number of such
common words is reduced, and BLAST++ ends up accessing
larger number of database sequences for each query sequence.

DISCUSSION
Index storage and construction costs

The index used in miBLAST requires (8 x §™ + 4 x N) bytes,
where S is the size of the alphabet for the symbols (typically 4

== naive BLAST
== BLAST++
=O== BLAST-B
=O= miBLAST

6 /

Execution time/query (sec)
N

—0 ——0

0 N N
T T T T

11 14 17 20 23

Word size

Figure 4. This graph shows the execution time of each method for various word
sizes using a batch of 1000 queries from the Affymetrix probe set (25 bp).

for nucleotide sequences), m is the index word length and N is
the total number of symbols in the database. 8 x S” bytes are
used for index header, and 4 X N bytes are used for saving
sequence ID information. However, since we do not save a
duplicate sequence ID when the same word occurs more than
once in the same sequence, the actual index size is significantly
smaller than indicated by the above formula. For the human
UniGene database containing 3.19 gigabases, using a word
length 11, the index for the database is 11.94 GB. Only
32 MB of this space is used for the index header, and the
remaining portion of this index space is used for storing the
sequence ID information.

Constructing a g-gram index can be expensive for large
databases. However, the index construction cost is a one
time cost and this cost is amortized over all the batch work-
loads that use this index. For example, the index on the Human
UniGene takes 38 min on our test machine. Assuming that
we process the Affymetrix query set consisting of 247965
query sequences, the index construction cost per query is
0.0092 s, and this cost can be reduced further when we
have a larger batch workload or when the index is used to
process multiple batch workloads.

Biological applications of miBLAST

In this section, we discuss the biological applications that can
benefit from miBLAST. The characteristics of miBLAST
make it immediately applicable when evaluating a large
number of oligonucleotide probes, cDNA sequences or ESTs
against databases of ESTs. Next, we elaborate on some
applications with these characteristics.

One important application is the validation of a probe set,
such as the Affymetrix probe set, against the UniGene data-
base. The Affymetrix probe sets are searched against the most
recent UniGene, and the search is often conducted periodically
triggered by updates to the UniGene dataset. In this search, if
one is only looking for labels, then a regular expression search
is sufficient. However, the mismatches found in BLAST are
also often important. For example, a step in evaluating the
Affymetrix probes is an hybridization energy calculation
for each probe that has sequence similarity with an EST.

Mismatches may not bind with the same efficiency as a perfect
match, but knowing the number of mismatch probes and
the hybridization energy helps determine the specificity
of the individual probes (I. Lee, personal communication).
This task requires a sensitive search tool. BLAST, which
uses overlapping words in its search technique, when run
with a small word size parameter results in a sensitive search
that is suitable for this application. Since this task needs
periodic evaluation of a large number of probes against a large
EST database, miBLAST is a good alternative to BLAST.

A similar application is when designing new probe sets for
DNA microarrays. miBLAST can be used to search new probe
sets against the EST library of a species as a first pass for
sensitivity. The search result of mismatch and perfect matches
can be used to calculate hybridization energy for new micro-
array design. This task has been a major step in programs
developed for probe design (13,14) and miBLAST can help
speed up the basic computation task.

Another biological application is when using one animal
model microarray against a similar species. While the creation
of a new chip set for every species is technically feasible,
the cost involved and skills necessary are not widespread.
Until that time, using a similar species chip set will be an
inexpensive solution. In this case, searching the chip probe
set against the collection of ESTs or cDNA of the related
species are often needed to validate the probes in the new
species (15).

While the focus of the applications in the discussion above
has been on microarray studies, miBLAST can also be used
in other applications. As more individuals create siRNAs, to
silence genes within cells, short nucleotide sequence searches
against EST databases will increase to look for cross hybrid
activities with other ESTs to narrow the specificity of the
siRNAs. miBLAST can decrease the computation demands
of this task.

We note that miBLAST improves the efficiency of sequence
searches for short nucleotides against ESTs. If one is con-
cerned with EST-to-genome or genome-to-genome alignment,
other existing methods (5,16,17) are likely to be more practical
for such tasks.

Finally, we note that our miBLAST implementation, like
WU-BLAST (http://blast.wustl.edu), also allows the user to
specify a scoring matrix, which can be used to model complex
scoring models, such as discriminating between the scoring of
transitions and transversions.

CONCLUSION

In this paper, we have presented miBLAST, a fast BLAST-like
search algorithm for efficiently evaluating batch workloads,
which consist of a large number of nucleotide query sequences
that must be matched against a nucleotide sequence database.
Current methods for evaluating such workloads essentially
employ a ‘nested-loops’ paradigm in which each query
sequence is individually evaluated using the BLAST search
tool. This existing approach can be very expensive, especially
for large batch sizes. Using a combination of g-gram indexes
and an index join algorithm, miBLAST can dramatically speed
up the evaluations of such workloads. miBLAST is particu-
larly effective for workloads that consist of short queries, such
as oligonucleotide probe sets.

Nucleic Acids Research, 2005, Vol. 33, No. 13 4343

The miBLAST search tool is implemented using the NCBI
toolkit and employs the same statistical model and output
format that is familiar to BLAST users. Consequently, we
expect that existing BLAST users can make a seamless trans-
ition to miBLAST. The source code and executable for
miBLAST are freely available.

AVAILABILITY

miBLAST is available as free open-source software. The
software and instructions for installing the software can be
downloaded from http://www.eecs.umich.edu/miblast/.

ACKNOWLEDGEMENTS

This work was supported in part by grants from the Michigan
Economic Development Corporation (GR-238 and MTTC
05-095) and a gift from Microsoft. The authors would also
like to thank Bob Thompson for sharing the 70mer probes set
data with then, and Fan Meng for discussions on this topic.
Finally, the authors also want to thank Warren Gish, Tom
Madden and Jason Klivington for discussions on different
BLAST implementations. Funding to pay the Open Access
publication charges for this article was provided by the
MTTC 05-095 grant.

Conflict of interest statement. None declared.

REFERENCES

1. Lachance,P.E. and Chaudhuri,A. (2004) Microaarry analysis of
developmental plasticity in monkey primary visual cortex.
J. Neurochem., 88, 1455-1469.

2. Uddin,M., Wildman,D.F., Liu,G., Xu,W., Johnson,R.W., Hof P.R.,
Kapatos,G., Grossman,L.I. and Goodman,M. (2004) Sister grouping of
chimpanzees and humans as revealed by genome-wide phylogentic
analysis of brain gene expression profiles. Proc. Natl Acad. Sci. USA,
101, 2957-2962.

3. Altschul,S.F., Gish,W., Miller,W., Myers,E.W. and Lipman,D.J.
(1990) Basic local alignment search tool. J. Mol. Biol.,

215, 403-410.

4. Altschul,S. and Gish,W. (1996) Local alignment statistics.
Meth. Enzymol, 266, 460—480.

5. Kent,W.J. (2002) BLAT-the BLAST-like alignment tool.
Genome Res., 12, 656-664.

6. Ning,Z., Cox,A.J. and Millikin,J.C. (2001) SSAHA: A Fast
Search Method for Large DNA Databases. Genome Res., 11,
1725-1729.

7. Burkhardt,S., Crauser,A., Ferragina,P., Lenhof,H.P., Rivals,E. and
Vingron,M. (1999) g-gram based database searching using a suffix array
QUASAR. Proceeding of the third International Conference on
Computational Molecular Biology. Lyon, France, pp. 77-83.

8. Zhang,Z. (2000) A greedy algorithm for aligning DNA sequences.

J. Comp. Biol., 7, 203-214.

9. Korf,I. and Gish,W. (2000) MPBLAST: improved BLAST performance
with multiplexed queries. Bioinformatics, 16, 1052—1053.

10. Wang,H., Ooi,B.C., Tan,K.L., Ong,T.H. and Zhou,L. (2003)
BLAST++: BLASTing queries in batches. Bioinformatics, 19,
2323-2324.

11. Darling,A.E., Carey,L. and Feng,W. (2003) The design, implementation
and evaluation of mpiBLAST. Proceeding of the Fourth International
Conference on Linux Clusters, San Jose, CA.

12. Navarro,G. and Yates,R.B. (1998) A practical g-gram index for
text retrieval allowing errors. CLEI Electronic Journal, 1,

1725-1729.

13. Rouillard,J., Zuker,M. and Culari,E. (2003) OligoArray 2.0: design of
oligonucleoide probes for DNA microarray using a thermodynamic
approach. Nucleic Acids Res., 31, 3057-3062.

http://blast.wustl.edu
http://www.eecs.umich.edu/miblast/

4344 Nucleic Acids Research, 2005, Vol. 33, No. 13

14. Wright, M.A. and Church,G.M. (2002) An open-source oligomicroarray 16. Florea,L., Hartzell,G., Zhang,Z., Rubin,G.M. and Miller,W. (1998)
standard for human and mouse. Nat. biotechnol, 20, 1082—1083. A computer program for aligning a cDNA sequence with a genomic DNA
15. Lee,I., Dombkowski,A. and Athey,B. (2004) Guildlines for sequence. Genome Res., 8, 967-974.
incorporating non-perfectly matched oligonucleotides into target-specific 17. Schwartz,S., Kent,W., Smit,A., Zhang,Z., Baertsch,R., Hardison,R.,
hybridization probes for a DNA microarray. Nucleic Acids Res., 32, Haussler,D. and Miller,W. (2003) Human-mouse alignments with

681-690. BLASTZ. Genome Res., 1, 103-107.

