
1

Vol.:(0123456789)

Scientific Reports |         (2022) 12:7894  | https://doi.org/10.1038/s41598-022-12099-3

www.nature.com/scientificreports

An automated cell line 
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Cell line authentication is important in the biomedical field to ensure that researchers are not working 
with misidentified cells. Short tandem repeat is the gold standard method, but has its own limitations, 
including being expensive and time-consuming. Deep neural networks achieve great success in 
the analysis of cellular images in a cost-effective way. However, because of the lack of centralized 
available datasets, whether or not cell line authentication can be replaced or supported by cell image 
classification is still a question. Moreover, the relationship between the incubation times and cellular 
images has not been explored in previous studies. In this study, we automated the process of the cell 
line authentication by using deep learning analysis of brightfield cell line images. We proposed a novel 
multi-task framework to identify cell lines from cell images and predict the duration of how long cell 
lines have been incubated simultaneously. Using thirty cell lines’ data from the AstraZeneca Cell Bank, 
we demonstrated that our proposed method can accurately identify cell lines from brightfield images 
with a 99.8% accuracy and predicts the incubation durations for cell images with the coefficient of 
determination score of 0.927. Considering that new cell lines are continually added to the AstraZeneca 
Cell Bank, we integrated the transfer learning technique with the proposed system to deal with data 
from new cell lines not included in the pre-trained model. Our method achieved excellent performance 
with a precision of 97.7% and recall of 95.8% in the detection of 14 new cell lines. These results 
demonstrated that our proposed framework can effectively identify cell lines using brightfield images. 

Over the last 50–60 years, cell lines have become a staple of biological research, resulting in rapid developments 
in the fields of cell and molecular biology, however, this increased use of cell lines has brought to light the issue of 
cell line  authentication1. Many isolated cell lines were subsequently found to be contaminated by faster growing 
cell cultures, such as HeLa cells, due to poor cell culture practice leading to the misidentification of cell  lines1. 
The use of a misidentified cell line can lead to false conclusions and irreproducible experiments, consequently 
leading to a waste of time, money and  resource2,3. It is estimated that industry wide 10–20% of preclinical effort 
was wasted due to misidentified cell lines, estimated to cost the industry 28 billion USD per  year4.

Though there are many methods for cell line authentication, short tandem repeat (STR) profiling, also some-
times referred to as DNA fingerprinting, has been the most widely used and is recommended as the standard by 
the American Type Culture Collection (ATCC) Standards Development Organization Workgroup ASN-00025. In 
spite of the prevalence of STR profiling, there are limitations. Microsatellite instability and loss of heterozygosity, 
especially in cancer cell lines, can make validation and authentication challenging using STR  profiling6. In one 
study involving hematopoietic cancer cell lines it was found that the effect of long term culture, subcloning, and 
selection led to genetic drift, thereby significantly altering the DNA fingerprinting and over time some cell lines 
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may also go through genetic and transcriptional evolution (GTE)7,8. All of these variances can make it harder 
to discriminate between cell lines using STR  profiling8. In addition, due to time and cost restrictions, standard 
practice is to test the cells once they have been fully expanded and frozen, however this process results in wasted 
time and effort if the sample then fails STR profiling. It was therefore desirable to develop a new authentication 
approach to complement STR testing. Ideally, the new method should be easy to use, quick, and cost effective, 
and would enable early identification of the cell line that could be built into standard laboratory practice as well 
as overcoming the limitations of STR  profiling9,10.

With the advancement of machine learning (ML) approaches, automated cell image classification is a possible 
solution to allow fast analysis at low cost, as well as potentially identifying changes in cell morphology that could 
be indicative of undesirable qualities such as genetic drift or cellular senescence. Ponomarev et al. extracted 17 
dimensional features (e.g. hole number in cell nuclei, average cell size) from stained ANA Hep-2 cell  images11. 
They used a SVM classifier to learn the extracted feature vectors and got 70.57% accuracy on the 6-class classifica-
tion of ANA Hep-2 cells. Murphy et al. utilized Zernike moment, object finding and edge detection to describe 
subcelluar location patterns of Hela cells which are labeled with antibodies against 10 endoplasmic reticulum 
protein  separately12. Their proposed method achieved 83% accuracy on the classification task. Abdullah et al. 
collected 350 white blood cell (WBC) images and applied cell segmentation to extract geometric properties such 
as cell shape, nucleus  size13. They compared 6 conventional ML classifiers on the classification of WBC images and 
reported Multinomial Logistic Regression algorithm outperformed other methods. However, the conventional 
machine learning methods rely on the pre-determined feature engineering like extracting morphology features 
from segmented cells. And such feature engineering methods should be adjusted according to the specific  data14.

Deep learning approaches brings up the possibility of extracting the discriminative features from data without 
the need of the pre-determined feature engineering. Oei et al. collected 522 fluorescence cell images from 3 cell 
lines (e.g. MCF10A, MCF-7, MDA-MB-231) using confocal immunofluorescence  microscopy15. By using the 
features of actin cytoskeleton structures, they proposed a convolutional neural network (CNN) based on VGG-16 
to classify the microscopy images into three categories and reported the performance of CNN outperforms their 
biological experts in the classification task. Akogo et al. used MobileNet to perform image classification in their 5 
cell line dataset (MDA-MB-468, MCF7, 10A, 12A and HC11) with 96.67%  accuracy16. Most recently, Mzurikwao 
et al. trained two CNNs to classify 4 cancer cell lines (COLO 704, UKF-NB-3, EFO-27 and EFO-21) and their 
isogenic cell lines using brightfield  images10. Compared with STR profiling, deep learning methods improve 
the cost and efficiency as these methods only need cellular images to train CNNs and the trained models are 
used to directly predict the identities for held-out test data. However, because of the lack of centralized available 
datasets and the intrinsic difficulties in analyzing multi-batch cellular images from different cell lines over time, 
the previous studies only conducted their experiments on small-scale cell line datasets of no more than ten cell 
lines. Whether or not CNN can identify tens even hundreds of cell lines is an open question. The relationship 
between the incubation times and cellular images has not been analyzed in previous studies. In addition, new 
cell lines are continually added to the AstraZeneca Cell Bank therefore, how to deal with data from new cell lines 
not included in the model requires consideration.

Therefore, in this study, we aim to answer these questions by developing an automated cell line authentication 
method by using deep learning-based analysis of routine brightfield cell line images. Our main contributions 
reported in this paper are:

(1) Dataset: We have established two cellular datasets. i) The first dataset consists of 47,671 brightfield images 
of 30 cell lines, which is 23 GB of data. The dataset was curated from a set of experiments where 30 cell 
lines were cultured and each cell culture flask was imaged at 2–3 h intervals using the IncuCyte. To our 
knowledge, it is one of the largest such collections of data in the literature for cell line authentication. ii) 
The second dataset includes 860 cell images from 14 new cell lines not included in the 30 above. The 14 
cell lines were incubated by using the same conditions as the previous 30 cell lines and we used this dataset 
to validate whether or not our proposed method can identify new cell lines without training model from 
scratch.

(2) Cell image recognition framework: We proposed a novel multi-task cell image recognition framework to (i) 
identify and authenticate cell lines and (ii) predict the duration of how long cell lines have been incubated 
simultaneously. The cell line classification network (CLCNet) learns image-level features from the cell 
images and outputs the predicted probabilities of the cell line labels for each input image. The extracted 
convolutional features of CLCNet are integrated with the cell line regression network (CLRNet) to predict 
the incubated time points for bright-field images.

(3) Identify new cell lines: We integrated a transfer learning approach with the proposed framework to identify 
images from new cell lines which are not included in the pre-trained model (currently we have 30 cell lines). 
This is an important aspect, as we are unlikely to be able to acquire very large numbers of images for every 
cell line that we wish to authenticate.

(4) Validation: We conducted comprehensive validation experiments to justify the significance of our proposed 
framework on the established datasets. The prediction performance of CLCNet reached the accuracy of 
99.8% and the f1-score of 99.7% in the classification of the 30 cell lines. CLRNet achieved the coefficient 
of determination score (R2-score) of 0.927 in the prediction of the incubated times for cell images. In the 
detection of 14 new cell lines, our proposed method obtained the precision of 97.7% and the recall of 95.8%. 
These results demonstrated that our proposed framework can effectively authenticate the identities of cell 
lines from brightfield images.
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Materials and methods
Cell culture and image acquisition. In this study, we have collected sample images from the registered 
cell lines in AstraZeneca Cell Bank where the selection criteria for cell types is “commonly used cell lines” based 
on the frequency of cell lines has been requested and the readily availability of corresponding images. We have 
established two cell line datasets. (1) The first dataset consists of 30 different cell lines, as listed in Table  S1. The 
base medium is listed in the table, all medium was supplemented with 10% Foetal Bovine Serum (Sigma) and 
1 × GlutaMAX (Gibco) unless otherwise stated. The cells were thawed and seeded into a  25cm2 flask (Corning) 
at a density of 0.5–2 ×  106 cells per flask. The flasks were then added to the Incucyte S3 (Essen Bioscience, Sarto-
rius) system and brightfield images collected from 21 different locations across the flask every 2–3 h over a time 
period between 3 and 7 days. (2) The second dataset includes images from 14 cell lines, as listed in Table S2, these 
images were not used in the training of the CNN network. In this dataset, each cell line includes one location 
only resulting in fewer images. All images were exported for analysis as JPEG or TIFF format using the Incucyte 
S3 software with 1408 × 1040 size (96 × 96dpi). Example images of three cell lines (e.g. A431, A549, T47D) with 
different incubated durations are shown in Fig. 1.

Multi-task framework overview. Our proposed framework is shown in Fig. 2. In the data preparation 
stage, cell images are collected using the IncuCyte for all 30 cell lines. Each cell image has two separate labels, cell 
line name and incubation time. Then, the deep learning network CLCNet learns the image-level features from 
the input cell images with their cell line labels and outputs the predicted classes for test cell images. Once CLC-
Net is trained, the convolutional features of the training data are extracted to train CLRNet. CLRNet predicts the 
time of incubation after initial seeding for each image.

Data pre-processing. Before the model training of CLCNet, we carried out the following pre-processing 
procedures: (1) Unify image format: The collected images’ formats include JPEG and TIFF. To ensure the consist-

Figure 1.  Example images of three cell lines with different incubated durations (hours). In the three examples 
shown here, 3 discrete time points were taken for A549, A549, T47D at 24, 48 and 72 h. With the increased 
amount of the incubation time, we observed increased cell counts and confluency and a formation of colonies. 
Notable single cell morphology can also be observed, e.g. A549 cells are more elongated in shape compared to 
A431 cells, whereas T47D cells are typically larger in size and round.
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ency, we have unified all images’ formats to JPG before further processing for this study. (2) Image scaling: The 
original image resolution for the established dataset is 1408 × 1040. In the training dataset, each cell image is 
cropped at a random region with the size 896 × 869 to improve the data diversity, which can influence the gener-
alization and robustness of the training model in the downstream tasks. Images from the test set are cropped at a 
fixed center region with the same size 896 × 869 for later method comparison experiments. The cropped images 
are resized to 224 × 224 using the bilinear  interpolation17. (3) Grayscale: The scaled cell images are gray but have 
three channels. The grayscale method is applied to convert the images into one channel. (4) Data Normalization: 
Data normalization aims to restrict the image pixels within a specific range and ensure each pixel has similar 
data  distribution10. Each cell image is normalized by subtracting the image mean (i.e. pixel values) and dividing 
by image standard deviation, to improve the convergence speed while training the neural networks.

Cell line classification network. We employed the Xception  model18 as the backbone of CLCNet for clas-
sification. The model structure used in our system is shown in Fig. S1. After pre-processing procedures, the input 
shapes of the cell images are 224 × 224 × 1 (Height × Width × Channel). The input images will first pass through 
two convolution layers that each convolutional layer is followed by batch  normalization19 and a ReLU activation 
function. Five depthwise separable convolutional (DSC) blocks are stacked to further learn spatial and hierarchi-
cal features from the inputs. Each DSC block includes two or three DSC layers and one maxpooling layer. DSC 

Figure 2.  The framework of the proposed automated cell line authentication system. In the data preparation 
stage, cell images are collected using the high-throughput IncuCyte microscopy technique from 30 cell lines 
and each cell image has two separate labels, e.g. cell line name and incubation time. Then, the deep learning 
network CLCNet learns the image-level features from the input cell images with their cell line labels and outputs 
predicted classes for test cell images. Once CLCNet is trained, the convolutional features of the training data are 
extracted to train CLRNet. CLRNet predicts the times of how long cell lines have been incubated simultaneously.
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layer consists of a depthwise convolution (i.e. a spatial convolution performed independently over every channel 
of input) and a pointwise convolution (i.e. a convolution with 1 × 1 kernel, projecting the channels computed by 
the depthwise convolution onto a new channel space)20. The mathematical formulation is defined as:

where O is the output feature map, k × l is the kernel size of the depthwise convolution and E is the channel of 
the output feature map. On the right -hand side of Eq. (1), K̃ and K are the convolutional filters of the pointwise 
and depthwise convolution separately. F is the input feature map and I × J × M is the shape of the input feature 
map. ⊙ represents the operation of an element-wise product. The output of the DSC blocks is concatenated with 
the output of a shortcut convolution (1 × 1 Conv) through the residual connection. Only the fourth DSC block’s 
feature map concatenates with the input feature map without the convolutional processing. The dimension of 
the output feature map from the final two DSC layers is 7 × 7 × 2048 and the feature map is converted to 2048 
dimensions by the adaptive average pooling layer. The final fully connected layer outputs the probability distribu-
tion for 30 cell lines. The classification loss Lclc is computed using the cross entropy:

where C is the number of class and B is the batch size. Xb represents the b-th sample in the batch and 1{•} denotes 
a characteristic function that 1{•} = 1 if the condition is true and 0 otherwise. P(ϒ c

b = c|Xb;W) is the probability 
of the sample Xb being correctly predicted as the class ϒ c

b using the network parameters W.
During the network training, 20% of data are split from the training set for validation. The performance of 

CLCNet on the validation set is monitored for each five training epochs. Beyond epoch 50, if the validation loss 
has not decreased for ten consecutive epochs, early stopping is triggered and the best model with the lowest 
validation loss is used for reporting the performance on the held-out test set.

Cell line regression network. Network features F are extracted from the adaptive average pooling layer 
and its dimension is 2048. We employed a multilayer perceptron (MLP)21 as the backbone of CLRNet to refine 
features and reduce the dimension finally predict the incubation times for cell images. The network consists of 
three FC layers. The first two layers include 512 and 128 neurons separately and each layer is followed by a ReLU 
activation function. The third FC layer has 16 neurons and its output feature vectors are then transformed to a 
scalar which is the prediction result of the regression task. We add dropout  units22 with 0.5 rates after all FC lay-
ers to avoid overfitting. The regression loss Lclr is computed using the mean squared error (MSE):

where Tb is the ground truth and Ŵ(Fb;W) is the predicted incubation times for cell images. The incubation 
times of all cell images are converted to just hours.

The training of CLRNet starts when the training of CLCNet is done. We freeze the weight updating of the 
whole CLCNet. CLCNet acts as a feature extractor, and it outputs the feature vectors from the adaptive average 
pooling layer for the training and validation sets. The feature vectors of the training set are used to train CLRNet. 
The validation MSE loss is monitored each epoch and the best model with the lowest validation loss is saved after 
50 epochs. It should be noted that CLRNet and CLCNet use the same training and validation data.

Transfer learning for identifying new cell lines. To deal with data from new cell lines which are not 
included in the pre-trained model, combining the previous data with the new obtained data and retraining 
CLCNet from scratch is a way to solve this issue. However, the time and computational resources required are 
prohibitive for this approach. Hence, we integrated the transfer learning technique with CLCNet to identify new 
cell lines. Similar to the training strategy of CLRNet, we first take the pre-trained CLCNet model which is trained 
on the 30 cell lines dataset and freeze all layers except the last FC layer. The FC layer is replaced by a new FC layer 
with 44 neurons (i.e. 30 original cell lines + 14 new cell lines). The weights of the new FC layer are initialized. 
During the model training, only the weights of the FC layer will be updated with new data and the weights of 
other layers are fixed. The training set of the 30 cell lines is combined with the training set of the 14 cell lines. The 
underlying concept is that having been trained on 30 cell lines, the model will have learned a good representation 
of brightfield images for discriminating between different cell lines, and as such good classification performance 
can be obtained for new cell lines by only retraining the final classification layer. The combined test set is used 
to validate whether or not the updated model can keep good classification performance on the 30 cell lines and 
identify the new 14 cell lines.

Ethical approval and consent to participate. The authors declare this study don does not require ethi-
cal approval.

Results
Implementation details. We implemented all models and benchmark experiments using Python 3.7 with 
Pytorch 1.9.023 and Scikit-learn 0.24.024 packages. The hyperparameters for CLCNet and CLRNet were set as fol-
lows: The SGD optimizer with the momentum = 0.9 and weight_decay = 5e−4 is adopted. The initial learning rate 
is 0.001 and it decays by factor = 0.1 every 25 epochs. The batch size and maximum training epochs are 20 and 
100 separately. The two cell datasets were split into fivefolds separately then fivefold cross-validation (CV)25 was 

(1)Ok,l,E =
∑M

m K̃m,E ·
∑I ,J

i,j Ki,j,m ⊙ Fi+k,j+l,m

(2)Lclc = − 1
C

∑C
c=1

1
B

∑
Xb∈X

1
{
ϒ c
b = c

}
log(P(ϒ c

b = c|Xb;W))

(3)Lclr =
1
B

∑
Fb∈F

(Tb − Ŵ(Fb;W))2
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applied to evaluate the model performance. The CV iterated five times that fourfolds are used for training and 
validation, and the remaining fold for testing in each iteration. We deployed all the experiments using a single 
32 GB Nvidia V100 GPU.

Cell line classification and regression. In order to evaluate our proposed system comprehensively, we 
replaced the backbone of CLCNet with three SOTA CNNs: MobileNet, VGG19, ResNet50. To seek a fair com-
parison, the data selected for training, validation and testing are constant during the classification and regression 
tasks. The results of the classification and regression on the 30 cell lines are shown in Table 1. We evaluated the 
classification performance of CLCNet with four metrics, namely accuracy, precision, recall and f1-score:

where TP is true positive, TN is true negative, FN is false negative and FP is false positive. The Xception model 
obtained the best classification performance and achieved the average accuracy of 99.8%and the f1-score of 99.7% 
across the fivefold cross-validation. The classification features of the four backbones were extracted to train the 
CLRNet separately. The regression performance is evaluated by two metrics, MSE and R2-score:

where N is the number of test samples. Yn is the real value of the nth sample and Ŷn is the predicted value. 
Y denotes the average of all samples. The overall MSE and R2-score of Xception for the incubation duration 
prediction were 262.283 and 0.931 separately. We further demonstrated the classification results by using the 
confusion matrix in Fig. 3A, which shows that Xception made fewer prediction errors than ResNet50, VGG19, 
and MobileNet. The regression results of the test fold-1 are visualized by using the scatter plots, Fig. 3B. Xception 
outperformed the other three methods in predicting the amount of the incubation times with R2-score = 0.939. 
The complete regression results of the fivefold cross-validation are shown in Fig. S2.

To further view how the deep network distinguished the 30 cell lines, we used t-SNE embedding to reduce 
the dimension of the convolutional features of CLCNet (e.g. 2048 dimensions) and visualized the processed 
features in 2d space. The t-SNE plot of the 30 cell lines is shown in Fig. 4. Each dot represents one cell image 
and is colored by its cell line label. There were clear gaps between different cell lines which validates that CLC-
Net can find the decision boundary and distinguishes the 30 cell lines well. When we associated the cell lines’ 
distribution with their incubation times, we found an interesting phenomenon that samples with similar times 
are mapped to adjacent areas. For example, in Fig. 5, the samples of HT1080 were clustered well. Samples within 
0–24 h were close to the samples within 24–48 h. The complete results of the 30 cell lines with their incubation 
times are shown in Fig. S3.

Identify new cell lines. The confusion matrix of the transfer learning technique for identifying 14 new 
cell lines is shown in Fig. 6A. It is clear that integrating the transfer learning with CLCNet can identify 14 new 
cell lines well with 96.5% accuracy. We showed the t-SNE plot of the 44 cell lines in Fig. 6B. The pink dots show 
the data for the 30 cell line dataset and the additional colors show the 14 new cell line samples. The samples of 
the 14 new cell lines were mapped to the margin space between the 30 cell lines. By comparing Fig. 6A with 
Fig. 6B, some misclassified cases can be explained. For example, in Fig. 6A, 98% of MCF7 images were classified 

(4)accuracy = TP+TN
TP+FN+TN+FP

(5)precision = TP
TP+FP

(6)recall = TP
TP+FN

(7)f 1 =
2×precision×recall
precision+recall

(8)MSE = 1
N

∑N
n=1(Yn − Ŷn)

2

(9)R2 = 1−
∑N

n=1(Yn−Ŷn)
2

∑N
n=1(Yn−Y)2

Table 1.  Classification and regression results on the 30 cell lines dataset: [mean value ± standard deviation] 
by four deep networks.  R2-score: coefficient of determination regression score. The best results are shown in 
bold.

Backbones

Classification Regression

Accuracy Precision Recall F1-score MSE R2-score

ResNet50 0.987 ± 0.002 0.984 ± 0.002 0.987 ± 0.003 0.985 ± 0.002 452.533 ±54.547 0.880 ±0.015

VGG19 0.975 ± 0.004 0.968 ± 0.004 0.972 ± 0.003 0.972 ± 0.003 677.637 ±43.709 0.821 ±.0013

MobileNet 0.965 ± 0.001 0.952 ± 0.002 0.960 ± 0.002 0.956 ± 0.002 769.111 ±44.984 0.797 ± 0.013

Xception 0.998 ± 0.001 0.997 ± 0.001 0.997 ± 0.001 0.997 ± 0.001 262.283 ± 32.085 0.931 ± 0.008
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accurately but 2% of data were misclassified as ASPC1. In Fig. 6B, some dots of MCF7 (i.e. red box) gathered 
with the ASPC1’s dots which represents that the feature vectors of MCF7 images are similar to that of ASPC1. In 
contrast, the well-classified cases (i.e. green box) MRC5 and Min6 clustered well in the t-SNE plot and obtained 
the accuracy of 99%. We showed the regression results for the test fold-1 of the 14 cell lines in Fig. 6C and the 
whole cross-validation results were presented in Fig. S4.

We demonstrated the advantages of the transfer learning method compared with the way of training model 
from scratch in Fig. 6D,E. The transfer learning method requires less computational resource and considerably 
less training time compared with training the whole model from scratch. The transfer learning method only 
spent four training epochs to loss convergence and its average training time is 0.078 h. The overall performance 
of the transfer learning technique for identifying the 44 cell lines was shown in Table 2.

Discussion
In summary, in the classification task of identifying 30 cell lines, our proposed computer-aided system CLCNet 
achieved the overall performance of 99.7% precision and the recall of 99.7%. We compared the Xception back-
bone with three SOTA architectures, e.g. ResNet50, VGG19, MobileNet. The classification performance of the 

Figure 3.  Visualization of the classification and regression results on the 30 cell lines’ dataset. (A) Confusion 
matrices of the 30-category classification. The corresponding cell line names of the coordinates are shown in 
the right legend. Compared with ResNet50, VGG19 and MobileNet, Xception model made fewer prediction 
errors. (B) Scatter plots of the predicted incubated durations vs. the real incubated durations. Here we show the 
prediction results on the test fold-1 as an example; the complete results of cross-validation are shown in Fig. S2. 
Xception outperformed other three methods in predicting the amount of incubation time with R2-score = 0.939.
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Figure 4.  t-SNE Embedding of our 30 cell lines. The t-SNE tool reduces the dimension of the CLCNet’s 
convolutional features and visualizes the processed features in 2D space. Each dot represents one cell image and 
is colored by its matching cell line name. There were clear gaps between different cell lines, which validates that 
CLCNet model can distinguish the 30 cell lines well. Example images of the 30 cell lines are shown in Fig. S6.

Figure 5.  t-SNE plots of 3 example cell lines (e.g. HT1080, PC3, KELLY). These plots enlarge the three cell 
lines’ distribution of Fig. 4. Each dot is colored by the range of the incubation duration (e.g. 0–24 h, 24–48 h). 
An interesting phenomenon was found that samples with similar times locate in adjacent areas. For example, the 
samples of HT1080 were clustered well and samples within 0–24 h were close to the samples within 24–48 h.
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three deep networks has been validated in the previous studies on the analysis of cellular  images10,15,16. In our 
experiments, the Xception model outperformed the other architectures, which can be attributed to the DSC 
blocks which decouple spatial correlations from cross-channel correlations and allows more efficient training. 
It should be noted that MobileNet also includes several DSC layers in its  structure26, however MobileNet is 
lightweight and targets the deployment on a mobile platform ahead of outright performance. Hence, we picked 
up the Xception as the backbone of CLCNet for classification. We used the t-SNE plots (Fig. 4) to visualize the 
high-dimensional features of CLCNet. It is clear that samples (dots) that belong to the same cell lines are clus-
tered together and there are clear gaps between the 30 cell lines. These results proved that CLCNet is powerful 
for identifying the 30 cell lines.

Figure 6.  Performance of the transfer learning technique for identifying 14 new cell lines. (A) Confusion 
matrix of the 14 cell line classification. (B) t-SNE plot of 44 cell lines. The pink dots are the data of 30 cell lines 
and dots of other colors are the data of 14 new cell lines. It can be seen that the samples of the 14 new cell lines 
were mapped to the margin space between the 30 cell lines. Example images of the 14 cell lines are shown in Fig. 
S7. (C) Regression results for the test fold-1 of the cross-validation. (D) Comparison of the convergence speed 
between full model training from scratch and final layer fine-tuning using the transfer learning. “Training from 
scratch” means that all layers of Xception are re-trained using the dataset. (E) Comparison of the training times.

Table 2.  Classification and regression results of the transfer learning technique for identifying the 44 cell 
lines.  The columns of the “14 cell lines” represented the data of 14 cell lines is split from the test dataset during 
evaluation. The columns of the “30 cell lines” represented the data of 30 cell lines is split from the test dataset 
during evaluation. The “overall” column showed the results for the whole test set (44 cell lines).

Metrics 14 cell lines 30 cell lines Overall

Accuracy 0.965 ± 0.018 0.998 ± 0.001 0.997 ± 0.001

Precision 0.977 ± 0.012 0.997 ± 0.001 0.991 ± 0.004

Recall 0.958 ± 0.024 0.996 ± 0.001 0.984 ± 0.008

F1-score 0.968 ± 0.017 0.997 ± 0.001 0.987 ± 0.006

MSE 526.230 ±62.090 232.690 ±0.000 263.360 ±3.287

R2-score 0.853 ± 0.017 0.939 ± 0.000 0.932 ± 0.001
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The regression performance of CLRNet was satisfactory with an R2-score = 0.931. We also conducted an abla-
tion experiment using the cell images to train Xception purely for regression. Here, the Xception architecture 
is almost the same as Fig. S1 except for the final FC layer. The FC only includes one neuron and the used loss 
function is MSE. The regression results of the ablation model are shown in Fig. S5 and the performance is really 
poor. Because in our dataset, some cell images from different cell lines have the same time labels which affects 
the training of the network. For example, we collected two cell images from A431 and A549 cell lines separately 
but these two images have the same incubation times (e.g. Fig. 1). There are many differences between the two 
cell images, e.g. the single cell morphology, cell counts, and confluency. The two images have completely different 
appearances but take the same time labels, which influences the feature learning of the network. From Fig. 5, we 
observed that the convolutional features of CLCNet include information about the incubation times. Hence, we 
took the features of CLCNet as the input of CLRNet to predict the incubation times for cell images. The above 
results validated our strategy is effective for the regression task.

Aiming to handle data from new cell lines, we integrated the transfer learning technique with our proposed 
framework. We established a small-scale dataset that included 14 cell lines to evaluate the method’s performance. 
From the pre-trained model side, the 14 new cell lines were unseen so the model cannot output the matching 
labels for these images. Considering the pre-trained CLCNet has learned good representations from the data of 
30 cell lines, we fixed the parameters of all layers except for the final FC layer. The FC were re-trained by using 
the combined dataset (i.e. training set from 30 cell lines + training set from 14 cell lines). The classification accu-
racy for the 14 cell lines reached 96.5% and the performance of identifying the 30 cell lines was not influenced 
(99.8% accuracy) by re-training. Although the transfer learning technique needs to re-train the part of CLCNet, 
its training speed was 480 times faster than training the model from scratch. These results suggested that the 
transfer learning method is possible to solve the issue.

In this paper we have established a proof of concept for how an image-based AI method can be used for cell 
line authentication, including the use of transfer learning to extend classification to cell lines for which we have 
only a small number of example images. In doing so we have identified a number of areas for future research. 
Firstly, the ability to identify and quantify contamination of cell lines with small amounts of another cell line 
would be a useful functionality. Secondly, having to retrain the model when adding new cell lines might be a 
drawback as greater numbers of cell lines are built up. Some new techniques like conformal  prediction27 or open 
set  recognition28 can automatically decide data is seen or unseen without extra model training. These methods 
can potentially be integrated with the transfer learning method to solve this issue. Besides, flagging or analyzing 
the growth processes of stem cells will be an application direction of our proposed regression model. There is also 
the question of how much training data is necessary: How many cell lines are required for the base training (is 
30 cell lines enough)? How many cell lines can this be expanded to via transfer learning (200 cell lines or more) 
whilst maintaining a satisfactory level of performance? Finally, we have demonstrated a proof of concept for 
rapid cell line authentication. When this system is deployed into the laboratory, the development of guidelines 
for interpreting the confidence value outputted by CLCNet, and the incubation time predicted by CLRNet, how 
to assess performance and how to integrate with current laboratory practice are required.

In this study, we have attempted to automatically authenticate cell lines by using deep neural networks on 
brightfield images. We proposed a novel multi-task cell image recognition framework to authenticate cell lines 
and predict the duration of incubation. We established a large dataset consisting of 47,671 brightfield images of 30 
cell lines. The classification and regression performance on the dataset were excellent. We also integrated transfer 
learning with our proposed system to identify new cell lines and obtained 96.7% accuracy. These results demon-
strated that our proposed framework can effectively authenticate the identities of cell lines on brightfield images.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due AstraZeneca 
Licenses but are available from the corresponding author on reasonable request. Source code from this project 
and our model can be accessed from GitHub: https:// github. com/ BIPL- UoL/ An- Autom ated- Cell- Line- Authe 
ntica tion- Method- for- Astra Zeneca- Global- Cell- Bank.
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