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Abstract

Motivation: Next-generation amplicon sequencing is a powerful tool for investigating microbial communities. A
main challenge is to distinguish true biological variants from errors caused by amplification and sequencing. In trad-
itional analyses, such errors are eliminated by clustering reads within a sequence similarity threshold, usually 97%,
and constructing operational taxonomic units, but the arbitrary threshold leads to low resolution and high false-
positive rates. Recently developed ‘denoising’ methods have proven able to resolve single-nucleotide amplicon var-
iants, but they still miss low-frequency sequences, especially those near more frequent sequences, because they ig-
nore the sequencing quality information.

Results: We introduce AmpliCI, a reference-free, model-based method for rapidly resolving the number, abundance
and identity of error-free sequences in massive Illumina amplicon datasets. AmpliCI considers the quality informa-
tion and allows the data, not an arbitrary threshold or an external database, to drive conclusions. AmpliCI estimates
a finite mixture model, using a greedy strategy to gradually select error-free sequences and approximately maximize
the likelihood. AmpliCI has better performance than three popular denoising methods, with acceptable computation
time and memory usage.

Availability and implementation: Source code is available at https://github.com/DormanLab/AmpliCI.

Contact: kdorman@iastate.edu

Supplementary information: Supplementary material are available at Bioinformatics online.

1 Introduction

High throughput sequencing has revolutionized the study of micro-
bial communities. A common strategy characterizes samples by
amplifying and sequencing biomarker genes, like 16S rRNA or fungal
internal transcribed spacer. These biomarkers are both conserved for
amplification and uniquely hypervariable, so deep amplicon sequenc-
ing can reveal the detailed composition of microbial communities.

Biomarker utility is degraded by sequencing errors, polymerase
chain reaction (PCR) amplification errors and natural genetic vari-
ation (Knight et al., 2018). To account for these factors, a typical
first step of microbiome analysis is to resolve the data into oper-
ational taxonomic units (OTUs), clusters of sequences with 97% or
greater similarity. There are many methods for identifying OTUs
(Callahan et al., 2017), roughly classifiable into closed-reference
methods, which use a reference database of known organisms, or de
novo methods. However, when applied to mock communities, it is
widely found that both types of methods cannot accurately identify
true OTUs in a sample (Edgar, 2017; Huse et al., 2007, 2010;
Kopylova et al., 2016; Nearing et al., 2018; Quince et al., 2009).

OTUs are problematic entities, lacking both biological and phys-
ical interpretability. They only roughly approximate biological spe-
cies, genera or higher taxa, and they do not represent true, error-free
sequences in the sample. Thus, OTU-based methods are prone to
both false positives and negatives, reporting errors as OTUs and
missing real biological sequence variation, such as single-nucleotide
polymorphisms (Callahan et al., 2017). The empirical 97% thresh-
old (Konstantinidis and Tiedje, 2005; Stackebrandt and Goebel,
1994) fails to achieve genus- or species-level resolution (Edgar,
2018; Schloss and Westcott, 2011). There are distinct species with
more than 97% similar 16S rRNA (Johnson et al., 2019;
Stackebrandt and Ebers, 2006) and strains whose 16S rRNA locally
differ by more than 3% (Rossi-Tamisier et al., 2015).

Illumina amplicon sequence data support de novo single-
nucleotide resolution (Callahan et al., 2016). Modern methods
strive to identify all unique sequences in a sample (Amir et al., 2017;
Callahan et al., 2016; Edgar, 2016b; Eren et al., 2013, 2015;
Hathaway, 2018 ; Mysara et al., 2016; (Tikhonov, 2015) ). Such
denoising methods make no biological judgment on taxonomy, but
simply remove or correct sequence errors and, sometimes, PCR
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errors. The denoised sequences are called amplicon sequence var-
iants (ASVs) (Callahan et al., 2016), sub-OTUs (Amir et al., 2017)
or zero-radius OTUs (Edgar, 2016b). Their higher resolving power,
lower false-positive rates and greater inter-sample consistency have
made denoising methods the recommended tool for biomarker gene
analysis (Callahan et al., 2017; Knight et al., 2018; Nearing et al.,
2018).

There are currently three widely used denoising methods
(Nearing et al., 2018). UNOISE3 (Edgar, 2016b) and Deblur (Amir
et al., 2017) ignore the quality information and greedily select true
sequences assuming conservative error rates. DADA2 (Callahan
et al., 2016) uses a greedy, hierarchical divisive clustering algorithm
based on a probabilistic error model, while accounting for averaged
quality score information. Only DADA2 infers error rates from
data, a potential advantage, since experimental conditions affect
error profiles (Tikhonov, 2015) .

We introduce AmpliCI, amplicon clustering inference, a model-
based algorithm for denoising Illumina amplicon data. The statistic-
al model underlying AmpliCI is a finite mixture model, which for
computational feasibility, is maximized using an approximate,
greedy scheme. Like DADA2, AmpliCI uses a formal model for
sequencing errors, but it retains higher resolving power by not aver-
aging quality scores among reads with identical sequences. AmpliCI
considers both substitution and indel errors, estimating substitution
error parameters directly from the sample. We test our method on
simulated, mock and real datasets. AmpliCI shows better perform-
ance than current algorithms, particularly achieving higher accuracy
for highly related sequences.

2 Materials and methods

2.1 Statistical model
We start with read set R ¼ fr1; r2; . . . ; rng and quality set
Q ¼ fq1; q2; . . . ;qng, containing n sequences of base calls and qual-
ity scores. We assume that the data are independent draws from a
K-component mixture distribution, where the kth component is gen-
erated by the true sequence (haplotype) hk. The likelihood function
for fixed K is

LðhjRÞ ¼
Yn

i¼1

XK

k¼1

pkPrðr ijZi ¼ hk; qiÞ; (1)

where Zi are the unknown source sequences, parameters
h ¼ fp;H; hqg are the mixing proportions p ¼ ðp1;p2; . . . ;pKÞ, the
true haplotypes H ¼ fh1; h2; . . . ;hKg and parameters hq, dictating
how quality scores qi, treated as observed covariates, impact the
read r i likelihood.

The conditional probability Prðr ijZi ¼ hk; qiÞ is calculated based
on the pairwise alignment between the read r i and the source haplo-
type hk. Since substitution errors greatly exceed insertion or deletion
(indel) errors in Illumina sequencing (Schirmer et al., 2016), we use
a simple model to penalize indels. We assume an insertion can occur
before or a deletion at any one of the lk positions in the kth haplo-
type at a very small, constant rate d. Assuming these events are inde-
pendent, the number di of observed indel events in the ith read may
be approximately modeled as a truncated Poisson distribution,

PrðdijZi ¼ hkÞ ¼
e�lkdðlkdÞdi

di!
Plk

j¼0

ðlkdÞje�lkd=j!

: (2)

We ignore indel lengths, assuming all plausible lengths are equal-
ly likely. Technically, because reads have fixed lengths, indels are
neither independent nor their lengths ignorable, but the approxima-
tion should be good for short indels, small d and by treating 30 ter-
minal indels as necessary consequences of earlier indels. Finally,
assuming errors are independent across sites, the conditional prob-
ability is

Prðr ijZi ¼ hk; qiÞ ¼ PrðdijZi ¼ hkÞ
Ylk

j¼1

Prðrijjhkj; qijÞ; (3)

where j indexes positions in haplotype hk and the aligned read/qual-
ity sequences. The term Prðrijjhkj; qijÞ is the probability of generating
nucleotide rij from hkj with quality score qij at alignment position j,
understood to be 1 when rij is a deletion. Like DADA2 (Callahan
et al., 2016), we estimate the log probabilities log Prðrijjhkj; qijÞ, for
each choice of hkj and rij in fA;C;G;Tg, using LOcally Estimated
Scatterplot Smoothing (LOESS) regression on the quality scores
(details in Section 2.4).

2.2 Greedy haplotype selection
Maximizing the likelihood (Equation 1) is very difficult (Melnykov
and Maitra, 2010). Two key assumptions motivate approximate
maximization. Capitalizing on low Illumina error rates, we assume
(1) all true haplotypes appear at least once without error and (2)
error-containing reads that match a true haplotype are overwhelm-
ingly sourced from more abundant haplotypes. Under (1), unique
sample sequences s with positive true proportions gs ¼ PrðZi ¼ sÞ
are true haplotypes. Assumption (2) yields rough, rapid gs estimates.

Suppose the true haplotypes are fH; sg for some sequence s 62 H.
The observed abundance Aso of s comprises the true abundance Ast

plus the number NHs of misreads from other haplotypes to read s
minus the number Ns�s of sequence s misreads (Supplementary Fig.
S1),

Aso ¼ Ast þNHs �Ns�s :

If we take the expectation of both sides, then

E½Aso� ¼ E½Ast� þ E½NHs� � E½E½Ns�s jAst��
¼ ngs þ E½NHs� � ngsas;

where as is the misread probability of sequence s, which if as ¼ a are
sequence homogeneous, yields method-of-moments estimator

~gs ¼
1

nð1� aÞ ðaso � E½NHs�Þ; (4)

where aso is the observed abundance. Equation (4) estimates gs for
all unique s 2 R, but it requires the haplotypes H. We use our
assumptions and ideas from Deblur and UNOISE2 to incrementally
find haplotypes and ~gs.

For convenience, we reindex the data. Given M unique sequences
S ¼ fs1; s2; . . . ; sMg, sorted from highest to lowest observed abun-
dance fas1o; as2o; . . . ; asMog, grouping reads by unique sequence indu-
ces a partition on the read R ¼ fR1;R2; . . . ;RMg and quality
Q ¼ fQ1;Q2; . . . ;QMg sets. Subset Rm contains reindexed reads
rmi ¼ sm, with reindexed quality scores qmi in
Qm; i ¼ 1; 2; . . . ; jRmj. DADA2 similarly groups reads, but averages
quality scores in subset m (Callahan et al., 2016). Retention of ori-
ginal quality scores is an important distinction, increasing sensitivity
by allowing AmpliCI to detect members of Rm that are likely mis-
reads of other haplotypes.

Let fas1
; as2

; . . . ; asM
g ¼

fnð1� aÞgs1
; nð1� aÞgs2

; . . . ; nð1� aÞgsM
g be the expected scaled

true abundances (shortened to scaled abundances) we aim to esti-
mate. Value asm

is the expected number of error-free reads of true se-
quence sm. Assuming the most frequent unique sequence is a
haplotype, and no matching reads are misreads, we start by setting
H1 ¼ fh1g ¼ fs1g and estimator ~as1

¼ as1o. Given k haplotypes so
far, the ðkþ 1Þth haplotype will be some sm 2 S Hk, whose scaled
abundance estimate is computed as

~aðkÞsm
:¼ asmo � E½NHksm

jHk;Qm�;

where we condition on the current haplotypes Hk and use the qual-
ity scores Qm of the reads matching the mth unique sequence sm.
This estimate is obtained assuming the haplotypes are fHk; smg,
which is clearly incorrect in early iterations. However, the approxi-
mation is essential for computation (Yang et al., 2011) and is
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reasonable under assumption (2). Further derivations in
Supplementary Material S1 yield estimation function

~aðkÞsm
¼ asmo �

Xasmo

i¼1

XjHk j

w¼1

ehwmi~ahw

PjHk j

l¼1

ehlmi~ahl
þ esmmi~a

ðkÞ
sm

; (5)

with esmi ¼ PrðsmjZmi ¼ s; qmiÞ given by Equation (3). Estimate
~aðkÞsm
� 0 is a fixed point of Equation (5) (Supplementary Material

S2), which can be found through fixed point iteration
(Supplementary Material S3).

For approximately maximizing Equation (1), our algorithm
(Fig. 1) proposes candidate hkþ1as the sequence with highest esti-
mated scaled abundance ~aðkÞsm

. It is not only a likely haplotype, but
also the haplotype most likely distorting the observed abundance of
other candidates. Whether we accept the proposed candidate is a
model selection issue.

To assess model goodness of fit with haplotype sm, we require an
approximate Bayesian Information Criterion (BIC) to improve
(Supplementary Material S5). Surviving candidates are then diag-
nosed for contamination (Supplementary Material S6). Briefly, we
assume contamination introduces z (default 1) copies of the candi-
date sm. If it is ‘easy’ to generate all asmo � z remaining copies as mis-
reads of haplotypes in Hk, then we doubt sm is a haplotype. To
quantify the ease of this event, we compute pmz ¼ PrðNHksm

�
asmo � zjasmo;HkÞ assuming the NHksm

misreads follow a Poisson
Binomial distribution. Small values of pmz indicate it is not easy to
explain the observed count without haplotype sm. We require pmz <
e (default e = 0.001/M for M unique candidate sequences). When
candidate sm fails to improve the BIC or pmz exceeds the threshold,
we permanently reject sm and consider next most abundant candi-
dates. If sm is accepted, the haplotype set is updated,
Hkþ1 ¼ fHk; smg, and the process repeats. The algorithm iterates
until there are K haplotypes in HK and all remaining candidate
sequences are screened out or have estimated scaled abundances ~aðKÞsm

below a second threshold c (default 2).

2.3 Abundance estimation
An important secondary goal of a denoising algorithm is abundance
estimation, which is required for chimera detection (Edgar, 2016a)

and many downstream analyses (Knight et al., 2018). AmpliCI uses
the final, estimated scaled abundances f~ah1

; ~ah2
; . . . ; ~ahK

g for this
purpose. Assuming sequence-independent misread rate as ¼ a for all
s 2 S, these values are directly proportional to the true haplotype
abundances. However, with a fully probabilistic model such as
AmpliCI, it is possible to imagine more sophisticated methods for
abundance quantification. These issues and the related issues are dis-
cussed in Supplementary Material S7.

2.4 Implementation
We implement AmpliCI in the C language. By default, the indel
error rate is 6� 10�5, consistent with previous estimates (Schirmer
et al., 2016). Here, we describe the estimation of the remaining error
parameters hq and how we avoid the computational expense of all-
against-all alignments.

Quality scores do not perfectly predict error rates (Tikhonov,
2015) , but they strongly correlate with errors (Callahan et al.,
2016), even if the exact relationship can vary by dataset (Ma et al.,
2019). In our experience, it is important to estimate sample error
properties before denoising. AmpliCI independently learns the error
profile for each sample, after demultiplexing (Supplementary
Material S4). Briefly, initializing error rates to Phred error probabil-
ities (Ewing and Green, 1998),

Prðrjh; qÞ ¼ f chr10�q=10 r 6¼ h
1� 10�q=10 r ¼ h;

(6)

where chr ¼ 1
3 for all h; r 2 fA;C;G;Tg; h 6¼ r, we alternate adding a

haplotype with AmpliCI and estimating error rates by weighted
LOESS regression with default settings until parameters stabilize.
The final estimates are used in a second run of AmpliCI without
error rate estimation.

Since the cost of Needleman–Wunsch alignment (see Section 2.1)
is high, we implement an alignment-free strategy by default, where
conditional probability (Equation 3) is calculated without pairwise
alignment. This strategy decreases the average runtime on simulated
datasets (Section 2.6) from 0.89 s (–align option) to 0.06 s. It
works because sequencing indel errors are rare. However, for small
abundance threshold c, the approach will select indel-containing
reads. To mitigate this problem, once a haplotype candidate is
selected, we recalculate its scaled abundance based on the pairwise
alignments (scores: gap ¼ �5, match ¼ 2, mismatch ¼ �2 for tran-
sition and –3 for transversion) to each current haplotype. If the
scaled abundance drops below the threshold c, which is expected for
indel misreads, the candidate haplotype is permanently dropped.

2.5 Setting run parameters
AmpliCI exposes several parameters to user adjustment, most im-
portantly c, z and �. The threshold c>1 on scaled abundance (op-
tion –abundance) affects sensitivity and runtime. It eliminates
candidate haplotypes with estimated scaled abundance (and conse-
quently observed abundance) below c. Integer 0 � z � c (option –
contaminants) and the threshold � on pmz (option –diagnostic)
affect the sensitivity. Varying � alters the specificity/sensitivity trade-
off. A positive z appears important for eliminating low-level con-
taminants in real datasets. A haplotype cannot be detected unless it
produces at least maxfbcc; zg (default 2) perfect reads.

2.6 Data simulation
Synthetic datasets are simulated from a model like that of read simu-
lator ART (Huang et al., 2012). For the simulation with most easily
detected haplotypes, we simply use the K¼12 most abundant hap-
lotypes from the Extreme mock dataset (Callahan et al., 2016), but
for the other synthetic datasets, we first simulate 12 haplotypes on a
star-shaped phylogeny, under the Jukes–Cantor model (Jukes and
Cantor, 1969) rooted with the consensus sequence of the 12
Extreme sequences. Similarity between haplotypes is controlled by
the branch length cd in the star phylogeny (Supplementary Table
S1), plus a requirement of distinct haplotypes. The relative abun-
dance of the 12 haplotypes are ð0:376; 0:278; 0:103;0:054;

Fig. 1. AmpliCI: inferring ASVs from samples. (1) Construct unique sequence set S,

and put the most abundant unique sequence in haplotype set H1. (2) Given the cur-

rent haplotypes Hk, the scaled abundances ~aðkÞsm
are estimated for each remaining

unique sequence sm via update function (5), and the haplotype candidate sm with

highest scaled abundance is selected. (3) Verify the approximate BIC improves and

the diagnostic probability pmz is small enough, and update Hkþ1 ¼ fHk; smg.
Otherwise, permanently discard candidate sm and select the next most abundant

candidate. (4) Repeat (2)–(3) until the scaled abundance ~aðKÞsm
of all remaining unique

sequences sm are below the user-determined abundance threshold c. (5) Output the

K haplotypesHK
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0:048; 0:047;0:039; 0:036;0:006;0:005; 0:005;0:004Þ, implying
unbalanced clusters. For each read, we randomly pick one haplotype
given the mixing proportions, simulate the quality scores from a

read position-specific empirical quality score distribution, and simu-
late nucleotides independently assuming Phred quality scores

(Equation 6). The mixing proportions, quality score distribution and
chr in the Phred error probabilities are the maximum likelihood esti-
mates obtained by Expectation–Maximization (EM) optimization of

the mixture model (Equation 1) for 3000 random reads from the
Extreme mock dataset (Callahan et al., 2016) with fixed, known

haplotypes and initialized with chr ¼ 1=3. The insertion/deletion
rates are set to 2� 10�5 per position. The simulation error model is
related but not identical to the AmpliCI error model, and important-

ly, we do not enforce the additional AmpliCI assumptions. We simu-
late 3000 reads per synthetic dataset at five different similarity

levels.

2.7 Analysis of mock and real datasets
We examine three mock datasets, Extreme (Callahan et al., 2016),
Even1 and Stag1 from Mock5 (Bokulich et al., 2015, 2016) and one

real vaginal microbiome dataset (MacIntyre et al., 2015) (Table 1).
Most denoisers are part of a complete analysis pipeline, including
both pre- and post-processing steps. The pipeline we use is shown in

Supplementary Figure S2. To facilitate comparison, especially for
mock data, we equalize as much as possible in these pipelines,
though see Supplementary Material S10.

Only forward reads of each sample are input to the denoisers. Even1
and Stag1 are demultiplexed out of the Mock5 dataset using QIIME1

(Caporaso et al., 2010) script split_libraries_fastq.py and
default settings. We download the real data already demultiplexed.

We truncate reads at 240nt and discard shorter reads. We remove reads
that contain any quality score less than 3 or ambiguous nucleotide ‘N’.
The resulting datasets are used as the same input for all algorithms.

Denoiser output is often processed to remove chimera sequences
and other artifacts. For analyses on mock datasets, we run Deblur

with neither positive nor negative prefiltering (Amir et al., 2017).
For mock datasets, we use the standalone UCHIME3 de novo
method (Edgar, 2016a) to remove chimeras for all denoisers except

UNOISE3, which uses an embedded version. Additional pipeline
deviations for real datasets are described in Section 3.

3 Results

We compare AmpliCI with three prevalent denoising methods:
DADA2 (Callahan et al., 2016), UNOISE3 (Edgar, 2016b) and
Deblur (Amir et al., 2017). Summary information of all algorithms

Table 1. Information on tested datasets

Method Property Dataset

Extreme Even1 Stag1 Vagina

NA Region V4 V4 V4 V1–V2

Length (nt) 250 250 250 300

No. strains 27 21 21 –

No. reads 2.0M 1.0M 1.3M 2.1M

DADA2 t (s) 2252.0 1487.6 1266.0 343.1

Mem (MB) 12576.8 4043.4 6137.1 2747.3

Deblur t (s) 2211.2 708.0 937.8 1591.2

Mem (MB) 6658.0 1265.4 2138.3 648

UNOISE3 t (s) 11.7þ1.4 (13.1) 4.2þ0.2 (4.4) 5.7þ0.3 (6.0) 10.4þ1.9 (12.3)

Mem (MB) 1245.6 671.5 926.6 1304.6

AmpliCI t (s) 73.0þ423.3 (496.3) 53.7þ2738.7 (2792.4) 72.1þ2725.9 (2798.0) 32.2þ133.6 (165.8)

Mem (MB) 3924.5 5171.9 6884.7 64.8

Note: All datasets contain 16S rRNA gene amplicon sequences generated on the Miseq platform. For DADA2 and Deblur: time recorded for the whole work-

flow. For UNOISE3: time recorded for data compression (-fastx_uniques) and denoising (-unoise3). For AmpliCI: time recorded for error estimation and haplo-

type inference. Total time in parentheses.

NA, not Applicable; Length (nt), read length in nucleotides; No. strains, number of known strains in mock community; No. reads, total number of reads in

dataset; t, running time; mem, maximum resident set size.

(a)

(b)

Fig. 2. Mean (a) proportion of detected haplotypes 6 standard error and (b) ARI 6

standard error for six levels of simulated haplotype similarity. For each level, the x

coordinate is set to the mean haplotype similarity of the five simulated datasets.

Mean haplotype similarity (x axis) and ARI plotted on logit scale; ARI standard

error computed by the delta method.

5154 X.Peng and K.S.Dorman

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa648#supplementary-data
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btaa648#supplementary-data


is given in Supplementary Table S3. An abundance threshold like c
exists in most methods, except DADA2, where we mimic c 6¼ 2
results by post hoc removal of haplotypes with observed abundance
less than c. The AmpliCI default contamination diagnostic threshold
� ¼ 0:001=M was roughly trained on subsets of the Extreme dataset,
but it proved to be a liberal threshold. Without running AmpliCI
again, we removed haplotypes with diagnostic probability pmz >

10�40 after chimera removal and labeled the result AmpliCI-con.

3.1 Simulated datasets
We compare the ability of the denoisers and a well-known OTU-
based method UPARSE (Edgar, 2013) to recover true haplotypes
and read assignments on synthetic data, using abundance threshold
c¼2 and all other default parameters. Since Deblur does not have a
read assignment method, we use USEARCH v11.0 (Edgar, 2010) to
assign reads to Deblur haplotypes. For AmpliCI, we assign reads to
the cluster with maximum posterior assignment probability
[Supplementary Eq. (S6) in Supplementary Methods S7]. For assess-
ing accuracy of read assignments, we compute the Adjusted Rand
Index (ARI) (Hubert and Arabie, 1985).

Figure 2 and Supplementary Table S1 show method performance
on five replicate datasets under six simulation conditions, where we
vary haplotype similarity. For datasets with 0.80 mean haplotype
similarity, all denoising algorithms perform well. As mean haplotype

similarity increases, performance declines for all algorithms, but
AmpliCI achieves the highest ARI and sensitivity. UNOISE3 is the
only denoiser to identify false positives, a total nine in seven of 30
simulated datasets. Additional analysis of the simulated datasets is
given in Supplementary Material S8.

3.2 Mock datasets
We analyze the forward reads of three mock datasets, real samples of
known microbial communities, widely used for microbiome method
benchmarking. To screen low abundance contaminants and handle
the peculiar noise patterns of real data, denoising algorithms take
extra steps to screen putative haplotypes. All algorithms, including
AmpliCI, overestimate the chance of read errors (see Section 4). In
addition, Deblur and UNOISE3 recommend setting a high abundance
threshold. While a high threshold can reduce the number of false pos-
itives, it also reduces method sensitivity. In contrast, DADA2 sets a
low threshold of two and tests the evidence in support of candidate
haplotypes, accepting new haplotypes only if its P-value falls below
10�40, a highly conservative choice. We compare both a low (2) and
high (10) abundance threshold on all methods, and present results for
default AmpliCI and conservative AmpliCI-con.

Table 2 shows the result when true positives (TP) only include
estimated haplotypes that are a 100% match to the provided mock
reference sequences. AmpliCI achieves more or equal true

Table 2. Results on three mock datasets

Data Method c Outcome

TP TN FP FN Sens. Prec. MCC

Extreme DADA2 2 26 40817 48 3 0.897 0.351 0.561

UNOISE3 2 27 40728 137 2 0.931 0.165 0.391

AmpliCI 2 26 40807 58 3 0.897 0.310 0.526

AmpliCI-con 2 26 40832 33 3 0.897 0.441 0.628

Deblur 2 21 40815 50 8 0.724 0.296 0.462

DADA2 10 21 40845 20 8 0.724 0.512 0.609

UNOISE3 10 21 40851 14 8 0.724 0.600 0.659

AmpliCI 10 21 40851 14 8 0.724 0.600 0.659

AmpliCI-con 10 21 40852 13 8 0.724 0.618 0.669

Deblur 10 16 40855 10 13 0.552 0.615 0.582

Even1 DADA2 2 23 16403 40 0 1.000 0.365 0.603

UNOISE3 2 22 16403 40 1 0.956 0.355 0.582

AmpliCI 2 23 16423 20 0 1.000 0.535 0.731

AmpliCI-con 2 23 16427 16 0 1.000 0.590 0.768

Deblur 2 21 16424 19 2 0.913 0.525 0.692

DADA2 10 23 16418 25 0 1.000 0.479 0.692

UNOISE3 10 22 16441 2 1 0.957 0.917 0.936

AmpliCI 10 23 16440 3 0 1.000 0.885 0.940

AmpliCI-con 10 23 16442 1 0 1.000 0.958 0.979

Deblur 10 21 16443 0 2 0.913 1.000 0.955

Stag1 DADA2 2 21 21887 73 2 0.913 0.223 0.451

UNOISE3 2 21 21888 72 2 0.913 0.226 0.453

AmpliCI 2 21 21887 73 2 0.913 0.223 0.451

AmpliCI-con 2 21 21906 54 2 0.913 0.280 0.505

Deblur 2 21 21900 60 2 0.913 0.259 0.486

DADA2 10 18 21931 29 5 0.783 0.383 0.547

UNOISE3 10 17 21956 4 6 0.739 0.810 0.773

AmpliCI 10 18 21936 24 5 0.783 0.429 0.579

AmpliCI-con 10 18 21950 10 5 0.783 0.643 0.709

Deblur 10 17 21958 2 6 0.739 0.895 0.813

Note: Results on three mock datasets, Extreme, Mock5 Even1 and Mock5 Stag1, treating reference sequences of the mock communities as the gold standard.

Abundance threshold c is set as 2 or 10. AmpliCI uses default contamination diagnostics (see Section 2); AmpliCI-con results are after applying a post hoc filter on

the contamination diagnostic threshold 10�40.

TP, true positives; TN, true negatives; FP, false positives; FN, false negatives; Sens., sensitivity; Prec., precision; MCC, Matthew’s correlation coefficient. Bold

numbers indicate best performance for the dataset/c combination.
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haplotypes with fewer false haplotypes. With low abundance thresh-
old two, AmpliCI-con performs better than all other methods on all
three datasets. AmpliCI-con, though designed for fine-scale reso-

lution, continues to perform best at high abundance threshold 10 on
the Extreme and Even1 datasets. Although Deblur achieves the best

performance on the Stag1 dataset with c¼10, AmpliCI and DADA2
find one more true haplotype and Deblur is the worst denoiser in
simulation. Additional interpretation of the comparison study on

mock datasets is given in Supplementary Material S9.

3.3 Real dataset
The real dataset we analyze consists of 157 samples collected from
42 British women in a longitudinal study of the vaginal microbiome

during and after pregnancy (MacIntyre et al., 2015). DADA2 esti-
mates the error profile from the first several samples until the cumu-

lative number of nucleotides > 108 and uses the same error profile
to infer haplotypes in each sample independently. Then chimera de-
tection is performed by its default algorithm. Deblur also infers hap-

lotypes from each sample independently with the per-sample
abundance threshold 2 (option –min-size) and cross-sample

abundance threshold 10 (option –min-reads). UNOISE3 pools all
samples together and infers haplotypes with abundance threshold 8
(option -minsize). AmpliCI estimates error profiles and infers hap-

lotypes independently per sample. Then chimeras are detected per
sample using default UCHIME3 de novo (Edgar, 2016a). We run
AmpliCI with abundance threshold c¼2, but post hoc filter with

summed scaled abundance threshold 8 or 10 across all samples to
better compare with UNOISE3 and Deblur.

Without a known reference, we evaluate the results by aligning
estimated haplotypes against the Silva v132 rRNA gene database (

Quast, 2012 ). Figure 3 shows that the total number of haplotypes
with a 100% match in the database are similar among the different
algorithms, although no two methods agree perfectly. Haplotypes

without 100% matches in the reference database, which could be
true biological variants or false positives generated during PCR and

sequencing, are not inferred with as much agreement among the
algorithms. Overall, AmpliCI is closest in predictions to Deblur,
UNOISE3, then DADA2, although it should be noted that because

more potential haplotypes are screened under the default settings for
DADA2, UNOISE3, then Deblur, there are also more opportunities
to disagree in precisely the methods we find to most disagree.

3.4 Run time and memory analysis
Table 1 displays the time and memory usage of the four algorithms
on the three mock and one real datasets. The GNU time command
provides user time and maximum memory usage on a server with an
Intel(R) Xeon(R) CPU E3-1241 v3 @ 3.50 GHz. For algorithms
within a pipeline, we report only the timing and memory usage for
the major steps of denoising. For UNOISE3 and Deblur, statistics
were computed with chimera detection via UCHIME de novo
embedded in the denoising step, but chimera detection is a relatively
insignificant contributor to resource usage.

For datasets containing a single sample (the three mock data-
sets), the time and memory usage of AmpliCI increases in the num-
ber of reads and haplotypes. AmpliCI resource usage is far higher on
Even1 and Stag1 than Extreme because though there are fewer
reads, there are many small clusters generated by chimeras. Though
AmpliCI is not the most efficient algorithm, it uses less resources
than Deblur and DADA2 on Extreme, and roughly the same resour-
ces on Even1 and Stag1. On the multisample vaginal microbiome,
Deblur has the highest run time and DADA2 has the highest mem-
ory usage. UNOISE3 triumphs in computational and memory effi-
ciency, beating all other methods.

4 Discussion

We propose AmpliCI, a likelihood-based denoiser of Illumina ampli-
con sequence data under the mixture model framework. We have
shown that AmpliCI is better than three other popular denoising
methods on most performance metrics, and retains acceptable com-
putation time and memory usage. Here, we discuss the advantages
of AmpliCI as well as the persistent challenges (minor limitations
discussed in Supplementary Material S11) that remain for all ampli-
con sequence denoising methods.

4.1 Likelihood-based inference with quality score
It is logical to formulate denoising as a clustering problem (Callahan
et al., 2016; Edgar, 2016b), where all members of a cluster are reads
of the same true sequence. If sequencing errors are a homogeneous
disturbance of the true sequences, then the high sequencing depth
supports using a homogeneous finite mixture model (McLachlan
and Peel, 2000). Quince et al. (2009) recognized this possibility
when proposing a finite mixture model for the fluorescent signals
emitted by amplicon sequences processed on the 454 sequencer, but
AmpliCI appears to be the first finite mixture model proposed for
denoising Illumina amplicon data. AmpliCI shares several similar-
ities with DADA2 (Callahan et al., 2016), which also models errors
as homogeneous disturbances on unknown true sequences, but
DADA2 is not formulated as a mixture model, and the two methods
take different strategies to overcome the computational challenges.

Model-based clustering is plagued by the dual computational
challenges of choosing the number of clusters and global optimiza-
tion, especially challenging when sample sizes number in the mil-
lions and clusters in the hundreds to thousands. AmpliCI adopts an
approximate maximization strategy, selecting likely true haplotypes
in a greedy fashion. DADA2 does not formulate a likelihood, instead
using its error model to devise a divisive clustering algorithm based
on diagnostic tests. AmpliCI and DADA2 use nearly identical error
models, but DADA2 compresses data at the unique sequence level,
discarding the quality score information of individual reads and
treating unique sequences as conditionally independent observations
within clusters. In AmpliCI and as appropriate for the mixture
model formulation, the reads are treated as conditionally independ-
ent observations within clusters.

Using an estimated error model that considers quality scores
should increase the resolution of both AmpliCI and DADA2 over
other methods, such as UNOISE3 and Deblur, that use fixed thresh-
olds and ignore quality scores. Further, AmpliCI should achieve bet-
ter resolution than DADA2 by not compressing the reads into
unique sequences and by capitalizing on the likelihood principle.
The higher resolution of AmpliCI is confirmed in our simulation
study, where it clearly and reproducibly detects more correct true

(a) (b)

(c)

Fig. 3. Venn diagrams of haplotypes discovered in the vaginal microbiome dataset

(MacIntyre et al., 2015) by AmpliCI, AmpliCI-con, DADA2, UNOISE3 and Deblur.

Haplotypes with a 100% match to the Silva v132 rRNA gene database (Quast

et al., 2012) are shaded. AmpliCI and AmpliCI-con compared to (a) DADA2 with

abundance threshold c¼ 2, (b) UNOISE3 with c¼ 2 and cross-sample abundance

threshold c� ¼ 8 and (c) Deblur with c¼ 2 and cross-sample abundance threshold

c� ¼ 10
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sequences than any other method, most notably when there is little
separation between the true sequences.

4.2 Error models and their limitations
Quality scores cannot be simply interpreted as Phred scores (Ewing
and Green, 1998). In real data, sample quality, library preparation

methods, PCR conditions and sequencing platforms generate data-
sets that disrupt information communicated by Phred quality scores
in sample-specific ways (Bender et al., 2018; Ma et al., 2019;

Schirmer et al., 2016). Quality information may be further invali-
dated by predenoising filters, which clip low-quality tails of reads

and discard short reads. Such filtering is recommended (Caporaso
et al., 2011) because read quality and length can have large impact
on the downstream analysis, especially diversity estimation

(Bokulich, 2013) . Simply converting quality scores to Phred error
probabilities can indeed be disastrous: AmpliCI is overrun with

haplotype predictions (858 compared to 29 when using estimated
errors with abundance threshold c¼15 on the Extreme dataset).

The error models inside Deblur and UNOISE3 are fixed across
samples, ignore the differences in substitution miscalls (transitions A
$ G and T$ C are usually more common than transversions), and

ignore quality scores all together (Ma et al., 2019; Schirmer et al.,
2016; (Tikhonov, 2015) ). While DADA2 and AmpliCI estimate
and use quality score-based error models, they do not account for all

the patterns in sequencing errors. Systematic sequencing errors have
been identified in Illumina data, including high error rates near cer-

tain three nucleotide motifs and inverted repeats (Nakamura et al.,
2011; Schirmer et al., 2016). Even worse, real data are replete with
additional false signals (contaminants, propagated PCR errors) that

mimic true haplotypes.
Methods can handle this complexity by (1) modeling it, (2)

assuming error rates high enough to bury it in the noise, (3) discard-
ing low abundance variants, or (4) making conservative decisions.

We are aware of no method that has successfully done (1), and all
remaining strategies sacrifice resolving power. UNOISE3 and
Deblur adopt strategies (2) and (3) by setting conservative error

rates and recommending high abundance thresholds. Less obviously,
but to lesser degree, both AmpliCI and DADA2 also adopt (2) and

(3). Neither considers singletons as possible haplotypes by default,
and because they use an approximate strategy to estimate error rates
before all haplotypes have been determined, the error rates are over-

estimated. A better strategy is to invent better error models (1),
while applying conservative decisions (4) to overcome remaining
deficiencies. A careful comparison of method performance on all

three mock datasets, shows that AmpliCI has achieved a better
trade-off in decision errors by more accurately modeling the per-

read sequencing process. Higher-resolution denoisers will be
achieved through better understanding and models for the as yet
untackled noise in amplicon sequencing.
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