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Abstract

Recent Genome-Wide Association Studies (GWAS) have revealed numerous Crohn’s disease susceptibility genes and a key
challenge now is in understanding how risk polymorphisms in associated genes might contribute to development of this
disease. For a gene to contribute to disease phenotype, its risk variant will likely adversely communicate with a variety of
other gene products to result in dysregulation of common signaling pathways. A vital challenge is to elucidate pathways of
potentially greatest influence on pathological behaviour, in a manner recognizing how multiple relevant genes may yield
integrative effect. In this work we apply mathematical analysis of networks involving the list of recently described Crohn’s
susceptibility genes, to prioritise pathways in relation to their potential development of this disease. Prioritisation was
performed by applying a text mining and a diffusion based method (GRAIL, GPEC). Prospective biological significance of the
resulting prioritised list of proteins is highlighted by changes in their gene expression levels in Crohn’s patients intestinal
tissue in comparison with healthy donors.
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Introduction

Biological functions are rarely a consequence of the activity of a

single molecule and arise from the interactions between multiple

components of biological systems. Since the completion of the

human genome project in 2003, high-throughput techniques have

generated a large amount of molecular-interaction data in the

human cells. The need to analyse the role of associated interaction

networks at a system-wide level, rather than focusing on single

interactions, led to a change in perspective in the investigation of

biological systems and to the development of Systems Biology

approaches [1]. During the past decade, significant contributions

have been made to curate databases of validated network maps at

different levels (protein-interaction, regulatory, metabolic and

RNA networks), these often comprising thousands of nodes and

links [2], [3]. Investigation of networks of such dimension cannot

be easily performed by intuitive reasoning and quantitative

approaches are needed to explore their emerging properties more

objectively. Recent progresses in network theory have encouraged

the application of network based approaches in the study of

molecular interaction networks. Although incompleteness in

knowledge should suggest caution as these networks are a proxy

of the actual interactome, integration with independent functional

data may support the biological viability of their topology [4].

When a network-based viewpoint is applied to disease, the

disease phenotype is associated with global perturbed networks

instead of single failing components [5], [6]. Starting from the

underlying assumption that a disease is rarely a consequence of

abnormality in single genes, but depends on the indirect

perturbation of an interaction network, it should be clarified

whether genes and proteins associated with disease are placed

randomly in the interactome, or there are correlations between

their function and their network topology [7]. Understanding how

defects in such networks influence the progression of disease may

provide useful information when selecting targets for drug

development.

Genetic studies have revealed numerous susceptibility gene

variants in common diseases such as Crohn’s, but the function of

individual gene variants in disease induction remains unclear.

Here we use a list of Crohn’s susceptibility genes to prioritise genes

to serve as a seed to define a putative Crohn’s disease network. We

then use graph theory to probe hypotheses about its topological

structure and to analyse how proteins implicated as being linked to

Crohn’s disease by this network may relate with their neighbours

in the rest of the proteome. Biological relevance of the prioritised

list and of its associated interactions is supported by microarray

and functional classification data.

This article is organised as follows. First, we prioritise a list of

candidate disease genes obtained from literature GWAS reports by

applying both a diffusion-based and a text-mining approach. The

relevance of our prioritised list is next examined by comparison

with differentially expressed genes in biopsies from patients with
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Crohn’s disease. We then build a proteome interaction network of

the associated prioritised proteins and we investigate its topolog-

ical, functional features and relationships with other proteins in the

proteome. Correlation between topological localisation and

functional role supports the biological relevance of the datasets

interactions. The network associated with disease shows enrich-

ment in hubs nearest neighbours and topological segregation of

the prioritised list. In the light of our observations, we conclude by

highlighting proteins in the network associated with disease with

noteworthy topological and functional properties that may

warrant further experimental investigation.

Results and Discussion

In what follows we prioritise a list of candidate genes associated

with Crohn’s disease and test its enrichment among the set of

differentially expressed genes in patients affected by Crohn’s

disease. We then build a molecular interaction network from this

list and test correlations between the network topology and its

functional organisation. In each section we first provide a brief

review of the relevant methods, we then describe in more detail

our particular application. The technical details of the methods

applied are described either in the section Methods or in

(Information S1).

Prioritisation of genes associated with Crohn’s disease
Genome-Wide Association Studies have identified a large

number of candidate disease genes for Crohn’s but the role of

each in disease pathogenesis is unclear [8]. In order to reduce the

number of candidate genes and to identify the disease module,

several tools from bioinformatics and biomathematics have been

proposed. Such methods rely upon different assumptions and can

be classified in three main categories as pairwise, neighbourhood

and diffusion based methods [9]. Pairwise methods assume that

proteins associated with disease tend to directly interact with each

other. In this category, linkage methods select genes located in the

linkage interval of genes whose protein product is a first neighbour

of proteins associated with disease. Other pairwise methods

analyse relatedness between two genes by applying text mining

and assessing a score to the association depending on the degree of

similarity in the text describing them within article abstracts [10].

Neighbourhood based methods rely upon the hypothesis that

cellular components associated with the same disease tend to

cluster together [8].

In diffusion based methods, random walkers are released from a

set of known disease genes and diffuse along the links of the

proteome; in such a way, nodes that are more connected to disease

proteins are more frequently visited and prioritised [11]. All of

these methods depend on the topological structure of the

interactome; but, while linkage and neighbourhood based methods

rely upon a particular topological metric, such as pairwise or

nearest interactions, diffusion based methods adopt the full

information of the network topology. Diffusion-based methods

have been recently applied and shown to achieve the state-of-the-

art predictive performance [12], [13], [14], [15]; in addition,

combining predictions made by different methods in a ’consensus

method’ yielded to Pareto optimal performance in the precision-

recall objectives [15].

Accounting for the results of this comparative analysis, we

selected 171 SNPs and 354 genes associated with Crohn’s disease

from the Catalog of Published Genome-Wide Association Studies

[16] and in a recent published GWAS by Jostins et al. [17] and we

performed prioritisation of these genes using both a diffusion based

method and a pairwise text mining algorithm (see Methods

section). We finally selected a consensus list from the results of the

prioritisation algorithms, together with the training set of known

genes, to obtain a sub-list of 99 genes. From this list we built a sub-

network associated with Crohn’s disease by selecting all interac-

tions containing at least one protein identified by prioritisation; in

such a way, we also considered indirect interactions among

proteins associated with disease, as suggested by Rossin et al. [8].

This sub-network is shown in Figure 1. The list of the prioritised

proteins and the interactions in the network associated with disease

are reported in an Excel workbook in the (Workbook S1). Support

for involvement of this protein network as being implicated in

Crohn’s disease related inflammation was then obtained by

comparing our list with genes whose expression has been identified

as being differentially regulated in intestinal tissue from patients

with Crohn’s. We used publicly available microarray data from a

study whose aim was to investigate differential intestinal gene

expression in patients with Crohn’s disease (CD) and controls (see

Methods section). As a result of this selection we found that 4926
genes of the 41616 measured in the microarray were differentially

expressed of which 28 were part of the 99 prioritised genes. A

Fisher’s exact test shows enrichment in differentially expressed

genes among the prioritised ones with p-value equal to 7:55:10{6,

thus supporting the association of the prioritised list to Crohn’s

disease. Interestingly not all the genes of the training set, although

associated with Crohn’s disease, are differentially expressed; this

suggesting that differential expression should be combined with

other criteria, such as functional and topological, to support

selection of candidate proteins as associated with disease. The list

of Entrez IDs of the prioritised list together with their p-values is

reported in Workbook S1.

Topological characterisation of the network associated
with Crohn’s disease

We analysed the global and local topological organisation of the

sub-network that we have built in the previous section. Charac-

teristic graph-theoretical distributions and metrics show signatures

of hierarchical modularity and preferential attachment; these

properties resemble the ones of other biological networks, this

supporting the biological viability of the network that we

associated with Crohn’s disease (see Information S1, Figure S1

and Table S1). The density of this network is approximately three

times higher than in the NCBI proteome network suggesting a

higher tendency of the disease proteins to interact among

themselves than among proteins that are not associated with

disease.

Since disease is often caused by perturbation in the communi-

cation between bio-molecules [18], [19], investigating how such

changes at the local level can affect the network structure may

provide insight into its robustness and highlight which components

are critical to maintain a correct functioning. Analysis of network

robustness by node removal (failure-attack tolerance) shows

robustness to removal of nodes with low degree and susceptibility

to deletion of highly connected nodes; this reflects the key role

played by hub proteins in maintaining the connectivity of this

biological network. A detailed description of this analysis is

reported in the Information S1 (see also Figures S2 and S3).

We then investigated if proteome hubs are over-represented in

the network associated with Crohn’s and we analysed if the

number of hubs in the list of prioritised proteins is over-

represented when compared to the total number of hubs in the

NCBI proteome. The p-value obtained by a hypergeometric

distribution does not show a significant over-representation (see

Table 1). We then considered the list of proteins in the network

associated with Crohn’s, including the first neighbours of the

Crohn’s Disease Protein Interaction Network
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prioritised list, and analysed their over-representation in a similar

manner; in this case, hub over-representation is significant,

suggesting Crohn’s disease susceptibility genes tend to directly

interact with proteome hubs.

The global features of preferential attachment and hierarchical

modularity suggest the presence of sub-graphs characterising the

network at a local level. We now address the problem of

identifying such topological modules and analysing their potential

correlation with proteins associated with disease. More specifically,

we searched for over-represented subgraphs (motifs) when

compared to randomised versions of the same network. Algo-

rithms for the search of network motifs explore the full

combinatorial set of graphs of a given dimension. Since the

computational time grows exponentially with graph dimension,

small motifs comprising three or four nodes are usually analysed

[20]. Several tools have been developed to identify network motifs,

such as Mfinder [21], MAVisto [22], FANMOD [23]. A well

established tool developed for network motif search is Mfinder

[21]. Beginning with a selected edge, Mfinder searches for all the

subgraphs of a given dimension comprising it. All the sets of visited

nodes are then stored in a hash table, this reducing the searching

time as the searching tree is stopped when a set of nodes has been

already visited. Motif over-representation is then evaluated by

comparing the frequency of motifs in the real network with a set of

randomly generated networks. In the default mode random

networks preserve the degree distribution of the nodes and are

generated using a switching method, namely edges are switched

while keeping the number of incoming edges, outgoing edges and

mutual edges of each node of the input network. We investigated

the presence of motifs and anti-motifs in the network associated

with disease by applying Mfinder with the default conditions.

Because of the computational time required, we analysed motifs of

three or four nodes only and evaluated their over-representation

over 1000 random networks. According to the default Z-score

threshold (Z-score = 2), the network associated with Crohn’s

contains 2 motifs (with motif ids id78 and id4382) and 5 anti-

motifs (with motif ids id238, id4698, id4958, id13278, id31710),

(Figure 1b). Interestingly, cliques composed of four nodes are

under-represented, suggesting that such a high level of connectivity

is not likely in realistic biological networks. We then analysed

which prioritised proteins were more frequently associated with

motifs and we found, in order of frequency, PRDM1, ATF4 and

FASLG. Notwithstanding the degree distribution of the network

associated with Crohn’s was preserved when generating random

networks, two of these proteins are highly connected, FASLG

being the fourth most connected protein in the prioritised list and

ATF4 the thirteenth. ATF4 is also one of the known proteins

associated with Crohn’s disease, see Table S2.

Figure 1. Network associated with Crohn’s disease and motifs. (a) Representation of the protein interaction network obtained by
prioritisation. The network presents 28 connected components, each one being highlighted using a different colour. The giant component, namely
the connected subgraph that contains the majority of the entire graph’s nodes, is shown in red. (b) Sub-graphs frequency and z-scores in the network
associated with Crohn’s. Considering the threshold DZ-scoreD w2, subgraphs id78 and id4382 are over-represented (motifs), whereas subgraphs id238,
id4698, id4958, id13278, id31710 are under-represented (anti-motifs).
doi:10.1371/journal.pone.0108624.g001

Table 1. Hubs distribution.

Proteins list N. proteins N. Hubs p-value

NCBI Human PPI network proteins 10486 2685 {

Prioritised proteins 99 31 1:18:10{1

Disease network proteins 807 563 v2:20:10{16

Table summarising the number of hub proteins in the NCBI proteome, in the list of prioritised proteins and in the same list together with their first neighbours (Disease
network proteins). Over-representation of hubs is statistically significant when considering first neighbours of the prioritised list (Hypergeometric distribution p-values).
doi:10.1371/journal.pone.0108624.t001
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Functional classification and topological segregation of
enriched categories

Based on the assumption that proteins with similar functional

properties interact with one another, protein interaction maps

have been frequently used to generate hypotheses on the

functional role of proteins of unknown functional classification

[24], [25]. A systematic graph-theoretical study built from this

premise was proposed in [4] on four datasets that approximate the

protein interaction network of yeast Saccharomyces cerevisiae. In

order to determine how well such datasets characterise the protein

interaction network of Saccharomyces cerevisiae, the authors

investigated the relationship between the topology of the protein

interaction maps and the known functional properties of the

protein. In all four datasets strong correlations were found

between the network’s structure and the functional role and sub-

cellular localisation of its protein constituents. By measuring the

tendency of proteins to interact with other proteins of the same

functional or localisation class they concluded that most functional

classes appear as relatively segregated sub-networks of the full

protein interaction network.

In the spirit of this analysis, we examined whether the protein

network that we associated with Crohn’s disease leads to a similar

correlation with the functional properties of the prioritised

proteins. We performed a functional classification by applying

the PANTHER (Protein ANalysis THrough Evolutionary Rela-

tionships) Classification System [26]. Here proteins have been

functionally classified according to molecular function (the

function of the protein by itself or with directly interacting

proteins at a biochemical level, e.g. a protein kinase); biological

process (the function of the protein in the context of a larger

network of proteins that interact to accomplish a process at the

level of the cell or organism, e.g. mitosis) or pathway (similar to

biological process, but a pathway also explicitly specifies the

relationships between the interacting molecules). We asked

whether enriched categories presented a correlation with network

topology being topologically segregated. Categories comprising

less than 10 proteins were not considered in this analysis as they

are too few to perform a statistical characterisation. Topological

segregation was evaluated by calculating the segregation function

�mml per functional class l in the enriched categories (see Methods

section). This function represents how many times it is more likely

that proteins in a particular functional category interact with

neighbours belonging to the same category than with proteins

randomly placed in the network. The evaluation of the topological

segregation is reported in Figure 2. Particularly interconnected

classes are the ones related to inflammation (’Inflammation

mediated by chemokine and cytokine signalling pathway’) and to

the immune system (’defense/immunity protein’). Correlation

between topology and functional organisation further supports the

biological relevance of the network topology. Evaluation of the

topological segregation of the prioritised list by Eq. (1) in the

Methods section returned a value of 3:21 showing tendency of

these proteins to aggregate.

Conclusions

In this work we have prioritised a list of genes associated with

Crohn’s disease and developed a graph-theoretical analysis of the

molecular interaction network resulting from this list. Prioritisation

was performed by applying both a diffusion based method (GPEC)

[11] and a pairwise text mining algorithm (GRAIL: Gene

Relationships Across Implicated Loci) [10] with available software.

The relevance of the prioritised list was supported by enrichment

in differentially expressed genes in microarray data between

biopsies taken from patients with Crohn’s disease and healthy

controls. By analysing the network associated with Crohn’s from a

graph-theoretical perspective, we have shown that it presents

hierarchical modularity and density higher than in the NCBI

proteome network, this suggesting a higher tendency of the disease

proteins to interact among themselves than among proteins that

are not associated with disease. Finally we have analysed the

relationships among the topology of this network and the

functional properties of its proteins. To test if prioritised proteins

associated with the same functional class are more likely to interact

among each other than with other proteins we have calculated

their segregation function and we have highlighted a correlation

between functional role and their topological location, this being

also in agreement with the global modular organisation of the

disease network. A small number of the prioritised proteins

demonstrated both noteworthy functional and topological prop-

erties which are discussed below. STAT3 and JAK2 are present in

11 and 15 over-represented and topologically segregated func-

tional categories respectively; they interact in the same signaling

path ’JAK-STAT cascade’, they were both differentially expressed

in Crohn’s tissue and they are highly interconnected with hubs as

first neighbours, besides being highly interconnected proteins

themselves in the network associated with disease, see Table 2.

Vitamin D receptor (VDR) represents a strong positional

candidate susceptibility gene for inflammatory bowel disease

(IBD) [27] and is part of the training set (see Table S2); it is

highly interconnected in the network associated with disease and

also highly interconnected with hubs as a first neighbour (see

Table 2); in addition, it is present in 6 over-represented and

topologically segregated functional categories. PRDM1 is the

protein which is most frequently present in network motifs and the

adjusted p-value associated to its differential expression, although

not being under the arbitrary statistical threshold of 0:05, is still

significant being 0:08; it is also highly interconnected with hubs as

a first neighbour (see Table 2). FASLG is present in 22 over-

represented and topologically segregated functional categories, it is

one of the proteins that occur most frequently in network motifs, it

is also highly interconnected in the network associated with

Crohn’s and highly interconnected with hubs as a first neighbour

(see Table 2). ATF4 is a protein of the training set and is part of

the unfolded protein response (UPR) pathway which has been

recently emerged in IBD pathophysiology [28], [29], [30]; it is one

of the proteins most frequently associated with network motifs and

it is highly interconnected with hubs as a first neighbour (see

Table 2). A table listing the over-represented functional categories

of the proteins just mentioned is reported in Table S3. Selected

proteins combining functional and topological information may

constitute candidates to investigate novel interactions between

proteins directly associated to a causal mutation and proteins

whose perturbation may be indirectly relevant in affecting the

disease phenotype.

Figure 2. Topological segregation. Series of plots representing the segregation functions of over-represented categories in the network
associated with Crohn’s sorted from the most to the least segregated category. (a) categories within biological processes; (b) categories within
protein classes; (c) categories within molecular functions and pathways.
doi:10.1371/journal.pone.0108624.g002
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Methods

Prioritisation algorithms
171 SNPs and 354 genes associated with Crohn’s disease were

downloaded from the Catalog of Published Genome-Wide

Association Studies [16] and from a recent published GWAS by

Jostins et al. [17]. Genes and SNPs association is given by the locus

list defined by the NHGRI GWAS catalogue [16], whose

annotation was applied by Jostins et al., and that reports the

strongest SNP and genes reported by the author(s) of the

publication per locus window. Prioritisation was derived by the

consensus of two algorithms, namely a diffusion based method

(GPEC) [11] and a pairwise text mining algorithm (GRAIL: Gene

Relationships Across Implicated Loci) [10] using as input SNPs rs

numbers and Entrez IDs respectively with available software.

GRAIL has two input sets of disease regions in the form of

genomic regions around associated SNPs: a collection of seed

regions and a collection of query regions. Genes in query regions

are evaluated for relationships to genes in seed regions, and query

regions are then assigned a significance score. When examining a

set of regions for relationships between implicated genes, as in this

case, the query regions and the seed regions are identical. GRAIL

ranks genes by text similarity calculating gene relatedness as the

degree of similarity in the text describing them within PubMed

article abstracts; the algorithm then assigns a p-value to each gene

by evaluating the number of other disease regions with related

genes. By querying all human genes within the database, GRAIL

associated 156 of the 171 SNPs to 174 genes with a p-value less

than 0.1. We then applied GPEC on the list of genes reported

from the collection of GWAS as follows. Prioritisation with GPEC

was performed through a random walk with restart algorithm

along a gene or protein relationship network. Nodes in the

network were represented by Entrez Gene IDs, UniProt ACs, or

official symbols for genes and proteins. A set of training genes,

whose role in disease is verified in the literature, was specified

together with a set of candidate genes which was defined as the list

of genes associated with Crohn’s disease from GWAS. The list of

the candidate genes is reported in Workbook S1, whereas the list

of training genes, together with a list of literature references, is

listed in Table S2. A human protein-protein interaction network

was downloaded from the NCBI Entrez Gene FTP site (ftp://ftp.

ncbi.nlm.nih.gov/gene/GeneRIF/interactions.gz) which inte-

grates three databases: Biomolecular Interaction Network Data-

base [31], Biological General Repository for Interaction Datasets

[32], Human Protein Reference database [33]. As a result a

network of 10,486 genes and 50,791 interactions was built and

employed to define the graph on which the random walk was

defined. Random walkers were then initialised in the set of training

genes and allowed to diffuse along the protein interaction network

until they reached a steady state, which is numerically approxi-

mated by repeating the iterations until the difference between the

vector of probabilities at time t and at time tz1, where the i-th
element represents the probability of the walker being at node i at

a fixed time, is smaller than a threshold value (whose default value

is set to 10{6). As a result of the GPEC algorithm run a set of 212

genes were identified at steady state. We finally selected a

consensus list from the results of the prioritisation algorithms,

together with the training set of known genes, to obtain a sub-list

of 99 genes.

Microarray dataset
The microarray dataset analysed is available at Gene Expres-

sion Omnibus (http://www.ncbi.nlm.nih.gov/geo/ accession num-

ber GSE20881). 172 biopsies from CD and control subjects were

studied. Endoscopic biopsies were taken at ileocolonoscopy from

four specific anatomical locations, these being terminal ileum,

sigmoid colon, ascending colon, descending colon [34]. The

groups of CD and healthy samples were compared in order to

identify genes that are differentially expressed across experimental

conditions using the interactive web tool GEO2R (http://www.

ncbi.nlm.nih.gov/geo/geo2r). GEO2R performs comparisons on

original submitter-supplied processed data tables using the

GEOquery and limma R packages from the Bioconductor project

(http://www.bioconductor.org). The Benjamini and Hochberg

false discovery rate method was selected by default to adjust p-

values for multiple testing. We used these values as the primary

statistics by which to interpret results, selecting as differentially

expressed genes those whose p-value was less than 0:05.

Categories enrichment
Enrichment was performed by applying a statistical over-

representation test to the prioritised proteins using as a reference

list the set of all genes in the genome classified in the PANTHER

database. Each list is compared to the reference list using the

binomial test [35] for each molecular function, biological process,

or pathway term in PANTHER; Bonferroni correction is applied

for multiple testing. PANTHER mapped 97 of the 99 disease

proteins into different categories and assigned a p-value to each

category. Categories with a p-value minor than 0:01 were

considered over-represented; their chart representations are

reported in Figures S4–S7 and their lists in Workbook S1.

Table 2. Selected proteins.

Protein name N. neighbours N. hub neighbours p-value

STAT3 112 99 v2:2:10{16

JAK2 91 74 v2:2:10{16

VDR 53 50 v2:2:10{16

PRDM1 13 10 1:5:10{4

FASLG 41 38 v2:2:10{16

ATF4 25 18 1:5:10{6

Table summarising the number of hub first neighbours in the selected proteins listed in section ’Results and discussion’. P-values represent the probability that the
number of neighbour hubs is due to random choice and are calculated using a Fisher’s exact test which compares the total number of hubs in the NCBI proteome with
the number of hubs in the neighbours of the selected proteins. Of the 10486 proteins listed in the NCBI protein interaction network 2685 have a number of first
neighbours which is strictly higher than the average; connectivity with these hubs is over-represented for the 6 proteins presented.
doi:10.1371/journal.pone.0108624.t002
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Classification by cellular component returned a number of

classified proteins that was too low for a statistical analysis, for

completeness these are reported in Workbook S1.

Evaluation of the topological segregation
The presence of topological segregation was evaluated by

calculating its segregation function for each enriched category; this

is defined as follows. Given a protein i belonging to the functional

class l the segregation function is given by

ml
i (d) : ~

Ml
i (d)

Mi(d)

where Ml
i (d) denotes the number of proteins at distance d from

protein i and belonging to the functional class l and Mi(d) denotes

the total number of proteins at distance d from protein i. We then

denote by ml(d) the average of all ml
i (d) belonging to the same

class l:

ml(d) : ~Sml
i (d)T

If proteins of a functional class l were randomly distributed, then

(see [4])

ml(d)~ml
rand : ~Nl=N,

for any d , where Nl denotes the total number of proteins

belonging to the functional class l and N is the total number of

proteins in the protein network. Defining

�mml : ~Sml(d)=ml
randT, ð1Þ

where the average is taken over the distance, a random

distribution would return �mml~1.

Supporting Information

Figure S1 Topological distributions. Characteristic graph-

theoretical distributions of the NCBI human protein-protein

interaction network and of the protein interaction network

obtained by prioritisation. (a), (b) average clustering coefficient

distributions; (c), (d) topological coefficient distributions. A formal

definition of these distributions is reported in the Appendix.

(TIFF)

Figure S2 Failure-attack tolerance to node removal.
Series of plots representing how the number of interactions and

the number of secondary extinctions vary when removing nodes

randomly (black circles), from the highest to the lowest degree (red

circles) and from the lowest to the highest degree (green circles). (a)

Number of interactions in the network associated with Crohn’s

against percentage of removed nodes; (b) Number of secondary

extinctions in the network associated with Crohn’s against

percentage of removed nodes; (c) Number of interactions in a

random network against percentage of removed nodes; (d)

Number of secondary extinctions in a random network against

percentage of removed nodes.

(TIFF)

Figure S3 Failure-attack tolerance to SNP removal. Plots

representing how the number of interactions varies when

removing nodes associated with the SNPs locus windows (blue)

and when removing the same number of nodes from the highest to

the lowest degree (red circles) and from the lowest to the highest

degree (green circles).

(TIFF)

Figure S4 Enriched biological processes. Chart summa-

rising the biological precesses that are enriched in the prioritised

list of proteins. P-value threshold was set to 0:01.

(TIFF)

Figure S5 Enriched protein classes. Chart summarising the

protein classes that are enriched in the prioritised list of proteins.

P-value threshold was set to 0:01.

(TIFF)

Figure S6 Enriched molecular functions. Chart summa-

rising the molecular functions that are enriched in the prioritised

list of proteins. P-value threshold was set to 0:01.

(TIFF)

Figure S7 Enriched pathways. Chart summarising the

pathways that are enriched in the prioritised list of proteins. P-

value threshold was set to 0:01.

(TIFF)

Table S1 Topological metrics. Table summarising the

topological properties of the disease network and of 30 Erdos-

Rényi networks with the same number of nodes and edges. All the

listed properties in the disease network are significantly different

from random with p-values, calculated from z-scores, smaller than

2:10{4. m and s are respectively mean values and standard

deviations of the graph metrics.

(PDF)

Table S2 Training set. Table listing the Entrez IDs included

in the training set with their literature references.

(PDF)

Table S3 Segregated enriched categories. Table summa-

rising the segregated enriched categories containing STAT3,

JAK2, VDR, FASLG (see section ’Results and discussion’ in the

main text). ATF4 and PRDM1 are not reported not being present

in such categories.

(PDF)

Workbook S1 Network associated with Crohn’s disease
and enrichment tables. Workbook containing the candidate

SNPs and Entrez IDs (Sheet 1), the prioritised Entrez IDs (Sheet

2), the network associated with Crohn’s disease (Sheet 3), the

NCBI proteome network (Sheet 4), the interactions among the

proteins associated with the 28 prioritised and differentially

expressed genes (Sheet 5) and the enrichment tables in biological

processes (Sheet 6), protein classes (Sheet 7), molecular functions

(Sheet 8), pathways (Sheet 9), cellular components (Sheet 10).

(XLS)

Information S1 Supplementary Text and Supplementa-
ry Tables.

(PDF)
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