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Introduction
The roles of imaging in neuro-oncology primarily 
consist of diagnosis, prognosis, and treatment 
response assessment of central nervous system 
(CNS) tumors. Imaging assessment is currently 
an important surrogate endpoint for clinical tri-
als. With ongoing evaluation and discovery of 
novel treatment agents, including immunother-
apy agents, the ability to accurately assess pro-
gression and discern treatment-related changes is 
a central goal of neuro-oncologic imaging. In this 
review, we will summarize several clinically avail-
able imaging techniques as well as some novel 
methods under development, and provide an up-
to-date review of some clinical challenges in treat-
ment of glioblastomas where imaging can have 
important roles.

Update of advanced imaging techniques in 
neuro-oncology
Diffusion-weighted magnetic resonance imaging 
(DW-MRI) can characterize tissues based on the 
differences in the degree of free movement of pro-
tons. It has been shown that the cellularity or cell 
density of tumor is associated with apparent dif-
fusion coefficient (ADC), a calculated metric 
from DW-MRI.1 This property allows one to dis-
tinguish between both tumor subtypes and tumor 
grades (low versus high). More recently, high 
b-value DW-MRI, using a b-value >3000 s/mm2, 

has been demonstrated to be superior to standard 
DW-MRI in distinguishing tumor tissue from 
normal brain parenchyma.2 DW-MRI data can 
also be further quantified to generate imaging 
markers using techniques such as diffusion kurto-
sis imaging (DKI),3 histogram curve-fitting,4 and 
functional diffusion map (fDM).5 Restriction 
spectrum imaging (RSI) is an DW-MRI tech-
nique that can isolate the diffusion properties of 
tumor cells from extracellular process such as 
edema, potentially improving specificity of tumor 
detection and characterization.6 Diffusion tensor 
imaging (DTI) measures the directionality of pro-
ton motion as fractional anisotropy (FA), which is 
often altered in the presence of brain tumors.7 
Applications of these methods will be reviewed in 
the following sections.

Perfusion-weighted magnetic resonance imaging 
(PW-MRI) techniques assess blood flow to tissue 
by calculating parameters derived from the time–
intensity curve. Using the normal brain as refer-
ence, these techniques can detect pathological 
alterations of tissue vascularity that commonly 
occur among brain tumors due to increased vas-
cular permeability as well as intravascular blood 
volume because of tumor-induced angiogenesis. 
Dynamic susceptibility contrast magnetic reso-
nance imaging (DSC-MRI) quantifies first-pass 
bolus of paramagnetic contrast agent,8,9 and is 
currently the most common perfusion-weighted 
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imaging method in clinical use. Dynamic contrast 
enhanced magnetic resonance imaging (DCE-
MRI) can characterize vascular permeability 
within or surrounding tumors by using pharma-
cokinetic models to quantify the movement of 
contrast agents crossing the blood–brain bar-
rier.10–12 DCE-MRI has an advantage over DSC-
MRI due to its greater signal-to-noise ratio and 
spatial resolution, although imaging acquisition 
time is also longer. Perfusion imaging measure-
ments are highly dependent on imaging acquisi-
tion parameters and postprocessing techniques, 
including variations in postprocessing software 
tools.13 Clinical application of this technique 
therefore requires efforts in standardization, par-
ticularly in multicenter settings.

Magnetic resonance spectroscopy (MRS) meas-
ures concentrations of metabolites within tissues 
noninvasively.14 The single-voxel spectroscopy 
(SVS) method collects average MRS data within 
a target region of interest selected on standard 
MRI images. The multivoxel spectroscopy (MVS) 
method can obtain two- or three-dimensional 
maps of the region of interest to detect voxel-wise 
spatial changes of specific metabolites. Both SVS 
and MVS approaches have been evaluated in 
tumor diagnosis, grading, pre-therapy planning 
and post-therapy assessment. One major limita-
tion of the technique is its operator dependency, 
requiring experienced staff to manually select 
regions of interest during acquisition. It is also 
less sensitive to lesions with volume <1.5 cm3.

18F-fluorodeoxyglucose (18F-FDG) positron 
emission tomography (PET) is an important 
imaging tool in oncology.15 Similar to systemic 
cancers, brain tumors often exhibit increased 
metabolic activity resulting in elevated 18F-FDG 
uptake that can be detected by PET.16 The role of 
FDG-PET in brain tumor imaging, however, has 
been quite limited due to its relative lack of speci-
ficity and high background uptake by the normal 
brain. This limitation is particularly important for 
small lesions, as currently the resolution of PET 
imaging is limited to 5 mm. More recently, amino 
acid PET tracers including 11C-methionine, 
18F-fluorothymidine (FLT), 18F-fluoro-ethyl-
tyrosine (FET), and 18F-dihydroxyphenylalanine 
(DOPA) have been developed and evaluated for 
brain tumor imaging. This class of radiotracers is 
avidly taken up by malignant brain tumors that 
have higher cellular proliferation compared to the 
normal brain.17–20 The advantage of high lesion-
to-background uptake ratio makes amino acid 

PET suitable for imaging of brain tumors, includ-
ing applications such as predicting tumor grade, 
detecting recurrent tumor, and assessing treat-
ment response. Novel PET radiotracer (18)
F-fluoromisonidazole (18F-FMISO) has been 
evaluated as a marker of tissue hypoxia before and 
after treatment.21,22

With increasing computing speed and availability 
of pre-engineered algorithms, imaging data can 
be analyzed for voxel-level intensity variations to 
generate texture-type features that can be corre-
lated with tumor biology or treatment response. 
This approach can be applied to any imaging 
modality individually or simultaneously through 
spatial co-registration. As a result, imaging fea-
tures can be regarded as tumor phenotypes and 
this type of biomarker can be summarized by the 
term ‘radiomics’.23 Screening or combining a 
large number of radiomic features allows genera-
tion of models that can aid oncologic diagnosis, 
prognostication, and treatment response predic-
tion. This approach has been successful in a num-
ber of systemic cancers.24–28 The radiomic 
approach is particularly suitable for evaluating 
high-grade gliomas, a tumor type that is well 
known for its genetic heterogeneity and highly 
complex imaging phenotypes.

Preoperative evaluation of brain tumor: 
diagnosis and prognosis
Imaging plays a key role in the diagnosis of brain 
tumors and has become one routine management 
step during preoperative evaluation to aid deter-
mination of tumor grade and prognosis. It can 
also provide important spatial information on 
tumor tissue characteristics for some tumor sub-
types that can influence surgical and radiation 
treatment planning. In addition, imaging has 
shown increasing ability to detect tumor genetic 
profile that can further provide valuable prognos-
tic and predictive information for optimal treat-
ment planning. Finally, imaging findings are often 
combined with clinical data such as age, gender, 
and presenting symptoms and signs to increase 
the accuracy of diagnosis for various tumor types, 
as well as identifying non-tumor mimics.

One common clinical dilemma during preopera-
tive diagnosis of brain tumors is to distinguish 
between high-grade glioma and lymphoma. 
Standard management of CNS lymphoma is non-
surgical and biopsy is the preferred approach if 
lymphoma is suspected preoperatively, whereas 
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maximal surgical resection provides the best 
prognosis for high-grade glioma. On conventional 
imaging sequences, these tumor types commonly 
exhibit contrast enhancement and peritumoral 
edema, which make it challenging to differentiate. 
Lymphomas typically exhibit low ADC values 
due to high cellularity.29,30 However, this histo-
logical feature can be seen in high-grade gliomas 
and metastases.

Quantitatively, the FA and ADC values of pri-
mary cerebral lymphoma are significantly lower 
than those of glioblastoma.31,32 There is also evi-
dence that DSC-MRI and DCE-MRI parameters 
of the enhancing regions of the tumor can dis-
criminate between lymphomas and glioblastomas 
as well as between lymphomas and metastasis,32,33 
although a direct comparison of DCE-MRI and 
DW-MRI shows that ADC measurement is supe-
rior to DCE-MRI in differentiating the two tumor 
types.34 Detection of intratumoral microhemor-
rhage using the susceptibility-sensitive MRI tech-
nique also allows differentiation of glioblastoma 
and primary CNS lymphomas.35 Texture features 
generated from post-contrast images of lym-
phoma and glioblastoma also allow diagnostic 
differentiation.36

Analysis of nonenhancing signal abnormalities 
surrounding brain lesions can provide independ-
ent diagnostic information. ADC values meas-
ured within fluid-attenuated inversion recovery 
(FLAIR) abnormalities surrounding the enhanc-
ing regions can differentiate high-grade gliomas 
from solitary metastases.37,38 The difference could 
be due to the presence of tumor infiltration by 
glioma, resulting in higher cellularity than tumor-
induced edema.39 This is also supported by MRS 
and DSC-MRI measurements of the peritumoral 
region showing higher choline to N-acetylaspartic 
acid (NAA) ratio and greater vascularity among 
high-grade gliomas compared to brain metasta-
ses.32,40,41 Combined evaluation of both the 
enhancing and nonenhancing regions can poten-
tially enhance diagnostic accuracy.32,42 Beyond 
the margins of signal abnormalities outlined  
by conventional MRI, including T1- and 
T2-weighted imaging, MRS can identify regions 
of brain containing tumor and improve surgical 
resection and patient outcome.43,44

Molecular data of gliomas have demonstrated 
prognostic significance and have been incorpo-
rated into the 2016 World Health Organization 
(WHO) criteria.45 The imaging characteristics of 

brain tumors can be directly related to a specific 
set of tumor genomics, providing opportunities to 
noninvasively predict tumor genotype preopera-
tively. Radiomic models have been developed 
based on conventional MRI, DTI, and DSC-
MRI for predicting gene expression profiles of 
newly diagnosed glioblastomas.46 Specific genetic 
alterations of tumors can also be predicted by 
analysis of MRI data and predictive models have 
been generated for O6-methylguanine-DNA 
methyltransferase (MGMT) methylation sta-
tus,47,48 epidermal growth factor (EGFR) amplifi-
cation status,25,49 and EGFR receptor variant III 
status.50 Isocitrate dehydrogenase 1/2 (IDH) 
mutations are commonly present in low-grade 
gliomas as well as secondary glioblastomas. These 
mutant tumors accumulate 2-hydroxyglutarate 
(2HG), an onco-metabolite that can be detected 
by MRS (Figure 1).51 Measurement of 2HG con-
centration allows diagnosis of IDH mutant tumor 
preoperatively and also opportunities to monitor 
tumor activity during treatment.52,53 Static and 
dynamic FET-PET measurements have also been 
correlated with IDH and 1p/19q status.54 More 
recently, multimodal MRI imaging can be evalu-
ated by machine learning algorithms to generate 
predictive models for IDH status in gliomas.55–57

Prognosis and tumor-grading
A prognostic imaging marker can be identified by 
correlating the marker with histological grading of 
the tumor or with patients’ clinical outcomes. 
With its noninvasive nature, imaging prognostica-
tors can benefit patient care throughout the clini-
cal course of disease, most importantly at the time 
of diagnosis for surgical or radiation planning, as 
well as early after treatment to determine efficacy. 
In patients with glioblastomas, the most common 
malignant primary brain tumors, the median sur-
vival is 14–16 months with best available standard 
treatment.58 The ability to predict progression-
free or overall-survival outcomes for these patients 
can impact their treatment decision-making.

Compared to low-grade gliomas, high-grade  
gliomas demonstrate higher cellularity on 
DW-MRI,59,60 higher choline to NAA ratio on 
MRS,60–64 high relative blood volume on DSC-
MRI,60,65,66 and increased uptakes on FDG and 
FLT PET.67–69 Increased time activity curves of 
FET in tumor cells also have been shown to cor-
relate with high-grade tumor.70,71 Radiomic mod-
els predicting WHO grade of gliomas have been 
generated using conventional MRI sequences.72
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For glioblastomas, a number of imaging modali-
ties can provide prognostic information of overall 
survival, including DSC-MRI,73–75 DCE-MRI,76 
high b-value DW-MRI,77 and FET-PET. Early 
time to peak on time activity curves of FET-PET 
has been shown to correlate with worse outcome 
in patients with high-grade glioma.70 Furthermore, 
longer median time to peak was found to corre-
late with better outcomes with FET-PET in 
IDH1/2 mutant and1p/19q non co-deleted sub-
group of patients with glioma.71 Multiparametric 
volumetric analysis combining data from diffu-
sion and perfusion imaging of patients with glio-
blastomas can predict survival.78 A prospective 
evaluation of several imaging modalities includ-
ing DCE-MRI, DSC-MRI, and 18F-FMISO 
PET prior to standard chemoradiation treatment 
in newly diagnosed glioblastoma revealed poor 
prognosis associated with increased tumor perfu-
sion, vascular volume, vascular permeability, and 
hypoxia.22 Prognostic models based on radiomic 
features have been generated from preoperative 
imaging of newly diagnosed glioblastomas.46,79–86

Imaging can provide location-specific diagnostic 
or prognostic information within brain tumors to 
identify regions associated with higher tumor 
grade, high risk of recurrence, or poor survival. It 
can also have a valuable role during preoperative 
and preradiation planning, as well as intraopera-
tive imaging guidance. For example, choline to 
NAA ratio measured by MRS can localize the site 
within the tumor with the highest cellularity, 
which can be targeted for biopsy87,88 and gamma 
knife radiosurgery.89 Applying machine learning 

algorithms to multiparametric MRI data, several 
groups have developed voxel-based models to 
classify glioma into tissues of different tumor 
grades or tumor cell density, verified by subse-
quent histological analysis.90,91 MRI features 
extracted from tumor and peritumoral tissues 
have been used to build models that can identify 
high-risk sites for tumor recurrence.92 Dynamic 
FET-PET has been shown to help stratify prog-
nosis, with 18F-FET positive gliomas with 
decreasing time activity curves in kinetic analysis 
showing shorter progression-free survival and 
faster malignant transformation.93 Furthermore, 
FET-PET is useful in biopsy planning, with focal 
regions of high-grade FET kinetics or ‘hot spots’ 
on FET-PET correlating with increased diagnos-
tic yield for stereotactic core needle biopsy and 
also correlating with higher tumor grade.94

Prediction of patient outcome prior to 
antiangiogenic treatment
Two phase III clinical trials have revealed no sig-
nificant survival advantage when bevacizumab, 
an antibody targeting vascular endothelial factor 
(VEGF), was added to the standard treatment for 
patients with newly diagnosed glioblastoma.95,96 
There is a need to identify pretreatment predic-
tive markers that can accurately identify patients 
who may benefit from antiangiogenic treatment.

ADC histogram analysis of MRI imaging data of 
recurrent glioblastoma performed prior to anti-
VEGF therapy has been shown to predict response 
and survival based on several retrospective 

Figure 1. 2-hydroxyglutarate (2HG) magnetic resonance spectroscopy. (a) Axial FLAIR image of a 34-year-old 
woman with a right parietal lobe nonenhancing mass. (b) Single-voxel magnetic resonance performed at 3T, 
TE of 97 ms, demonstrates a peak at 2.3 ppm (dashed line), indicating presence of 2HG.
Image provided courtesy of Drs. Alexander Lin and Min Zhou.
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studies,97,98 as well as evaluation of imaging data 
from several phase II trials.99 Pretreatment DSC-
MRI has also been shown to correlate with survival 
outcome for patients with recurrent glioblastoma 
receiving bevacizumab.100,101 Radiomic evalua-
tions using multiparametric MRI data have identi-
fied pretreatment prognostic imaging features for 
overall survival.102–106

Response assessment and treatment 
monitoring

Pseudoprogression versus true progression in 
glioblastomas
Following standard-of-care upfront treatment 
including maximal safe resection, radiation with 
adjuvant temozolomide, 20–30% of patients with 
glioblastoma develop increased contrast enhance-
ment within 3 months from end of radiation 
treatment that resolves without changes in treat-
ment.107 If patients with pseudoprogression were 
treated the same way as the true progressors, they 
may not continue to receive potentially beneficial 
adjuvant temozolomide chemotherapy and may 
be inappropriately included in trials of progres-
sive/recurrent glioma.107 To mitigate this prob-
lem, the Response Assessment in Neuro-Oncology 
(RANO) criteria require a minimum of 12 weeks 
after completion of radiation treatment before 
tumor progression can be confirmed unless the 
site of progressive disease is distant from the radi-
ation field or there is pathologic evidence of pro-
gressive/recurrent tumor.107 In a phase III trial of 
bevacizumab or placebo plus radiotherapy/temo-
zolomide for newly diagnosed glioblastoma 
(AVAglio), 9.3% had confirmed pseudoprogres-
sion in the placebo arm,108 indicating that the 
incidence of pseudoprogression appears lower 
than initially reported. Nevertheless, pseudopro-
gression can affect progression assessment in a 
small but non-negligible number of patients. In 
actual clinical practice, it remains a challenge to 
determine the true status of tumors that show 
early apparent progression based on conventional 
imaging assessment. In recent years, there have 
been tremendous efforts in discovering and apply-
ing advanced imaging techniques to improve the 
diagnosis of pseudoprogression.

Compared to normal brain tissue or necrosis, 
recurrent or progressive tumor more commonly 
demonstrates lower ADC values.109,110 Voxel-
wise analysis of ADC maps can differentiate 
pseudoprogression from true progression in 

glioblastoma using ADC parametric response 
maps.111 High b-value DW-MRI appears to 
improve the accuracy of diagnosing pseudopro-
gression compared to standard DW-MRI.112

A number of prior studies have examined the 
ability of DSC-MRI to distinguish pseudopro-
gression from tumor progression in glioblas-
toma.113–117 Compared to true tumor progression, 
treatment-related necrosis or pseudoprogression 
exhibits lower relative blood volume (Figure 2). 
DCE-MRI can also differentiate tumor progres-
sion from radiation necrosis,118–120 although there 
is also evidence that there is no significant differ-
ence between DSC-MRI and DCE-MRI when 
either is added to standard MRI.121 Parameters 
derived from combined approaches including 
DTI and DSC can classify tissues into true pro-
gressive tumor, treatment necrosis, and mixed 
response.122

Based on altered metabolite concentrations in 
tissues, single-voxel MRS can distinguish sus-
pected progressive/recurrent tumor from treat-
ment-related changes.123–126 The overall 
diagnostic performance of MRS using choline to 
NAA ratio in differentiating glioma progression 
from radiation necrosis has sensitivity and speci-
ficity of 0.88 and 0.86, respectively.127 Multivoxel 
MRS can evaluate spatially heterogeneous tis-
sues containing mixtures of recurrent tumor and 
treatment effect.128–133

FDG-PET has been evaluated for its diagnostic 
accuracy in distinguishing delayed radiation 
necrosis from recurrent tumor,134–138 although it 
is unclear whether these results are applicable for 
the cases pseudoprogression that typically occur 
at earlier times following chemoradiation. Due to 
high background uptake by the normal brain, 
FDG radiotracer may also not detect small recur-
rent lesions. Several studies have reported utility 
of amino acid PET, including c-methionine, 
F-DOPA, FET, and FLT for diagnosing tumor 
progression.139–145 There is evidence of improved 
diagnostic accuracy comparing to FDG-
PET.139,146 For patients with glioblastoma follow-
ing standard chemoradiation therapy who present 
with suspected progression 3 months after com-
pletion of treatment, FET-PET can diagnose 
pseudoprogression with sensitivity 84%, specific-
ity 86%, and accuracy 85%.147 More recently, 
texture analysis has been applied to amino acid 
PET imaging data with some success in defining 
pseudoprogression.148
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Response evaluation during antiangiogenic 
therapy
Antiangiogenic therapies such as bevacizumab, a 
humanized monoclonal antibody against VEGF 
and cediranib, a VEGF receptor inhibitor, can 
result in rapid normalization of vascular perme-
ability, reducing the intensity of contrast 
enhancement on T1-weighted MRI.107,149,150 
This imaging phenomenon is not associated with 
improved patient survival and therefore has been 
described as a ‘pseudoresponse’.107,151 A subset 
of patients with progressive tumor can also man-
ifest as enlarging nonenhancing T2/FLAIR 
abnormality on imaging.107,151 The RANO crite-
ria included guidelines requiring evaluation of 
T2/FLAIR images for determination of progres-
sion.107 There is evidence that development of 
enlarging T2/FLAIR abnormality has been 

associated with subsequent progression of 
enhancing lesions.152 A retrospective evaluation 
of the imaging data from the phase II BRAIN 
trial of bevacizumab treated recurrent glioblas-
toma demonstrated that the RANO criteria 
resulted in a small but significant difference in 
median progression-free survival than did the 
Macdonald criteria.153 Currently, evaluation of 
nonenhancing tumor as defined by the RANO 
criteria is qualitative based on subjective review 
of T2/FLAIR imaging by expert readers of pro-
gression.107 There is an urgent need for imaging 
strategies that can be employed as an objective 
surrogate in evaluating tumor burden in the set-
ting of antiangiogenic therapy.

Nonenhancing tumor on T2/FLAIR MRI has been 
categorized by morphology as circumscribed versus 

Figure 2. A 62-year-old man with glioblastoma treated by concomitant temozolomide and radiation. Axial 
gadolinium-enhanced T1-weighted (a) and fluid-attenuated inversion recovery (FLAIR) (b) images demonstrate 
a small area of enhancement in the left inferior frontal lobe after three cycles of adjuvant temozolomide 
treatment. At the fifth cycle of adjuvant treatment, there is increased nodular enhancement (c) and 
surrounding T2/FLAIR signal abnormalities (d) suspicious for progression. (e) Dynamic susceptibility contrast 
magnetic resonance imaging (DSC-MRI) perfusion imaging showed no evidence of elevated blood volume. 
Subsequent surgical resection revealed evidence of necrosis without tumor cells.
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infiltrative lesions.154 Patients with nonenhancing 
circumscribed T2/FLAIR had worse survival out-
comes comparing to those with infiltrative nonen-
hancing lesions, as well as those with enhancing 
progressive disease following initiation of bevaci-
zumab.155,156 Although this approach of character-
izing lesion morphology remains subjective, the 
qualitative imaging descriptors provide improved 
specificity with respect to patient outcome.107 
Volumetric methods have been proposed as an 
objective criteria in measuring T2/FLAIR lesions, 
although in the BELOB trial data obtained using 
such an approach did not result in improved post-
treatment prognostication accuracy as compared to 
the RANO criteria.157

T1 subtraction and T2 mapping techniques 
have been applied to evaluating post-bevaci-
zumab treated patients with recurrent glioblas-
tomas.158,159 These methods utilize commercially 
available MRI sequences that are commonly 
done for brain tumor evaluation and can be 
readily incorporated into the clinical workflow 
if postprocessing can be automated. DW-MRI 
is also commonly performed during routine 
brain tumor evaluation, and low ADC lesions 
observed on DW-MRI following bevacizumab 
treatment have been associated with progres-
sive tumor.160 High b-value DW-MRI improves 
detection of pseudoresponse over standard 
DW-MRI in patients treated with bevaci-
zumab.161 The specificity of low ADC lesions 
for active tumor has been questioned, since 
there have also been reports of hypoxic or 
necrotic tissue associated with these lesions.162 
Pathological analysis provides evidence that 
progressively expanding low ADC lesions con-
tain coagulative necrosis surrounded by viable 
tumor.163 An ADC threshold value of 0.736 × 
10−3 mm2/s has been shown to be a potential 
differentiating factor of hypercellular tumor 
and necrosis.163 Patients with larger low-ADC 
volumes after bevacizumab treatment had 
worse overall survival.164 Advanced DW-MRI 
techniques such as histogram analysis of ADC 
and RSI has also been shown to predict overall 
survival following bevacizumab treatment.165,166 
Perfusion imaging techniques including DSC-
MRI and DCE-MRI also provide prognostic 
information during early post-bevacizumab 
treatment evaluation of patients with recurrent 
glioblastomas.167–170 There is early evidence 
that amino acid PET provides greater specific-
ity than standard MRI for evaluation of pro-
gressive tumor and provides prognosis during 

antiangiogenic therapy171–173 (Figure 3). 
Combined-modality FMISO PET and MRI 
evaluated patients with recurrent high-grade 
glioma and revealed patterns of hypoxia  
after antiangiogenic therapy; enlarging nonen-
hancing mass showed reduced diffusion, lack of 
hypoxia, and preserved cerebral blood 
volume.21

Response evaluation during immunotherapy
With the advent of new and emerging immuno-
therapies such as cytotoxic T-lymphocyte-4 
(CTLA-4) immune checkpoint molecules such 
as ipilumimab, and programmed cell 1 agents 
such as nivolumab and pembrolizumab for met-
astatic melanoma and non-small cell lung can-
cer, establishing progression has had its 
challenges.174–176 Findings of classic progression 
including increasing size, enhancement, and 
edema may not reflect progression with immu-
notherapies that may involve a localized and 
temporary inflammatory response before subse-
quent improvement.177 Furthermore, patterns of 
initial increase in target tumor size have pre-
ceded subsequent decrease in tumor size, with 
metastatic melanoma treated with anti-PD/
PD-L1 therapy.178,179 The Immunotherapy 
Response Assessment in Neuro-Oncology 
(iRANO) working group has sought to address 
this by requiring a confirmation scan at 3 months 
for patients who presents with enlarging enhance-
ment within 6 months from initiation of immu-
notherapy (Figure 4).180 The 6-month cutoff 
time was empirically determined, but presenta-
tion of pseudoprogression beyond 6 months has 
been reported.181 Furthermore, the 3-month 
time duration until the confirmatory scan could 
be a challenge in clinical practice since patients 
are often symptomatic. While further evaluation 
of data from immunotherapy trials is needed to 
provide support for the iRANO criteria, an imag-
ing marker allowing accurate differentiation of 
immunotherapy-related changes from recurrent/
progressive tumor is ultimately needed to 
improve management of patients undergoing 
immunotherapy. In small case series of patients 
with melanoma brain metastases treated with 
checkpoint inhibitors, dynamic FET-PET imag-
ing appears to correctly identify pseudoprogres-
sion,182 highlighting the potential application for 
the technique in imaging of patients with high-
grade glioma. Finally, PET radiotracers target-
ing immune response are being developed. In a 
syngeneic immunocompetent mice model, 
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immune responses can be detected after immu-
notherapy in glioblastoma using PET radiotracer 
for deoxycytidine kinase (dCK).183

Challenges and outlook
While numerous novel imaging methods have 
been applied to address various clinical challenges 
faced by treating oncologists today, most of these 
techniques as outlined in this review still require 
validation from large prospective trials. Currently 
the acquisition protocol for evaluating brain 
tumors is highly variable among imaging centers, 
and such variability can impact the generalizability 
of imaging techniques across different sites. 
Recently, a standardized MRI protocol has been 
proposed specifying the acquisition parameters of 
conventional and diffusion MRI sequences,184 as 
well as perfusion MRI.185 Wider adoptions of 
these standardized protocols in the neuro-oncol-
ogy community should aid the ongoing and future 

efforts in the discovery and validation of imaging 
markers in multicenter trials.

Machine learning approaches to neuro-oncologic 
imaging is only in its earliest phase of develop-
ment and many of the results outlined in this 
review are not ready to be incorporated into clini-
cal practice. For one, the current voxel-based 
analysis of imaging data requires whole-tumor 
segmentation, which has been a bottleneck in 
research progress and clinical implementation. 
This problem is currently being automated using 
state-of-the-art machine learning algorithms, 
with promising results.186–190 Furthermore, the 
machine learning approach can facilitate integra-
tion of data beyond imaging, including clinical 
and molecular markers, making this approach 
integral to diagnostic, prognostic, and predictive 
biomarker development and implementation. It 
is important to note that development and vali-
dation of machine learning models require large, 

Figure 3. A 58-year-old man with recurrent glioblastoma receiving bevacizumab monotherapy. Pretreatment 
axial gadolinium-enhanced T1-weighted image (a) and 18F-fluoro-ethyl-tyrosine (FET) positron emission 
tomography image (b) showed an enhancing mass centered in the body of the corpus callosum with moderate 
FET avidity. After one dose of bevacizumab, the extent and intensity of enhancement both reduced as evident 
on the axial T1-weighted image (c), but there persists a slightly increased FET uptake in the left aspect of 
the mass (d). This area of abnormality showed increased enhancement on the subsequent axial gadolinium-
enhanced T1-weighted image (e).
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well-annotated datasets, and therefore multidis-
ciplinary efforts and multicenter collaborations 
are necessary.

Conclusion
Imaging plays several key roles in managing brain 
tumors, including diagnosis, prognosis, and treat-
ment response assessment. There have been 
important innovations in numerous advanced 
imaging techniques with the aim of improving the 

accuracy of tumor diagnosis and address chal-
lenging clinical problems, including evaluation of 
pseudoprogression and response to antiangio-
genic therapy and immunotherapy. Some of these 
techniques have already been incorporated as 
routine tumor evaluation in large centers, while 
many others are currently being validated for 
accuracy and reproducibility. Understanding the 
advantages and limitations of these techniques is 
essential in advancing our goal of personalized 
care for patients with brain tumors.

Figure 4. Schematic flowchart of the Immunotherapy Response Assessment in Neuro-Oncology criteria for 
response assessment in immunotherapy.
Permission to reprint from Lancet Oncology.
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