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Abstract
Calpains are a group of calcium-dependent proteases that are over activated by increased intracellular 
calcium levels under pathological conditions. A wide range of substrates that regulate necrotic, apoptotic 
and autophagic pathways are affected by calpain. Calpain plays a very important role in neuronal death 
and various neurological disorders. This review introduces recent research progress related to the regula-
tory mechanisms of calpain in neuronal death. Various neuronal programmed death pathways including 
apoptosis, autophagy and regulated necrosis can be divided into receptor interacting protein-dependent 
necroptosis, mitochondrial permeability transition-dependent necrosis, pyroptosis and poly (ADP-ribose) 
polymerase 1-mediated parthanatos. Calpains cleave series of key substrates that may lead to cell death 
or participate in cell death. Regarding the investigation of calpain-mediated programed cell death, it is 
necessary to identify specific inhibitors that inhibit calpain mediated neuronal death and nervous system 
diseases. 
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Introduction
Three types of cell death have been identified (Green and 
Llambi, 2015; Chemaly et al., 2017). The first is apoptosis 
characterized by nuclear and cell shrinkage, chromatin con-
densation and fragmentation, and the formation of apoptotic 
bodies (Green and Llambi, 2015; Chemaly et al., 2017). Two 
apoptotic mechanisms have been reported: the intrinsic 
and extrinsic pathways (Chemaly et al., 2017). The extrinsic 
pathway is initiated by the binding of cell-surface death re-
ceptors to extracellular ligands, resulting in the formation of 
a death-inducing signaling complex. The intrinsic pathway 
is mediated by intracellular signals in the inner mitochon-
drial membrane (Chemaly et al., 2017). Following apoptotic 
signaling, many apoptotic proteins, such as caspases and 
B-cell lymphoma 2 (Bcl-2) family members, are activated or 
inhibited to participate in the regulation of apoptosis (Green 
and Llambi, 2015; Chemaly et al., 2017). The second type 
of cell death is autophagy, defined as the accumulation of 
two-membrane autophagic vacuoles in the cell plasma (Green 
and Llambi, 2015; Chemaly et al., 2017). The third type of 
cell death is necrosis, which features membrane rupture, re-
lease of cytoplasmic organelles, increased cytosolic calcium, 
and inflammation (Green and Llambi, 2015; Chemaly et al., 
2017). In recent years, increasing evidence has indicated that 
necrosis can be molecularly controlled, and therefore it has 
been redefined as “regulated necrosis” (Galluzzi et al., 2014; 
Pasparakis and Vandenabeele, 2015). Regulated necrosis can 
be divided into cell-death modalities, such as receptor inter-
acting protein (RIP)-dependent necroptosis, mitochondrial 
permeability transition (MPT)-dependent necrosis, and pyro-
ptosis and poly (ADP-ribose) polymerase 1 (PARP1)-mediat-
ed parthanatos, which function in the pathogeneses of many 
nervous system diseases and during acute cellular damage 
(Pasparakis and Vandenabeele, 2015; Xiong et al., 2016; Che-

maly et al., 2017; Shang et al., 2017). Apoptosis, autophagy 
and regulated necrosis are defined as programmed cell death 
by many researchers (Pasparakis and Vandenabeele, 2015; 
Prasad and Kaestner, 2017; Thornton et al., 2017).

Numerous previous studies reported that calpain plays an 
important role in programmed cell death in nervous system 
diseases, such as stroke, Alzheimer’s disease and Hunting-
ton’s disease (Saatman et al., 1996b; Bartus, 1997; Bartus et 
al., 1998; James et al., 1998; Marklund et al., 2006; Pandey et 
al., 2016). Calpains are a group of calcium-dependent neu-
tral proteases, which are ubiquitously expressed in different 
tissue types and organisms (Saatman et al., 1996a; Suzuki 
et al., 2014; Märtensson et al., 2017). Fifteen members of 
the calpain family have been identified to date (Curcio et 
al., 2016). Calpain family members can be classified into 
classical and non-classical types based on their domain IV 
structure (Singh et al., 2014; Curcio et al., 2016). Classical 
calpains (1, 2, 3, 8, 9, 11, 12, and 14) contain a penta-EF 
hand in domain IV that binds to calcium. Three of the 
eight classical calpains (calpain-1, 2, and 9) dimerize with 
the calpain small subunit in mammals (Singh et al., 2014; 
Curcio et al., 2016). Non-classical calpains (5, 6, 7, 10, 13, 
and 15) lack the penta-EF hand in domain IV and cannot 
bind to the calpain small subunit (Singh et al., 2014; Curcio 
et al., 2016). The best characterized calpains in the central 
nervous system are two distinct, heterodimeric subtypes: 
μ-calpain and m-calpain, also known as calpain-1 and cal-
pain-2, although many other calpains (calpain-3, calpain-5 
and calpain-10) are also expressed in the nervous system 
(Singh et al., 2014). The activation of calpain-1 requires 3–50 
μM calcium and the activation of calpain-2 requires 0.4–0.8 
mM calcium (Curcio et al., 2016). Inactive calpains exist 
in the cytoplasm and translocate to the membrane when 
exposed to increased cellular calcium levels. Then, calpain, 
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combined with calcium, is activated in the presence of phos-
pholipids. Finally, the activated calpain degrades substrate 
proteins, such as spectrin, calcium-dependent transcription 
factor, caspase family members, Bcl-2 family members, RIP, 
and AIF, at membranes or in the cytosol after release from 
the membranes (Singh et al., 2014; Suzuki et al., 2014). Al-
though calpain cleaves preferred sequences in association 
with preferred tertiary structures of substrates, the substrate 
specificity defies complete classification (Lynch and Gleich-
man, 2007). The complex involvement of calpains in vital 
cell functions suggests that the dysfunction of calpain may 
cause the excessive degradation or accumulation of cellular 
proteins, leading to various cellular damage and pathological 
conditions (Bartus, 1997, Suzuki et al., 2004). In this review, 
we summarize the current knowledge of the two main cal-
pain isoforms, calpain-1 and calpain-2, in relation to differ-
ent models of cell death and the roles of calpains with their 
specific substrates, which are important for the induction or 
repression of different models of cell death, such as apopto-
sis, autophagy and regulated necrosis.

Calpain and Apoptosis
Calpain and caspase family members
Caspase-dependent apoptosis is one of the main causes of 
neuronal death in neurodegeneration (Wang et al., 2016c; 
Ge et al., 2017). Calpains affect a number of proteins in the 
caspase family (Bakshi et al., 2005). For example, it has been 
widely verified that the activation of caspase-12 is mediated by 
calpains in the nervous system (Martinez et al., 2010; Imai et 
al., 2014). During neuronal death induced by salinomycin, ac-
tivated calpain-1 and calpain-2 cleave and activate caspase-12, 
then activate caspase-9 and its effector protein caspase-3 
(Gorman et al., 2000; Boehmerle and Endres, 2011). Calpains 
also mediate the activity of caspase-3 through other pathways. 
Yamada et al. (2012) reported that calpain-1 knockout neu-
rons had less caspase-3 and apoptosis activity than heterozy-
gous neurons, possibly because calpain-1 knockout increased 
the activity of X-linked inhibitor of apoptosis protein (XIAP), 
a physiological inhibitor of caspase-3. XIAP is degraded by 
calpain-1, and calpain-1 deficiency enhanced the inhibitory 
effect of XIAP on caspase-3 (Yamada et al., 2012). Although 
many researchers agree that calpains enhance caspase ac-
tivity, other studies claim that calpain-2 can also cleave and 
block the activation of caspases in different cell types (such 
as MCF-7 cells and SH-SY5Y cells); furthermore, various 
effects have been reported in the same cell types under differ-
ent apoptotic stimulations (such as staurosporine, hydrogen 
peroxide and serum starvation) (Chua et al., 2000; Tan et al., 
2006). Therefore, calpain-2 may act as a negative regulator of 
caspase processing and apoptosis (Chua et al., 2000). Chua et 
al. (2000) reported that activated calpain-2 cleaved caspase-9, 
which is incapable of activating caspase-3, and prevented sub-
sequent cytochrome c release in cells. In that study, the short 
pro-domain effectors, caspase-7/8/9, were calpain-specific 
cleavage sites (Chua et al., 2000). In summary, it is possible 
that calpains have opposite roles in apoptosis and their effects 
on caspases may be different (Wang et al., 2012).

Effect of calpain on Bcl-2 family members
Bcl-2 protein was first discovered by the analysis of chromo-

somal translocation in a B cell follicular lymphoma (Youle 
and Strasser, 2008; Kvansakul and Hinds, 2015; Wu et al., 
2016). Subsequently, other Bcl-2 family proteins, such as Bax, 
Bak, Bid, and Bcl-xL, were identified (Kvansakul and Hinds, 
2015). The Bcl-2 family proteins are essential in the mito-
chondrial apoptotic pathway, because they directly regulate 
the permeability of the outer mitochondrial membrane. A 
channel is formed on the outer mitochondrial membrane by 
Bax and Bad, through which cytochrome c, apoptosis protease 
activating factor 1, and the deoxyribonucleotide triphosphate 
complex, enter the cytoplasm, which activates caspase-9 and 
caspase-3 and induces apoptosis (Bleicken et al., 2013). Acti-
vated calpains cleave the N-terminal of Bax into a pro-apop-
totic 18-kDa fragment, stimulating the release of cytochrome c 
and apoptosis (Gao and Dou, 2000). Similarly, under the stim-
ulus of apoptotic signals such as Shigella infection, ischemia/
reperfusion injury, and DNA-damaging agents, calpain-1 
splices Bid into t-Bid, which has a better binding affinity for 
mitochondrial membranes, increases membrane permeability 
and produces oligomers that regulate apoptosis (Chen et al., 
2001; Mandic et al., 2002; Andree et al., 2014).

Effect of calpain on AIF
AIF translocates from the mitochondria to the cytoplasm and 
into the nucleus when exposed to apoptotic signaling (Sevri-
oukova, 2011). In the inner membrane of mitochondria, AIF 
is truncated by calpains and this truncated AIF (tAIF) enters 
the cytoplasm through a permeability transition pore. It then 
activates caspase-9 and induces the endogenous apoptotic 
pathway by initiating chromatin condensation and DNA 
fragmentation (Ghavami et al., 2014). Yamada et al. (2012) 
reported that during neuronal apoptosis induced by ischemia, 
the translocation of AIF from the mitochondria to the cytosol 
was decreased in calpain-1 knockout neurons. As a result, 
apoptosis was inhibited. Similarly, in retinitis pigmentosa, the 
inhibition of calpain-1 inhibited AIF activation and decreased 
retinal degeneration and photoreceptor apoptosis (Ozaki et 
al., 2013). Heat shock protein 70 is associated with AIF and 
sustains the stability of AIF to prevent apoptosis; however, 
calpain-1 degrades heat shock protein 70 to maintain the 
transport of AIF from the mitochondria to the cytoplasm or 
nucleus (Matsumori et al., 2005).

Effect of calpain on cyclin-dependent kinase 5 (CDK5)
Cyclin-dependent kinases (CDKs) are a family of protein 
kinases first discovered for their roles in regulating the cell 
cycle (Bramanti et al., 2015). They are also involved in reg-
ulating transcription, apoptosis, and the differentiation of 
nerve cells (Arisan et al., 2014; Bramanti et al., 2015). They 
are present in all known eukaryotes, and their regulatory 
function in the cell cycle has been evolutionarily conserved 
(Bramanti et al., 2015). A CDK binds to cyclin, a regulatory 
protein. Without cyclin, CDK has little kinase activity; only 
the cyclin-CDK complex is an active kinase. Therefore, the 
activity of CDKs is regulated by phosphorylation and by 
binding inhibitory proteins termed cyclin-dependent kinase 
inhibitors (Bramanti et al., 2015). Inactive CDK5 monomer 
is only functional when attached to regulatory subunit P35 
or P25. P35 is hydrolyzed by calpain into P25 and P10. P25 
activates CDK5, forming a CDK5-P25 complex, which in-
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activates myocyte enhancer factor, an important survival 
factor for dopamine neurons (Mount et al., 2013; Zhang et 
al., 2016). The CDK5-P25 complex upregulates P53 expres-
sion, which activates caspase-3 and induces apoptosis (Alvira 
et al., 2008). Furthermore, the phosphorylation of NR2A, a 
subunit of N-methyl-D-aspartate receptors (NMDAR), is 
increased by the calpain-P35/P25-CDK5 pathway, which 
leads to the increased expression of functional NMRAR and 
calcium overload, resulting in glutamate-induced retinal 
neuronal apoptosis (Miao et al., 2012). 

Calpain and Autophagy
Autophagy is a physiological process that digests extra sub-
stances in the cytoplasm by the autophagosome lysosomal 
pathway (Yang and Klionsky, 2010; Ohsumi, 2014). The 
critical role of autophagy is removing damaged intracellular 
organelles/misfolded proteins in neurons (Yang and Klionsky, 
2010; Ohsumi, 2014). A number of studies have indicated that 
calpains interfere with autophagic pathways in the nervous 
system (Williams et al., 2008; Zhang et al., 2009; Menzies et 
al., 2015). Ataxin-3, the disease protein in Machado-Joseph 
disease, was predominately hydrolyzed by calpain-1/2 (We-
ber et al., 2017). The disturbance of calpain-1/2 inhibition 
might promote the formation of ataxin-3 (Hubener et al., 
2013), ultimately leading to the inhibition of autophagy (Wa-
tchon et al., 2017). In recent years, more than 36 subtypes of 
autophagy-related genes (Atg) involved in autophagy have 
been identified (Ohsumi, 2014). The early formation of au-
tophagosomes requires multiple Atg complexes and Beclin-1 
(Russo et al., 2011; Chinskey et al., 2014). Based on a study 
by Chinskey et al. (2014), after retinal injury, Atg-5 is inac-
tivated by calpain-1, which attenuates autophagic activity in 
photoreceptor neurons (Chinskey et al., 2014). Furthermore, 
calpains degrade beclin-1 and inhibit autophagy (Russo et al., 
2011). Further studies indicated that under some autophagic 
conditions, reduced intracellular calcium levels might serve as 
a signal to inhibit calpain-1 activity, which in turn might acti-
vate autophagic activity by enhancing the levels of autophagic 
signaling molecules such as Atg-5, beclin-1 and the Atg-12-
Atg-5 complex (Cecconi and Levine, 2008). Lysosome rupture 
is an essential element in cell death (Rodriguez-Muela et al., 
2015). A previous study reported that permeability of the lyso-
some membrane is regulated by calpain by many mechanisms 
(Geronimo-Olvera et al., 2017). Calpain cleaves lysosome 
associated membrane permeabilization 2 at the lysosome 
membrane and mediates lysosomal membrane permeabiliza-
tion, which may lead to lysosomal dysfunction and decreased 
autophagy (Villalpando Rodriguez and Torriglia, 2013; Rodri-
guez-Muela et al., 2015; Geronimo-Olvera et al., 2017).

Studies have also suggested that calpains are responsible 
for the conversion of the autophagic pathway to the apop-
totic pathway (Yousefi et al., 2006; Chung et al., 2015; Song 
et al., 2017). During cell death in hippocampal neural stem 
cells induced by insulin withdrawal, the inhibition of cal-
pain-2 leads to a preference for autophagic cell death, and 
an increase of calpain-2 expression converts the autophagic 
pathway to the apoptotic pathway (Chung et al., 2015). This 
finding indicates that autophagy might have a close con-
nection with apoptosis, as autophagy influences apoptosis 
through the degradation of caspase-8 or -9. Furthermore, 

apoptosis affects the autophagic flux by cleaving autophagy 
molecules, such as Beclin-1 or Atg-5 (Chung et al., 2015). 
Other studies reported that when Atg-5 is cleaved by cal-
pain its autophagy activity is inhibited (Yousefi et al., 2006; 
Del Bello et al., 2013). In cells exposed to apoptotic stimuli, 
cleaved Atg5 translocates into the mitochondria and com-
bines with Bcl-xL, thereby inducing apoptosis (Zhou et al., 
2011; Del Bello et al., 2013).

Calpain and Regulated Necrosis
Calpain and parthanatos
A series of genotoxic stresses, such as alkylating agents and 
N-methyl-N-nitro-N-nitrosoguanidine, have been verified to 
result in cell necrosis associated with the activation of PARP-
1, termed parthanatos (Wang et al., 2009; Harbison et al., 
2011; Muller et al., 2014). Parthanatos characterized by over-
active PARP-1 is caused by metabolic disturbance, such as 
the excessive consumption of nicotinamide adenine dinucle-
otide and adenosine triphosphate (van Wijk and Hageman, 
2005). Baritaud et al. (2010) further uncovered the specific 
molecular mechanism by which calpains regulate necrosis. 
Acute DNA damage activates PARP-1 in the nucleus. When 
activated, PARP-1 is transferred to the mitochondrial mem-
brane to activate calpain-1, which is truncated and activates 
AIF. In the nucleus, tAIF, Histone H2AX and cyclophilin 
break down the DNA into large fragments (Baritaud et al., 
2010). Calpain-1 mediates AIF release from mitochondria 
and necrosis through a mechanism that is distinct from apop-
tosis but which is caspase-independent. The reason might be 
explained, because apoptosis is abrogated by the cleavage of 
apoptotic effectors, such as caspases, by calpain (Moubarak 
et al., 2007). Furthermore, because calpain-1 directly cleaves 
AIF to tAIF, calpains might also cleave BID to t-BID, which 
facilitates BAX activation and subsequent AIF mediated par-
thanatos (Cabon et al., 2012). In addition, PARP-1 is the sub-
strate of calpains and the activation of PARP-1 requires the 
activation of calpains (Sacca et al., 2016). Therefore, PARP-1 
and calpain-1 might act in concert following injury to induce 
AIF-mediated necrosis (Chiu et al., 2012).

Calpain and necroptosis
Necroptosis, a RIP-mediated programmed form of necrosis 
induced by tumor necrosis factor α, is regulated by calpain 
(Bollino et al., 2015; Pasparakis and Vandenabeele, 2015)
(Figure 1). Calpains degrade c-Jun N-terminal kinase (JNK) 
inhibitor JNK-interacting protein-1, and then activate JNK-
1, which increases the expression of RIP-1. RIP-1 then binds 
to RIP-3 and initiates necroptosis mechanisms, including 
second mitochondria-derived activator of caspase/direct 
IAP-binding protein with low PI and AIF release from mito-
chondria (Bollino et al., 2015). Our previous studies reported 
that in vitro elevated hydrostatic pressure or oxygen-glucose 
deprivation induced the necroptosis of retinal ganglion cells 
(RGC-5 cell line); thus, calpains play an important role in 
mediating necroptosis via tAIF (Shang et al., 2014; Chen et 
al., 2016). Our recent research also found that Pin1 interacts 
with calpastatin, an endogenous calpain inhibitor, to modu-
late the activity of calpain 2 in the presence of excessive gluta-
mate, thereby causing tAIF mediated necroptosis in primary 
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rat retinal neurons, the RGC-5 cell line, and the ganglion cell 
layer and inner nuclear layer of the rat retina (our unpub-
lished data). Although necroptosis and parthanatos share a 
common necrotic effector, AIF, they represent two indepen-
dent and distinct pathways that regulate necrosis (Sosna et 
al., 2014). Necroptosis and parthanatos are induced by tumor 
necrosis factor α and N-methyl-N-nitro-N-nitrosoguanidine, 
respectively. In contrast to parthanatos that does not depend 
on caspase activity, the regulation of necroptosis depends on 
caspase-8 activity (Sosna et al., 2014).

Calpain and other regulated necroses, including 
pyroptosis and MPT mediated regulated necrosis
Pyroptosis is a form of inflammatory cell necrosis that re-
quires the activation of caspase-1 (Fink and Cookson, 2005; 
He et al., 2015). During pyroptosis, caspase-1 is activated by 
the pyroptosome, which is composed of dimers of the adap-
tor protein apoptosis-associated speck protein containing a 
CARD or caspase activation and recruitment domain (Soong 
et al., 2012; He et al., 2015). Although there are numerous 
caspase-1 activation pathways, the downstream pathway re-
sults in pyroptosis; the apoptosis pathway is associated with 
caspases-3 and-7, but not caspase-1 (Soong et al., 2012; Sun et 
al., 2016). There are two types of sensory receptors involved in 
pyroptosis, Toll-like receptors and Nod-like receptors, which 
sense danger signals (Soong et al., 2012). Chun et al. (2009) 
reported that Toll-like receptor 2 stimulation results in in-
creased calcium flux. Subsequently, the activation of calcium 
dependent calpains is targeted by caspase-1, which cleaves the 
transmembrane proteins occludin and E-cadherin (Chun and 
Prince, 2009; Soong et al., 2012), resulting in pyroptosis.

The MPT pore is an inducible inner mitochondrial 
membrane pore involved in apoptotic and necrotic death 
(Douglas and Baines, 2014; Lu et al., 2014). The formation 
of MPT is regulated by calpain-mediated proteolytic events 
(Arrington et al., 2006). Under MPT conditions, osmosis 
forces a large volume of water into the mitochondrial ma-
trix, resulting in the release of various apoptotic activators 
such as Bcl-2 family members, into the cytoplasm (Oh and 
Lim, 2006). MPT also triggers a pathway that regulates ne-
crosis and which is regulated by a key regulatory molecule, 
cyclophilin D (Lu et al., 2014). Subsequent studies found 
that MPT formation is an important upstream mediator of 
integrin αIIbβ3 inactivation and that calpain activation might 
activate integrin through talin cleavage (Liu et al., 2013).

However, although pyroptosis and MPT regulated necro-
sis were confirmed in neurons, correlations between calpain 
and the two types of necrosis are lacking. Therefore, studies 
are needed to determine whether calpain has a relationship 
with cell necrosis in nervous system diseases. 

Perspective
In addition to the above mentioned substrates, other stud-
ies reported that the direct targets of calpains include most 
major glutamate receptors, such as α-amino-3-hydroxy-5-
methyl-4-isoxazole propionate receptors, NMDA receptors, 
and metabotropic glutamate receptors (Dong et al., 2004; 
Wu et al., 2007; Curcio et al., 2016; Wang et al., 2018). By the 
proteolysis of these receptors and associated proteins, cal-

pains may modulate the activity of glutamate synapses (Cur-
cio et al., 2016). As a result, calpain proteolysis in neurons 
might result in pathological events such as excitotoxicity, 
but also neuroprotective roles in cell survival and synaptic 
transmission (Wu et al., 2007; Doshi and Lynch, 2009). 
Calpain-1 and calpain-2 play opposite roles in cell surviv-
al and death (Wang et al., 2016b). Activation of synaptic 
NMDAR-coupled calpain-1 is neuroprotective, while activa-
tion of extrasynaptic NMDAR-coupled calpain-2 is neuro-
degenerative (Wang et al., 2016b). Calpain-1 is involved in 
Akt and extracellular signal-regulated kinase mediated cell 
survival. Activated calpain-2 cleaves and inactivates STEP, 
resulting in p38-induced cell death (Wang et al., 2016b). 
This provides new insights into the mechanism of calpain 
mediated cell death. Based on these previous findings, fur-
ther studies are needed to explore the detailed mechanisms 
of calpain mediated cell survival or death. 

For most calpain mediated disorders, inhibitors are the first 
and logical therapeutic choice (Ono et al., 2016). To achieve 
a potential therapy, it is critical to produce specific molecules 
that have the correct physical chemistry to function as drugs 
for the treatment of neural diseases (Bartus et al., 1999; Lau-
rer and McIntosh, 2001; Wang et al., 2016a). Many previous 
studies have suggested that calpain inhibitors are useful for 
treating brain injuries by preventing neuronal loss and im-
proving behavior (Saatman et al., 1996b; Bartus, 1997; James 
et al., 1998; Marklund et al., 2006; Pandey et al., 2016). Fur-
thermore, some calpain inhibitors are being tested in clinical 
trials; AbbVie has initiated a Phase I clinical trial with an 
orally active non-selective calpain inhibitor for the treatment 
of Alzheimer’s disease (Wang et al., 2016b). However, to our 
knowledge, many of the calpain inhibitors are nonspecific and 
target other proteases. Therefore, understanding the calpain 
substrates and the specific pathways of calpain mediated cell 
death are key concerns, especially when considering potential 
off-target effects (Ono et al., 2016). There is also a need to de-
velop specific and beneficial therapeutic calpain inhibitors. 

Conclusions
A preliminary understanding of the regulatory role of cal-
pains in programmed neuronal death has been reached. Cal-
pains play an important role in apoptosis, autophagy, and 
regulate necrosis (Table 1). Therefore, calpain is a promising 
therapeutic target for neurological diseases. Specific inhibi-
tors of calpains may bring new insights for the treatment of 
related diseases. However, because of potential species-spe-
cific differences, there have been few investigations regard-
ing the mechanisms involved in human nervous system 
diseases, which are different from cells or animal models of 
disease. Therefore, different potential risks, including cal-
pain dysfunction, might lead to the progression of one type 
of nervous disease. Thus, future pathogenic mechanisms, 
not only the deregulated calpain mediated central nervous 
system dysfunction, should be investigated further to under-
stand the progression of nervous diseases. 
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