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ABSTRACT

Detailed target-selectivity information and
experiment-based efficacy prediction tools are
primarily available for Streptococcus pyogenes
Cas9 (SpCas9). One obstacle to develop such
tools is the rarity of accurate data. Here, we report
a method termed ‘Self-targeting sgRNA Library
Screen’ (SLS) for assaying the activity of Cas9
nucleases in bacteria using random target/sgRNA
libraries of self-targeting sgRNAs. Exploiting more
than a million different sequences, we demonstrate
the use of the method with the SpCas9-HF1 variant
to analyse its activity and reveal motifs that influence
its target-selectivity. We have also developed an
algorithm for predicting the activity of SpCas9-HF1
with an accuracy matching those of existing tools.
SLS is a facile alternative to the much more expen-
sive and laborious approaches used currently and
has the capability of delivering sufficient amount
of data for most of the orthologs and variants of
SpCas9.

INTRODUCTION

Since the adaptation of SpCas9 for genome engineering,
Cas9 nucleases have become versatile tools for a range of
applications (1–13). These nucleases cleave target sequences
that are complementary to the 5′ ‘spacer’ region of their sin-
gle guide RNA (sgRNA), provided that they are adjacent
to a short protospacer adjacent motif (PAM) sequence that
is specific to each particular Cas9 nuclease (14). Most ex-
perimental data have been generated for the SpCas9 nucle-

ase that is considered to be the most powerful among the
orthologs. High resolution X-ray crystallographic data on
the structure of SpCas9 nuclease has revealed that the pro-
tein interacts with the DNA–sgRNA hybrid helix via the
sugar-phosphate backbone, without making any sequence-
specific contact with the bases (15–17). Nonetheless, the nu-
clease exhibits considerable sequence-dependent variation
in its DNA cleavage activity (18–22).

The underlying structural determinants of the sequence
selectivity have primarily been characterized for the wild
type (WT) SpCas9 (18–29), although several orthologs are
known and several mutant variants with increased fidelity
or altered PAM specificity have been generated with ap-
parently differing sequence selectivity (30–35). A target
cleavage efficacy prediction algorithm has also been gener-
ated for AsCas12a (36). An understanding of their target-
selectivity and in silico target prediction tools such as those
available for the wild type SpCas9 are much needed to fa-
cilitate their routine usage. However, the development of
accurate prediction tools is a challenging, labour intensive
and exceedingly costly task, primarily due to the need for
reproducible cleavage activity information for a very large
number of target sequences. This kind of information for
the variants and orthologs of SpCas9 is rare. Even in the
case of SpCas9, the on-target efficiency prediction tools de-
veloped on the basis of cleavage activity data derive from
experiments that exploited only a relatively small number
of targets, not exceeding a few tens of thousands of differ-
ent sequences: this number is dwarfed by the number of se-
quences, exceeding a trillion (420 = ca. 1012), theoretically
targetable by SpCas9 (18–22).

The limitation on generating cleavage information on
a larger number of sequences derives from the need for
the joint presence of the target sequence and its matching
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sgRNA in one cell in a manner that allows the identification
of the outcome of the corresponding cleavage reaction. This
criterion makes it difficult to use randomized libraries. The
feasibility of studying systematic arrays of designed target
sequences decreases sharply with the increasing number of
target/sgRNA pairs involved. Here, we exploit the fact that
SpCas9 requires only the presence of an intact stem struc-
ture of the sgRNA adjacent to its spacer sequence without
being sensitive to the actual sequence of the stem (12,15,37–
39). This allowed us to modify the stem sequences of the
sgRNAs to contain an NGG sequence motif, the PAM of
SpCas9, thereby, generating self-targeting sgRNAs (stgR-
NAs) that target their own coding sequences (Figure 1A,
B) (12,38,39). Such self-targeting sgRNAs effectively solve
the problem of presenting the matching sgRNA and target
jointly in one cell when randomized sequence libraries are
used.

Based on this rationale we generated randomized
target/sgRNA libraries with more than a million different
sequences for mapping the sequence specificities of SpCas9-
HF1. For assaying its cleavage activity, a negative bacte-
rial selection scheme was applied that made possible a high
throughput assessment of the full library.

MATERIALS AND METHODS

Materials

Restriction enzymes, T4 ligase, Dulbecco’s modified Eagle’s
medium (DMEM), fetal bovine serum, Turbofect, Shrimp
Alkaline Phosphatase (SAP), Qubit™ dsDNA HS Assay Kit
and penicillin/streptomycin were purchased from Thermo
Fischer Scientific. DNA oligonucleotides and the GenE-
lute HP Plasmid Miniprep kit used in plasmid purifications
were acquired from Sigma-Aldrich. Q5 High-Fidelity DNA
Polymerase, NEB5-alpha competent cells, HiFi Assembly
Master Mix were from New England Biolabs Inc. Nucle-
oSpin Gel and the PCR Clean-up kit used to clean up DNA
from agarose gels were purchased from Macherey-Nagel.
ZymoPURE Plasmid Midiprep Kit was from Zymo Re-
search.

Plasmid construction

Vectors were constructed using standard molecular biology
techniques. For detailed cloning, primer and sequence infor-
mation see Supplementary Information. The sequences of
all plasmid constructs were confirmed by Sanger sequenc-
ing (Microsynth AG).

Plasmids acquired from the non-profit plasmid distri-
bution service Addgene (http://www.addgene.org/) were
the following: pdCas9-bacteria (#44249 (6)), pWN10042
(#89052 (40)), pmCherry-gRNA (#80457 (34)), pX330-
Flag-dSpCas9 (#92113 (34)), pMJ806 (#39312 (1))

The following plasmids used in this study are available
from Addgene: pAT-9208 (#124221), pAT9218 (#124225),
pAT-9222 (#124222), pAT-9251 (#124226), pKH-1699
(#124227).

Library construction

The randomized oligonucleotide was annealed (4 �M) with
a primer (4 �M) and filled by one-step PCR using Q5

polymerase and the resulting dsDNA was gel purified.
The cloning vector (pAT-9208) was synthesized (Genscript
Inc.), PCR amplified, digested with DpnI enzyme (3 h) and
gel purified. The final product was assembled by HiFi As-
sembly using 25 ng PCR amplified vector and a molar 1:5
vector:insert ratio, incubating at 50◦C for 1 h. The mix was
then transformed into in-house made ‘ultra-competent’ Es-
cherichia coli (NEB5-alpha) prepared by the Inoue method
(41) and plated on Bioassay plates (Nunc). The transfor-
mation was continued until roughly 1 200 000 individual
colonies (named ‘1M library’) were acquired (by combin-
ing two libraries containing about 500 000 and 700 000
sequences) the colonies were then washed off, and plas-
mid DNA was purified with ZymoPURE Plasmid Midiprep
Kit. An independent, ∼100 000 colony library was also con-
structed (named ‘100K library’) using the method described
above.

Bacterial selection and NGS

The bacterial SpCas9-HF1 and WT-SpCas9 expressing
plasmids (pAT-9251, pAT9218) were constructed from the
pdCas9-bacteria plasmid. This plasmid was used to trans-
form NEB5alpha cells from which ‘ultra-competent’ cells
were made by the Inoue method (41). Next, the competent
SpCas9-HF1 and WT-SpCas9 expressing cells were trans-
formed with either the 1M or the 100K randomized plas-
mid libraries in three parallel experiments until at least 50×
transformation coverage had been achieved (in each paral-
lel experiment). These measures are also safeguards against
the falsifying effects of artefacts, such as double transfor-
mants that are also minimized under the applied conditions
(a concentration of 1 ng library plasmid per 200 �l com-
petent cells (42,43)). After transformation, bacteria were
grown in a 3D culture (in antibiotic containing semi-solid
agarose-LB medium) to minimize overgrowth. For the 3D
culture 0.3 m/V % of SeaPrep Agarose (Lonza) was mixed
in LB medium, autoclaved and cooled to 37◦C. Antibiotics
and 100 �l of transformed bacteria were then mixed with
the medium in 50 ml batches and the mixture was cooled
in ice-cold water until a jelly-like consistency was achieved.
The culture was incubated overnight at 37◦C until visible
colonies formed. The colony containing medium was ho-
mogenized at 37◦C with a magnetic stirrer, bacteria were
pelleted by centrifugation (3000 g, 10 min, RT), and DNA
was isolated with ZymoPURE Plasmid Midiprep Kit.

The target sequence (promoter, spacer, sgRNA scaffold)
was amplified by PCR from the original ‘uncut’ (1M,
100K), and the cut libraries, then DNA was gel purified.
Sample concentrations were measured using the Qubit ds-
DNA HS Assay Kit (Invitrogen), then they were pooled and
sequenced on the Illumina HiSeq4000 platform (BGI Ge-
nomics). At least 50× sequencing coverage was achieved per
sample. The deep sequencing data have been submitted to
the NCBI Sequence Read Archive under accession number
PRJNA643977.

Cell culture

N2a (neuro-2a mouse neuroblastoma cells, ATCC, CCL-
131) cells were grown at 37◦C in a humidified atmosphere
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of 5% CO2 in high glucose DMEM supplemented with
10% heat-inactivated fetal bovine serum, 4 mM L-glutamine
(Gibco), 100 units/ml penicillin and 100 �g/ml strepto-
mycin.

GFxFP assay

For experiments when the stgRNA and the canoni-
cal sgRNA scaffolds were compared all spacers were
cloned into pmCherry-gRNA (canonical scaffold), and
into an stgRNA cloning plasmid with the same backbone
(pPIK8691) between BpiI sites. The GFxFP assay was used
as described previously (40,44). Briefly, N2a cells cultured
on 48-well plates were seeded a day before transfection at a
density of 3 × 104 cells/well. 10 ng of GFxFP, 150 ng of
Cas9 (SpCas9-HF1,WT-SpCas9 or dSpCas9) and 90 ng of
sgRNA-mCherry coding plasmid was mixed with 1 �l Tur-
bofect reagent in 50 �l serum free DMEM and incubated 30
min prior adding to the cells. Three parallel transfections
were made from each sample. Cells were analysed by flow
cytometry 2 days after transfection.

For the experiment on Figure 3A the GFxFP target
plasmid was modified in such a manner that both the
sgRNA coding and target site were on the same plasmid
(self-targeting sgRNA). A spacer cloning plasmid (pAT-
9222) was constructed by inserting a human U6 promoter
and self-targeting sgRNA between the GFP halves of the
GFxFP plasmid (pWN10042). All spacers were cloned into
this plasmid between BpiI sites.

N2a cells cultured on 48-well plates were seeded a day
before transfection at a density of 3 × 104 cells/well. 70
ng GFxFP–sgRNA, 100 ng Cas9 (SpCas9-HF1 or the inac-
tive dSpCas9) and 80 ng mCherry coding plasmid (to mon-
itor transfection efficiency) was mixed with 1 �l Turbofect
reagent in 50 �l serum free DMEM and incubated 30 min
prior adding to the cells. Three parallel transfections were
made from each sample. Cells were analysed by flow cytom-
etry 2 days after transfection.

The SpCas9-HF1 coding plasmid was pKH-1699. As
negative controls, the background GFP level was de-
termined in the case of each GFxFP plasmid by co-
transfecting a nuclease-inactive dSpCas9 coding plasmid
(pX330-Flag-dSpCas9). The 57 spacers used in these exper-
iments were chosen by BiSearch (45) from those sequences
in the 1M library that are unique to either the human or
mouse genomes. These sequences were removed from the
training dataset.

Flow cytometry

Flow cytometry analysis was carried out using an Attune
NxT Acoustic Focusing Cytometer (Applied Biosytems by
Life Techologies). In all experiments, a minimum of 10 000
viable single cells were acquired by gating based on side and
forward light-scatter parameters. The GFP signal was de-
tected using the 488 nm diode laser for excitation and the
530/30 nm filter for emission. The mCherry signal was de-
tected using the 561 nm diode laser for excitation and a
615/20 nm filter for emission. For data analysis Attune Cy-
tometric Software v.2.1.0 was used.

Calculating cleavage efficiencies

Paired-end reads for all libraries were merged with BB-
Merge (v37.22) using default settings and the merged
reads were aligned to the sgRNA reference sequence with
BLASTn (v2.6.0). To ensure that efficiency only depended
on the spacer sequence, reads that had any mutations or in-
dels either in the promoter or sgRNA scaffold region and
reads with truncated or extended spacers were eliminated
(Supplementary Table S1). The reads for every individual
spacer were then counted for each library.

We normalized the corresponding spacer counts between
initial and cleaved libraries to calculate the cleavage effi-
ciency for each spacer, which in turn was compared between
the three replicates. Normalization was based on the hy-
pothesis that low efficiency, uncut spacer sequences should
have high counts in the cleaved library and the ratio of their
cleaved and initial counts could be used as a normalization
factor between the two libraries. For each of the cleaved li-
braries, we repeated the following process using its respec-
tive initial library. First, we sorted spacer counts in a cleaved
library in descending order and determined the first 5% of
this list. Then, the ratios between the raw cleaved and initial
counts were calculated for every spacer in this set. To re-
move outliers that could introduce a bias in the process, we
removed those ratio values that were not between the first
and third quartile of the data. To calculate the normalized
cleaved counts, the remaining ratio values were averaged
and every spacer count in the cleaved library was divided
by this value. The efficiency of a spacer (further referred to
as the cleavage efficiency parameter) was calculated by di-
viding the normalized and the initial counts.

Raw datasets contained three cutting efficiency mea-
surements (from three parallel experiments) and a read
count for each spacer sequence. Spacers with less than 10
initial reads were eliminated. All subsequent analyses in-
volving cutting efficiency data employed the mean of the
three parallel measurements. The raw dataset originally
consisted of 1 667 787 spacers of which 1 222 805 were
left after the removals and were used as the final train-
ing set (Source Data Figure 2 – 1M-library). An indepen-
dent dataset, that initially contained 281 834 spacers of
which 136 556 remained after filtering, was used for test-
ing prediction performance (Source Data Figure 2 – 100K-
library). To test prediction methods with datasets contain-
ing either a balanced or unbalanced composition (see Re-
sults section) spacers were picked randomly from the 100K
test dataset. In case of SpCas9-HF1 three unbalanced test
sets, each containing 330 uncleaved and 4670 cleaved spac-
ers, in case of WT-SpCas9 95 uncleaved and 4905 cleaved
spacers were picked. In case of SpCas9-HF1 the balanced
dataset consisted of 3 × 2360/2360 cleaved/uncleaved
spacer sequences, because there were only 3 × 2360 un-
cleaved sequences available in the 100K library. In case
of WT-SpCas9, the balanced dataset consisted of 3 ×
695/695 cleaved/uncleaved spacer sequences for the same
reason. (Source Data Figure 2 – balanced, unbalanced
datasets).

We used a cutoff value of 0.3 to divide the datasets into
positive and negative sets (i.e. spacers with high and low cut-
ting efficiency, respectively).
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Spacer feature calculations

Standard converted numerical constants for fifty physico-
chemical DNA properties (PCP) were taken from the liter-
ature (46,47). Spacer sequences were divided into overlap-
ping di- or trinucleotides, and their corresponding PCP con-
stants were added to obtain a total PCP value for the spacer.
The free energy of the spacer and of the whole sgRNA was
calculated using the ViennaRNA package 2.4.3. (48).

Calculation of nucleotide composition features (NucCom)

The nucleotide composition feature (NucCom) is an in-
dex number that was used to characterize the expected
sequence-specific cutting ability of a spacer. To generate
NucCom values, first a NucCom dictionary was generated
from the 1M training dataset. The dictionary contained all
possible sequence permutations of a given length along the
span of the 20-nucleotide long spacer (e.g. four nucleotides
in case of NucCom4). Motif values for these subsequences
were calculated by averaging the cutting efficiencies of those
spacers that contained the given motif at the given position.

The NucCom# value for any particular test spacer se-
quence was calculated by summing the differences of the
motif values stored in the dictionary for all positional sub-
sequences contained in the spacer and the mean cutting ef-
ficiency of the training set.

All data manipulation and analysis were performed with
R scripts, using the standard R 3.4.4 distribution with no
external code packages.

A Python script was developed to calculate NucCom4
values for any given spacer sequences and it is available on
Github (https://github.com/welkergroup/HiCRISPR).

Development of Hi-CRISPR B and C

All 154 147 weakly-cutting spacers were collected from the
1M library and in a one-to-two ratio 308 294 well-cutting
spacers were randomly selected to form a balanced SpCas9-
HF1 training set.

For the WT-SpCas9, all 43 204 weakly-cutting spacers
were collected from the 1M library and in a one-to-two ratio
86 408 well-cutting spacers were randomly selected to form
a balanced WT SpCas9 training set.

For-Hi-CRISPR B, twenty-three nucleotide-long input
sequences were built for each spacer sequence includ-
ing 20-bp spacer and 3-bp PAM sequences. The fully
convolutional neural network (CNN) developed by
Chuai et al. (49) was used by employing the script at
https://github.com/bm2-lab/DeepActiveCRISPR/blob/
master/cnn/transfer/ontar raw cnn pretrain.py. The train-
ing was carried out through a hundred epoch.

For-Hi-CRISPR C, the twenty nucleotide-long
spacer sequences were used as input sequences.
The training exploited the neural network built
by H.K.Kim et al. (29) that can be found at
https://github.com/MyungjaeSong/Paired-Library/blob/
DeepCRISPR.info/DeepCas9/DeepCas9 TestCode.py
using a batch size of 700 and an iteration of
2000. The script used for training can be found at
https://github.com/welkergroup/HiCRISPR.

Statistics

Differences between samples were tested using Welch’s one-
way Anova with Games–Howell post hoc tests for samples
with unequal variances and/or sample size and by one-way
Anova with Tukey’s post-hoc test for homoscedastic sam-
ples. Homogeneity of variances was tested by Levene’s test.
Statistical tests were performed using SPSS Statistics v.20
(IBM).

Performance metrics

To assess the performance of the different prediction meth-
ods we used the following metrics. In the equations, TP are
true positive, FP are false positive, TN are true negative, FN
are false negative predictions, MCC is Matthews correlation
coefficient and G-mean is the geometric average of sensitiv-
ity and specificity.

Sensitivity = TP
TP + FN

Specificity = TN
FP + TN

MCC = TP ∗ TN − FP ∗ FN
√

(TP + FP) (FP + FN) (TN + FP) (TN + FN)

G − mean =
√

sensitivity ∗ specificity

Thresholds for each NucCom values were determined as
the value of that specific NucCom where the absolute dif-
ference between specificity and sensitivity was the lowest for
the 100K test library. These thresholds were later applied to
all datasets to calculate performance values.

To calculate sgRNA Designer scores and DeepCRISPR
values, Azimuth (18), and DeepCRISPR v2.0 (49) was used,
respectively. CRISRSPRScan (19), CRISPRater (21), SSC
(22) and sgRNA scorer (20)scores were compiled by Haeus-
sler et al. (50) for literature datasets.

RESULTS

First, we altered the coding sequence of the wild type
sgRNA (Figure 1A), by replacing the 22nd and the 23rd
T nucleotides downstream of the spacer sequence with Gs,
thereby creating an NGG PAM motif to generate a sgRNA
with a self-targeting scaffold (Figure 1B). To maintain the
stem structure the complement strand was also modified.
These sgRNAs cut the plasmid which they are expressed
from when transfected into a cell (Figure 1C). We found
that the self-targeting sgRNAs demonstrated high activ-
ity when expressed in E. coli (data not shown) in line with
lineage-tracing experiments in different species reported
earlier (12,38,39).

Random sequence libraries of self-targeting sgRNAs
were generated with a G nucleotide at position 1 of the
spacer and randomized nucleotides at positions 2–20. We
aimed to study about one-million sequences: this corre-
sponds to the number of all theoretically possible varia-
tions of a 10-nucleotide-long nucleic acid segment (410),
the length of a full turn of the double stranded DNA he-
lix. Three libraries were generated, containing ∼500 000,

https://github.com/welkergroup/HiCRISPR
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Figure 1. Principle of the Self-targeting sgRNA Library Screen (SLS) method. (A, B) Representation of sgRNAs with canonical and self-targeting scaffolds.
Position 22–23 (TT dinucleotides, (green) (A) in the coding sequence of the sgRNA are altered to GG (blue) to generate a PAM motif, resulting in the
construction of a self-targeting sgRNA (B). To maintain the stem structure, the complement strand is also modified. (C) Self-targeting sgRNAs, in contrast
to canonical sgRNAs, target their own coding DNA sequence. The spacer sequence is shown in orange, the PAM in yellow, the sgRNA scaffold in blue, the
plasmid backbone in gray. (D) Flowchart of the SLS method developed to identify SpCas9-HF1’s spacer preference. The plasmids harboring effectively-
cleaved target sequences derived from the one million sequence library are depleted under antibiotic selection. Sequencing both the initial and the nuclease-
processed libraries, cleaved and uncleaved spacer sequences can be identified.

700 000 and 100 000 different spacer sequences respec-
tively (Source Data Figure 2 – 1M-library, Source Data Fig-
ure 2 – 100K-library). The first two combined was used
as the training dataset (1M library) while the third was
used as the test dataset (100K library). Deep-sequencing
of the libraries revealed a distribution slightly skewed to
a lower T-content at all randomized positions, in contrast
to a fully random distribution (Supplementary Figure S1).
The skew decreases the presence of spacers in the library
with long T nucleotide stretches that may become benefi-
cial when the results are translated to a mammalian cell
context. Such sequences act as transcription stop signals for
the RNA polymerase III that is generally used for sgRNA
transcription (51).

We set up a bacterial negative selection system (Fig-
ure 1D) that we named as a Self-targeting sgRNA Li-
brary Screen (or SLS) in which the SpCas9-HF1 express-
ing E. coli cells are transformed with plasmids contain-
ing a self-targeting sgRNA expression cassette. When the
rate of plasmid cleavage outperforms the rate of repli-
cation and repair in the bacterial selection system, the
bacteria cannot grow under antibiotic selection. By vary-
ing the expression level of Cas9 and the copy number of
the target plasmid this threshold activity of Cas9 may be
fine-tuned. For this study, we used a condition, in which
the major fraction of the plasmids can be cleaved, or in
other words, the condition under which a minor fraction
of E. coli cells harbouring the uncleaved library is able
to survive (see Methods). This facilitates the identifica-
tion of factors and motifs that diminish the activity of
SpCas9-HF1.

Assaying the activity of SpCas9-HF1 on a million target se-
quences

The libraries were transformed into SpCas9-HF1 express-
ing E. coli in three parallel experiments. To avoid the even-
tual overgrowth of some clones over others, instead of liq-
uid medium we used 3D semi-solid agarose culture to grow
the bacterial cells (see Materials and Methods). The se-
quences that are effectively cleaved by SpCas9-HF1 are de-
pleted in the survival libraries, while those that are weakly
cleaved are enriched in it. Plasmids were isolated from the
survival cultures and sequenced by deep sequencing (Sup-
plementary Figure S1). In order to characterize the cleav-
ability of each sequence, following the normalization of the
deep-sequencing data, we calculated a cutting efficiency pa-
rameter from the corresponding reads of initial and sur-
vival libraries, with 0 indicating no cleavage, and 1 indi-
cating full cleavage of a sequence (described with more de-
tails in Methods). The parallel experiments showed excel-
lent reproducibility with Pearson’s correlation coefficients
r = 0.92–0.93 (Supplementary Table S2). We also removed
a few additional sequences from the training dataset to en-
sure that there was no overlap between the libraries used for
training and testing. The final library comprised 1 223 805
spacers and was used as the training dataset, while 136 557
spacers comprised the test library and both were divided
into efficiently- and weakly cleaved classes using a cutting
efficiency value of 0.3 as the threshold (Source Data Fig-
ure 2 – 1M-library, Source Data Figure 2 – 100K-library).
Due to the actual performance properties of SpCas9-HF1
in the chosen bacterial selection system, the two classes
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showed a very unbalanced distribution, and the weakly
cleaved classes included only 6.6% of both libraries (Source
Data Figure 2 – 1M-library, Source Data Figure 2 – 100K-
library).

For comparison, we also tested the WT-SpCas9 on both
the training and test libraries, which showed an even more
unbalanced distribution, and the weakly cleaved classes in-
cluded only 1.8% of both libraries (Source Data Figure 2 –
1M-library, Source Data Figure 2 – 100K-library).

We calculated over 60 physicochemical parameters for
the sequences of the training 1M library several of them im-
plicated in earlier studies (27,46,47) including position in-
dependent mono- and dinucleotide content, GC content,
folding energy of the spacer and of the full guide RNA
that are calculated using the ViennaRNA package 2.4.3.
(48), or local GC content. Standard converted numerical
constants for fifty physicochemical DNA properties (PCP)
were adopted from the literature (46,47). Spacer sequences
were divided into overlapping di- or trinucleotides, and their
corresponding PCP constants were added to obtain a to-
tal PCP value for the spacer. A more detailed description
of these parameters is available in (47). Several parame-
ters were identified to correlate with the cutting efficien-
cies of SpCas9-HF1 (a few are shown in Supplementary
Figure S2a), most of them have also been identified dur-
ing the evaluation of WT-SpCas9 (Supplementary Figure
S2b). Very high GC-content tends to decrease the activity
of both WT- and SpCas9-HF1, whereas low GC-content
decreases the activity of SpCas9-HF1 (Supplementary Fig-
ure S2a). Furthermore, we examined the correlation be-
tween the GC-content of different segments of the spacers
and the mean cleavage efficiency of those spacers that con-
tain the segments with identical GC-content. All sequences
included in the segment between positions 6 and 13 with
higher GC content tend to be present in spacers with higher
mean cleavage efficiency, a property that neither has hith-
erto been revealed for SpCas9s, nor has been found here for
WT-SpCas9 (Supplementary Figure S3).

Examining the sequence preferences of SpCas9-HF1 we
found that motifs corresponding or overlapping to the
GTNAC sequence between positions 10–14 have a large ad-
verse impact on cleavage efficiency on SpCas9-HF1, but not
on WT-SpCas9 (Supplementary Figure S4a, b). It is wor-
thy of note that earlier studies, working with smaller tar-
get library sizes of Cas9 nucleases, have not captured such
long motifs (18–20,22,52). A GCC triplet at the 3′ end of
the spacer sequence, (i.e.: in PAM proximal position) has
been identified as the strongest blocking motif for the WT-
SpCas9 (52). Here we found that it also reduces the activity
of both WT- and SpCas9-HF1 (Supplementary Figure S4).
Interestingly, motifs containing a GCC triplet at positions
shifted one or two nucleotides upstream are similarly detri-
mental to the activity of both nucleases that have not been
reported for the WT protein (Supplementary Figure S4a, b).
However, a 3′ TT dinucleotide that was also reported earlier
(52) has no effect, consistent with the different termination
requirements of the transcript in the bacterial cells and the
improved scaffold of the self-targeting sgRNA having no
consecutive T nucleotides downstream of the spacers (Sup-
plementary Figure S4, Source Data Figure 2 – NucCom dic-
tionaries). We found no preference for a cytosine nucleotide

at position 18 at the DNA cleavage site that had also been
reported for the WT-SpCas9 (22). This earlier finding might
reflect the properties of the mammalian NHEJ DNA repair
system (53–55).

Two parameters in particular seem to be most informa-
tive, the free energy of the full sgRNA and the free energy of
the spacer sequence alone (Supplementary Figure S2). The
more stable the structure (the minimum free energy confor-
mation) of either the full sgRNA or the spacer sequence, the
greater the likelihood that WT-SpCas9 and SpCas9-HF1 do
not effectively cut the appropriate target sequence (Supple-
mentary Figure S2). However, sequences with low enough
values of any of these parameters to ensure at least a 50%
probability of not being efficiently cleaved by SpCas9-HF1,
amount to only about half of the weakly cleaved class (Sup-
plementary Figure S2). Thus, they do not seem to provide
sufficiently robust parameters on which to build a reliable
prediction algorithm.

Since SpCas9-HF1 is able to distinguish reproducibly be-
tween the targets of the two classes, we tried to use the se-
quences of the spacers themselves, which must code the fea-
tures that discriminate the good and bad targets. We defined
seven separate predictors named Nucleotide Composition
1–7 (NucCom1 to NucCom7), each based on position-
dependent motifs with identical length from one up to seven
nucleotides long, respectively. At first a value was calculated
for each position-dependent motif (motif-values) from the
cutting efficiencies of those spacers of the 1M library that
contained the given motif at the appropriate position in
the spacer (Source Data Figure 2 – NucCom dictionaries).
Then, the NucCom values were generated for each spacer
using the motif-values of those motifs that are present in
the spacer sequence (as described in Materials and Meth-
ods). Using the experimental data of the 1M library we de-
termined a threshold value for each of the seven NucCom
parameters to divide the training library data into efficiently
and weakly cleaved classes in such a way that sensitivity and
specificity became equal. We used these threshold values to
predict if a sequence in the 100K test library belongs to the
efficiently or weakly cleaved classes by comparing its Nuc-
Com value to the corresponding threshold values (Source
Data Figure 2).

Prediction of the cleavage activity of SpCas9-HF1 on bacte-
rial data

To assess the quality of the classification on the 100K test li-
brary we used Matthews correlation coefficient (MCC, (56))
and G-mean (that is the geometric average of sensitivity
and specificity, (57)) to provide a balanced assessment. In-
creasing the lengths of the motifs up to four nucleotides
(NucCom4) improves the MCC (Figure 2A) and the G-
mean (Figure 2B) values of the predictions for the 100K li-
brary reaching impressive G-mean values of 0.86 (Figure
2B). Similar results were achieved with WT-SpCas9 with
G-mean values reaching 0.86 (Supplementary Figure S5a
and b). Since the G-mean values decrease employing pre-
dictors that exploit longer motifs (>4) on the 100K library
while they keep rising for the training set, we concluded that
the size of the library is sufficiently large to allow four nu-
cleotide motifs to generate reliable (stable) predictors (Fig-
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Figure 2. Prediction performance of Hi-CRISPR predictors on target-library data. (A, B) Binary classification results on the 1M training (plain bars)
and on the 100K test libraries (chequered bars). NucCom 1–7 are position-dependent short (one to seven base long) motif-based predictors developed
using the 1M library data. The quality of the classifications is assessed by the Matthews correlation coefficient (MCC) (A) and G-mean (i.e. the geometric
average of sensitivity and specificity) (B). Increasing the lengths of the motifs up to four or seven nucleotides improves the G-mean and the MCC values
of the predictions, respectively, on the 100K test libraries. (C, D) SpCas9-HF1 predictions developed in this study are compared on three, either balanced
(50% efficiently cleaved, 50% weakly cleaved spacers – striped bars) or unbalanced (93.4% efficiently cleaved, 6.6% weakly cleaved – plain bars) target
pools randomly selected from the 100K test dataset. Hi-CRISPR A (NucCom4 shown on A and B), Hi-CRISPR B (Deep-learning scheme based on (49))
and Hi-CRISPR C (Deep-learning scheme based on (29)). MCC (C), but not the G-mean (D) values are sensitive to whether balanced (striped bars) or
unbalanced (plain bars) datasets are used. Columns represent means ± SD of the predictions on the three datasets.

ure 2). We therefore chose NucCom4, named Hi-CRISPR
A hereafter, for subsequent studies.

To simplify testing, but also to see how different com-
positions of the two target classes in the test libraries in-
fluence prediction quality, we randomly picked a few thou-
sand sequences from the 100K test dataset to obtain bal-
anced (half of them effectively-cleaved and half weakly
cleaved sequences) and unbalanced datasets (with 6.6% and
1.8% weakly cleaved sequences for SpCas9-HF1 and WT-
SpCas9, respectively) and used these datasets for testing the
algorithms. In addition to the Hi-CRISPR A algorithm, we
applied a hybrid deep neural network built for developing
DeepCRISPR (49) (Hi-CRISPR B) and a neural network
used as the base model architecture to build DeepSpCas9
(29) (Hi-CRISPR C). The predictions reached G-mean val-
ues as high as 0.92 for SpCas9-HF1 on these data gener-
ated independently from the training data (Figure 2C, D).
For WT-SpCas9 these values are lower presumably due to
the highly unbalanced nature of the training WT data (Sup-
plementary Figure S5c and d). The figures also show com-
parison with the best WT-SpCas9 prediction tools. Notably,
in case of each prediction algorithm used, the MCC values
differ greatly between the balanced and unbalanced sets (e

g. 0.74 versus 0.28 for Hi-CRISPR A), while the G-mean
values are similar. To decrease the dependence of the eval-
uation on the composition of the datasets we used G-mean
in further experiments.

Comparing the cleavage activity of SpCas9-HF1 in mam-
malian and bacterial cells

Next, we were curious to know whether the cleavage ac-
tivity results found in this bacterial system are relevant to
the activity of SpCas9-HF1 in mammalian cells. We chose
57 sequences that had been tested in the bacterial system
(Figure 3A, Source Data Figure 3), representing both ef-
ficiently cleaved and weakly cleaved sequences, and com-
pared their activities on the same set of target sequences in
mammalian N2a cells exploiting a plasmid-based GFxFP
fluorescence-recovery assay we had used earlier (40,58). The
assay exploits two GFP halves with overlapping sequences.
The cleavage between the two halves induces DNA SSA
repair that results in the formation of a functional GFP
coding sequence (Supplementary Figure S6). The results of
these experiments do not reveal much difference between
the mammalian and bacterial activity of SpCas9-HF1 (Fig-
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Figure 3. Self-targeting sgRNA Library Screen (SLS) results provide information relevant to the activity data in mammalian cells. (A) Fifty-seven targets
were picked from the bacterial selection library containing both efficiently (20) and weakly (37) cleaved targets and were tested in mammalian N2a cells in
a plasmid context using the GFP recovery assay (GFxFP assay). Sequences that were more efficiently cleaved in the bacterial system (blue dots) were also
more efficiently cleaved in the GFxFP assay, compared to the weakly cleaved ones (red dots). The difference between the cleaved and uncleaved target groups
are statistically significant (P < 0.0001, independent samples t-test with Kolmogorov–Smirnov’s normality test). Dots on the figure represent the means of
three parallel transfections, for each of which the background GFP signal of the negative controls has been subtracted from that of the SpCas9-HF1 treated
samples. (B, C) Validation of motifs that have an adverse effect on the activity of SpCas9-HF1 identified by SLS on a 50 000 target sequence library (59).
Heatmaps show the deviations in the average indel-inducing ability of SpCas9 variants on target sequences containing the indicated motifs versus those
that do not contain them. The motifs are the 15 most unfavourable sequences among the four (B) and five (C) nucleotide-long motifs identified by SLS
for SpCas9-HF1 (see Supplementary Figure S4a and b). Data show that these motifs are unfavourable for the activity of SpCas9-HF1 in mammalian cells
too. Some of the motifs affect the two increased-fidelity variants only (upper panel), while the others affect all variants. (D) Comparison of Hi-CRISPR
predictions with DeepHF on five data sets tested in other studies (31,32,34,65) and on the DeepHF library (59) used for training the DeepHF tool as
assessed by G-mean values. The predictors compared are Hi-CRISPR A (magenta), Hi-CRISPR B (blue), Hi-CRISPR C (yellow) and DeepHF (black).

ure 3A): only three out of the 57 sequences fell into different
classes when comparing the data derived from the two sys-
tems. This agreement between the bacterial and mammalian
experimental data suggests that the different cellular milieu
of each system does not, by itself, significantly influence the
activity of SpCas9-HF1. The expression from a mammalian
promoter (human U6) and the stability of these sgRNAs in
mammalian cells are either not significantly different from
the bacterial ones or these are not the major determinants
for the mammalian SpCas9-HF1 activities in these experi-
ments.

We also compared the impact of the difference between
the self-targeting and canonical sgRNA scaffold on the
cleavage activities of SpCas9-HF1 in the GFxFP recovery
assay. The activities of SpCas9-HF1 on 20 targets showed
excellent correlation (r = 0.98), indicating that the target
sequence specificities of SpCas9-HF1 in mammalian cells
are mainly determined by the characteristics of the mu-

tant protein, rather than by the differences between the self-
targeting and canonical sgRNA scaffold (Supplementary
Figure S7).

During the preparation of this manuscript, a new study
has provided SpCas9-HF1 cleavage activity data on ∼50
000 mammalian genomic target sequences and has reported
on the development of a prediction algorithm, DeepHF, for
the prediction of SpCas9-HF1 activity (59), which facili-
tates further assessment of our approach.

First, we assessed whether the effect of the sequence mo-
tifs that mostly affect the activity of SpCas9-HF1 revealed
in the one-million bacterial data (as previously shown on
Supplementary Figure S4a and b) are also discernible in
the DeepHF mammalian data set. We selected those motifs,
either four or five nucleotide-long, for which we found the
lowest 15–15 motif-values and averaged the cutting efficien-
cies of those target sequences of the DeepHF data set, which
contain the given motif. If the motif also has a strong ad-
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verse effect on the mammalian activity of SpCas9-HF1, the
average cutting efficiencies of the selected, as well as of all
targets should be clearly different. Indeed, they are (Figure
3). Both the four (Figure 3B) and five base-long motifs (Fig-
ure 3C) can be clustered into two groups on the mammalian
data. One group involves the last four or five (PAM prox-
imal) nucleotides of the target sequences and has a strong
adverse effect on the activities of both the WT and the high-
fidelity variant. Some of these motifs, that reduce the ac-
tivities of the mammalian targets to 19%, contain the GCC
triplet in positions 18–20, which had previously been identi-
fied as having a similar effect for the WT protein (52). Inter-
estingly, most of the rest also contain a GCC triplet, but in
positions 16–18 or 17–19, which are equally unfavourable,
although these had not been identified for the WT protein
in previous studies (Figure 3).

The other group of the motifs has an adverse impact only
on the activities of SpCas9-HF1 without any discernible ef-
fect on the activity of the WT-SpCas9. Most of these be-
long or overlap with the GTNAC motif between positions
10–14 of the spacer (Figure 3B and C). To see if the effect
of these motifs is specific to SpCas9-HF1 or may have a
more general effect on other increased fidelity SpCas9 nu-
cleases, we analysed the eSpCas9 cleavage data of these 50
000 sequences (59). The first group of the motifs decreases
the activity of eSpCas9 similarly to that of WT and SpCas9-
HF1. The effect of the second group is also discernible, but
its extent is about half of that seen on the SpCas9-HF1
data (Figure 3B and C). Next, we examined whether the se-
quence motifs that proved to be the best in the one-million
SpCas9-HF1 bacterial cleavage data are also discernible in
the DeepHF mammalian data set. The effect of the best
15, either four (Supplementary Figure S8a) or five (Supple-
mentary Figure S8c) base-long motifs is, on average, smaller
than that of the unfavourable motifs for both increased fi-
delity variants and is comparable to that found in the bacte-
rial library (Supplementary Figure S4c and d). However, ex-
ploiting randomly-selected motif-sets revealed that in con-
trast to the most unfavourable motifs (Supplementary Fig-
ure S8e and g), these effects, are not statistically significant
(Supplementary Figure S8b, d, f, h). Thus, these analyses
of the mammalian data show that the motifs identified in
the bacterial cleavage data influence the activity of SpCas9-
HF1 similarly, and partially affect the activity of eSpCas9
in mammalian cells (Supplementary Figures S4 and S8).

The accuracy of the mammalian on-target activity predic-
tions of SpCas9-HF1 matches those of WT-SpCas9

We applied the Hi-CRISPR predictions trained on 1M bac-
terial sequences to test their performance on mammalian
cleavage data in comparison with DeepHF (59). We com-
piled five smaller datasets generated in other studies, and
the 50 000 target cleavage data used to develop the DeepHF
prediction. The four prediction algorithms exhibit similar
performances for these datasets, with Hi-CRISPRs reach-
ing slightly higher average G-mean values on the five smaller
datasets (0.86–0.89 versus 0.83 for all Hi-CRISPRs and
DeepHF, respectively). As expected, DeepHF performed
better on the large dataset on which it was trained (Fig-

ure 3D). The performance of Hi-CRISPRs and DeepHF
on these datasets is well in the range of the performances of
the best wild type SpCas9 prediction algorithms (Supple-
mentary Figure S9). Indeed, when tested on the same five
target sets but cleaved by the WT-SpCas9, DeepWT (59),
which exhibited the best performance among the wild type
prediction algorithms reached an average G-mean value of
0.81 (Supplementary Figure S9). Interestingly, the perfor-
mance of these prediction algorithms exhibits considerable
data set-dependent variability (Supplementary Figures S9
and S10) that makes it difficult to decide which prediction
algorithm is the best in general.

Although a direct comparison on the same data is not
possible, taken together, the results demonstrate that the
performance of our SpCas9-HF1 prediction algorithms
clearly reach a performance level generally achievable by the
prediction algorithms for the WT-SpCas9 on mammalian
genomic sequences.

Self-targeting sgRNAs can also be generated for the non-
canonical PAM specificity of SpCas9 and for its orthologs

As a proof of principle, we tested whether SpCas9’s non-
canonical PAM specificity (NAG PAM instead of NGG)
would also be compatible with our approach (60,61). Mu-
tation in the self-targeting sgRNA’s PAM to NAG was gen-
erated that showed wild type SpCas9-like activity in E. coli
with a single spacer that had previously been tested in mam-
malian cells (Supplementary Figure S11). We generated a li-
brary of self-targeting sgRNAs with NAG PAM and found
that WT-SpCas9 cleaved only 37% of the targets (Supple-
mentary Figure S11). These experiments suggest that the
sequence selectivity of other altered PAM specificity Cas9
variants could also be determined by the SLS method.

Several orthologs of SpCas9 have also been shown to be
active in mammalian cells. However, from among them a
target-selectivity prediction tool has only been developed
for SaCas9 (28). We were intrigued to test if self-targeting
sgRNAs can be generated for other orthologues as well.
Type II-C Cas9 orthologues are particularly interesting be-
cause their small size makes them especially suitable for
AAV delivery (62). We tested Neisseria meningitidis Cas9
(NmCas9), to see whether, despite being structurally and
evolutionarily remote from SpCas9, it shares a similar tol-
erance toward mutations in its stem sequences immediately
downstream from the spacer to that shown by SpCas9. We
followed the same rationale as with SpCas9-HF1 previously
(Figure 1): we altered the stem sequences of the crRNA
and the corresponding nucleotides of the tracrRNA to con-
tain a PAM sequence motif (NNNNGATT). We found that
the self-targeting crRNA thus constructed, paired with the
tracrRNA, enables the nuclease to demonstrate WT-like ac-
tivity in E. coli, while a wt crRNA - self-targeting tracrRNA
pair does not show activity, even though the correspond-
ing protospacer-PAM target sequence is also placed on the
plasmid (Supplementary Figure S12). These results suggest
that many Cas9 orthologs may also be compatible with self-
targeting sgRNAs and that their sequence specificity could
be determined by our approach.
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DISCUSSION

To reveal the full potential of RNA-guided nucleases for
genome engineering it would be extremely beneficial to un-
derstand their sequence selectivity, as well as to have accu-
rate in silico on-target prediction tools. Former mechanis-
tic studies of SpCas9-HF1 exploited only a limited num-
ber of targets, altogether not exceeding a couple of hundred
sequences, until most recently Wang et al. reported an im-
pressive 50 000 sequences mammalian data set (59). Still,
the advance that our study provides in generating cleavage
activity data on more than one million sequences is appar-
ent. Further advantages of the SLS approach include the
much lower cost and effort necessary to deliver such enor-
mous amounts of data. Since a major bottleneck in achiev-
ing prediction for Cas9 variants and orthologs is the paucity
of accurate cleavage activity information, for which we have
revealed a solution here, we expect that our approach will
facilitate the understanding of the sequence specificity of
a great number of orthologs and mutant variants of Sp-
Cas9, including other increased fidelity nucleases and/or
PAM-altered alternatives, as we demonstrated on targets us-
ing both the NmCas9 nuclease (Supplementary Figure S12)
and the alternative NAG PAM with SpCas9 (Supplemen-
tary Figure S11).

It is somewhat surprising that a prediction tool developed
on bacterial data performs so well on mammalian cleav-
age activities, providing predictions comparable in quality
to those developed using mammalian data (Figure 3D). We
think this is attributable to a balance between the favourable
effect of the much higher number of targets used in our ap-
proach and the unfavourable effect of the differences be-
tween the bacterial system used for training and the (mam-
malian) systems used for testing. Our data rather suggest
that the difference between Cas9 activities in the bacterial
and the mammalian cells, is not as large as the difference
between the specific conditions of the actual experiments.
In mammalian cells the readout is not the cleavage activ-
ity of SpCas9 per se, but rather the outcome of erroneous
DNA repair (i.e., when the original sequence is altered). The
error-prone repair outcome is strongly affected by the ac-
tual sequences around the double stranded breaks inflicted
by Cas9 nucleases when indels are monitored (53–55). In
contrast, local sequence features may influence the repair
outcome less when the breaks are repaired by homology-
directed repair. At present an efficacy prediction algorithm
for SpCas9 is expected to forecast the cleavability of se-
quences regardless of species and cell types, DNA repairs,
readout or transfection efficiencies involved in the actual ex-
periments. These factors may affect the performance of the
prediction algorithms as much as the bacterial environment.

Our data suggest that SpCas9-HF1’s altered sequence
preference is localized primarily in the middle region of the
spacer (Figure 3B, C; Supplementary Figures S3 and S4). It
is interesting that eSpCas9 seems to share this feature (Fig-
ure 3B, C). The finding that the protein prefers a slightly
higher GC-content in the middle region (positions 6–13) of
the spacer compared to other regions (Supplementary Fig-
ure S3) seems plausible in light of its design (to destabilise
the RNA–DNA hybrid helices during target recognition
and cleavage), since favouring slightly higher GC-content

in this region might counteract these effects. In general, the
target binding of SpCas9-HF1 is not altered (32,34), rather
the mutations regulate its target cleavage activity and re-
strict the transition of the nuclease from the conformational
checkpoint during the target recognition/cleavage process
(63). Our data suggest that the middle region of the spacer
sequence may be a critical region affecting the ability of the
high-fidelity nuclease to acquire its cleavage competent con-
formation.

Our method is suited to identify the sequence features
that strongly inhibit SpCas9-HF1 cleavage. Thus, it can
better identify sequences that should be avoided, rather
than distinguishing between sequences that give average or
higher than average activity. It does not fit very well to de-
velop wild type SpCas9 cleavage activity prediction due to
the very unbalanced nature of the generated data, however,
it seems to be suitable for developing target cleavage efficacy
prediction for orthologs and variants of SpCas9, since they
are active on less targets (34,64).

DATA AVAILABILITY

The following plasmids used in this study are available
from Addgene: pAT-9208 (#124221), pAT-9218 (#124225),
pAT-9222 (#124222), pAT-9218 (#124225), pAT-9251
(#124226), pKH-1699 (#124227).

The deep sequencing data have been submitted to the
NCBI Sequence Read Archive under accession number PR-
JNA643977.

The Hi-CRISPR A, B and C prediction algorithms
are available from https://hicrispr.welkergroup.hu
and the codes are deposited at Github: https:
//github.com/welkergroup/HiCRISPR.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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