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Abstract: Colorectal cancer (CRC) remains one of the deadliest malignancies worldwide despite
recent progress in treatment strategies. Though immune checkpoint inhibition has proven effective
for a number of other tumors, it offers benefits in only a small group of CRC patients with high
microsatellite instability. In general, heterogenous cell groups in the tumor microenvironment
are considered as the major barrier for unveiling the causes of low immune response. Therefore,
deconvolution of cellular components in highly heterogeneous microenvironments is crucial for
understanding the immune contexture of cancer. In this review, we assimilate current knowledge
and recent studies examining anti-tumor immunity in CRC. We also discuss the utilization of novel
immune contexture assessment methods that have not been used in CRC research to date.

Keywords: colorectal cancer; anti-tumor immunity; bioinformatics; tumor microenvironment; im-
mune surveillance

1. Introduction

Colorectal cancer (CRC) is a leading cause of cancer-related death among men and
women worldwide and the second leading cause of cancer death in the United States [1,2].
Patients diagnosed with metastatic disease, approximately 40% of patients, have only
a 14% 5-year overall survival despite recent improvements in therapy [1]. Thus, there
remains a critical need for improved therapy and understanding of therapeutic resistance
in CRC, particularly for metastatic disease. Immune-based therapy, particularly in the
form of immune checkpoint inhibition, has dramatically improved survival in a number of
difficult-to-treat malignancies, such as melanoma, non-small cell lung cancer, and renal cell
cancer [3]. However, due to the high inter-patient and intratumor heterogeneity of CRC, im-
mune therapy is effective in only a small minority of patients. In CRC, immune checkpoint
inhibition therapy has proven to be effective primarily in patients with tumors exhibiting
high microsatellite instability (MSI-H) [4,5]. These tumors are characterized as having
high tumor mutational burden, increased tumor-associated neoantigens, and increased
tumor-infiltrating lymphocytes (TILs), which is thought to be the reason for the observed
immune responses [6,7]. CRC treatment requires controlling tumor cell growth as well as
activating the tumor microenvironment (TME) to promote anti-tumor immunity (Figure 1a).
The immune system responds to tumors in both positive and negative ways (Figure 1b,c).

Int. J. Mol. Sci. 2021, 22, 4802. https://doi.org/10.3390/ijms22094802 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-8707-3007
https://orcid.org/0000-0002-8054-7027
https://orcid.org/0000-0001-9197-9522
https://orcid.org/0000-0003-3425-2356
https://orcid.org/0000-0002-7656-0982
https://orcid.org/0000-0002-5385-7038
https://doi.org/10.3390/ijms22094802
https://doi.org/10.3390/ijms22094802
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22094802
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22094802?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 4802 2 of 17

Therefore, deconvolution of cellular components in the highly heterogenous TME is crucial
for understanding anti-tumor immunity in cancer. Previous studies have emphasized
that different subsets of tumor-infiltrating immune cells (TIICs) are correlated with cancer
development and progression. However, different experimental approaches have led to in-
consistent results in terms of TIICs contribution to CRC clinical outcomes [7–10]. In-depth
assessment of patients’ tumors using next-generation sequencing (NGS) technology, access
to publicly available data, and emerging biomedical informatics approaches have brought
into question some of the theories proposed based on conventional methods of tumor
immunology research [11–16]. Additionally, high-throughput genomic technologies such
as tumor microenvironment cell estimation methods, single-cell sequencing, and spatial
transcriptomics enable the emergence of new domains in onco-immunology that enhance
our understanding of CRC [14,17–19].

Figure 1. Schematic representation of the tumor microenvironment and its cellular composition.
(a) Tumor microenvironment. Graphic representing various cellular components of vasculature
and tumor microenvironment [20]. (b,c) Immune cell composition in the tumor microenvironment:
cellular and molecular components involved in pro-inflammatory, tumor-killing activity (b) and
anti-inflammatory, immunosuppressive, tumor-promoting activity (c) [21].

Considering its therapeutic promise for a subset of CRC patients and numerous other
malignancies, immunotherapy represents a major area of CRC treatment development.
However, in many patients, the molecular basis of immunotherapy resistance remains
elusive. In general, heterogenous cell groups in the TME are considered the major barrier
for unveiling the causes of low immune response. Advances in technologies that can be
utilized for immune profiling to the single-cell level have the potential to revolutionize the
understanding of the mechanisms of anti-tumor immune response and clarify causes of
heterogeneous responses to immunotherapy. In this review, we consolidate knowledge
about current and prospective methods for the study of anti-tumor immunity in CRC.
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2. Conventional Methods of Immune Contexture Estimation in CRC
2.1. Histology-Based Methods

The historically predominant method for the quantification of immune cell infiltration
in cancer has been by histopathologic evaluation of tumor tissue. These methods have
primarily been used to obtain characteristics such as size, histological grade, depth of
invasion, tissue integrity, evidence of proliferation, and lymphovascular invasion. This
standard evaluation is utilized as a clarification system for tumor staging and is generally
focused on the tumor cells rather than the effect of the host immune response. However,
histopathological examination of hematoxylin and eosin (H&E) stained formalin-fixed
paraffin-embedded (FFPE) sections does enable detection of lymphoid immune infiltra-
tion. The first assessment of tumor-infiltrating lymphocytes (TILs) in rectal cancer with
a semi-quantitative H&E-based scoring system was published in 1986 [22]. Using this
method, survival was predicted based on the level of lymphocytic infiltrate, which was
scored as little/none, moderate, or pronounced. Another scoring method based on a semi-
quantitative H&E assessment is the Klintrup–Makinen (KM) score [23]. The inflammatory
cell reaction was estimated in H&E stained sections in central areas of each tumor and at the
invasive margin. The resulting classification of inflammatory cell response had prognostic
significance [24,25].

Immunohistochemical (IHC) analysis is another image-based analysis; however, this
allows for a more detailed characterization of TIICs. More specifically, IHC is an antibody-
based system that detects and marks certain subsets of immune cells in the tumor mi-
croenvironment (TME). Cells commonly identified to establish the contexture of the tumor
environment are typically the subject of this analysis, such as tumor-infiltrating T cells
(CD3+), helper T cells (Th, CD4+), cytotoxic T-cells (Tc, CD8+), memory T cells (Tm,
CD45RO+), macrophages (TAM, CD68+), and PD-1+ T-cells, among others. Some of the
earliest studies demonstrating the importance of T cell infiltration on disease recurrence
and survival were on colorectal cancer, revealing the prognostic value of CD3+ T-cell
infiltration on progression [26,27]. Further, the same group expanded on this method to
quantify Tc and Tm cells in the tumor microenvironment. They not only found a significant
correlation between the infiltration of these specific cells but also that the location of the
cells in the tumor (center or invasive margin) predicted patient survival and recurrence
after surgical resection [27]. The marriage of this technique with digital pathology then led
to the development of the Immunoscore, which is based on the quantification of CD3 and
CD8 positive T cells, their density, and their location [7]. The Immunoscore has demon-
strated significant prognostic value validated in multiple studies internationally and has
been suggested as an adjunct to the tumor–node–metastasis system, although it is not
currently used widely in the clinic [28]. Building on the techniques of IHC is another
method known as immunofluorescence (IFC). Immunofluorescence, as suggested in the
name, uses fluorescent-labeled antibodies in a similar way as IHC; however, images must
be acquired using a fluorescent microscope [29]. Using this method and specific equipment,
such as a confocal microscope, cells can be identified by the expression of multiple markers
(Figure 2) [30,31]. Additionally, as in IHC, the location of cells can be marked in the TME,
as well as information such as proximity to vascular structures [32]. This method also has
been used for ex vivo profiling of tumor-derived organoids, as known as tumoroids, to
establish the relevant architecture and expression of cell surface molecules [33]. In these
systems, IFC can also be used to measure cell proliferation and death [33,34].

A significant limitation of the above techniques of IHC and IFC is that they are
unable to look at more than a few markers on each slide. In response to increasing
demand to simultaneously detect multiple markers from one tissue section, multiplexed
IHC/IFC (mIHC/IFC) techniques have been developed and adopted in both research and
clinical settings [35]. Generally, mIHC utilizes chromogenic and fluorogenic techniques. In
chromogenic mIHC, markers are identified using antibodies raised in the same or different
species that are directly labeled with different chromogens [36,37]. The number of markers
is limited to four due to a narrow visible spectrum. Fluorogenic mIHC uses tyramide signal



Int. J. Mol. Sci. 2021, 22, 4802 4 of 17

amplification, which covalently labels the tissue section with fluorescent immunostains
for each marker. The process is repeated through several rounds of antibody stripping.
Fluorogenic mIHC enables the detection of up to six markers in a tissue section [38]. The
mIHC/IF is widely used in cancer immunotherapy research. Thus, in a recent review of the
methods for prediction of clinical response to anti-PD-1/PD-L1 therapy, mIHC/IF method
had significantly higher diagnostic accuracy than PD-L1 IHC, tumor mutational burden,
or gene expression profiling [39]. This method has become particularly useful for CRC
research and immune profiling [40–44].

Figure 2. Examples of using immunofluorescence. (a) Live–dead cell staining for MC38 cell lines
cultured in AIM 3D Chip. (b) Immunostaining of MC38-tumor-derived spheroids. Spheroids were
stained with conjugated antibodies targeting panCK, CD4, and CD8 (overnight at 4 °C). Hoechst
33,342 was used to label nuclei. Images were taken using a fluorescence microscope.

2.2. Cytometry-Based Methods

Another technique that allows for the measurement of cell characteristics, such as size
and granularity, as well the expression of specific proteins, is fluorescence-activated cell
sorting (FACS) or flow cytometry (FC). In this technique, similar to IFC, cells are labeled
with monoclonal antibodies bonded to fluorescent molecules [45,46]. Using microfluidics,
cells are then organized singularly in a stream and exposed to different wavelengths of
light to measure the expression of specific markers in a single-cell manner. Given the
ability to measure the characteristics of individual cells in the TME, this is an excellent
modality for determining specific tumor-associated populations [47,48]. Scurr et al. used
flow cytometry to analyze Tregs in CRC and revealed that tumors contained more highly
immunosuppressive CD4+FOXP3- Treg-like cells compared to normal colon tissue or
blood [49]. Additionally, they were able to demonstrate that this population of cells
expressed CD39, cytotoxic T-lymphocyte antigen (CTLA-4), and produced IL-10 and TGF-
beta, a key finding in demonstrating the importance of these cells in CRC. Other groups
have utilized flow cytometry to successfully identify several subsets of immune cells in
colorectal cancer. Girardin et al. revealed a lower frequency of effector T cells (CD8+CD69+)
but a higher frequency of both regulatory (CD25hi Foxp3+) and inflammatory helper T
cells (IL-17+) compared with normal bowel tissue [50]. Another study showed that T cells
in the TME produced more IL-17 and less IL-2 per cell than T cells from non-tumor-bearing
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tissue [51]. Building on the ability to identify single cells, FACS can also be utilized to
separate out specific cells in a sterile manner for further experiments. This type of analysis
has been critical for the identification and delineation of the characteristics of cells such
as myeloid-derived suppressor cells (MDSC) in CRC [52]. However, the overall power of
FC and FC-associated cell sorting is limited by the overlapping emission spectra of the
fluorochromes [53].

Mass cytometry circumvents the limitations of flow cytometry with the concept of
labeling cells with heavy metal isotopes instead of fluorescent labels. Also known as
cytometry by time-of-flight (CyTOF), this method combines the high throughput of flow
cytometry and the fine resolution of mass spectrometry. This attribute limits interaction
between overlapping light emission spectra and significantly expands the number of mark-
ers that can be measured, as the only limitation is the number of heavy metals that can be
used. Utilized in immunoprofiling of CRC, CyTOF was utilized to reveal that the presence
of EpCAM+ CD4+ T cells might be a sign of colon cancer development [54]. Expanding
on the ability to undergo high fidelity analysis, another group used CyTOF to evaluate
murine colon adenocarcinomas and identify the critical cells involved in response to PD-L1
along with other immune-based therapy, such as anti-LAG3 and ICOS agonism [55]. These
findings were confirmed using selective markers in human CRC with FC. This method
has also been used as a way to confirm the high fidelity results associated with single-cell
genomics studies we describe later, such as to characterize the immune infiltrate associated
with normal and colitic colons in patients with ulcerative colitis [56]. However, CyTOF is
limited by the method in some ways. The cells are necessarily destroyed during the process
of measuring the markers, so there is no option for downstream functional studies as they
can be completed with FC associated sorting methods. As with single-cell-based genomic
techniques, CyTOF also requires significant downstream data wrangling but is a useful
method for biologic studies, particularly when paired with other methods.

3. Transcriptome Analysis Using Next-Generation Sequencing

The emergence of NGS technologies along with comprehensive and coordinated ef-
forts to obtain human tissue samples (e.g., The Cancer Genome Atlas (TCGA)) enabled the
characterization of multidimensional maps of genomic changes in common cancers [57].
Availability of such comprehensive information opened the era of data-driven bioinfor-
matics tools [58]. Particularly, in combination with knowledge regarding cancer immunity,
this combination of data and tools has opened the door to greater study of tumor-immune
cell interaction mechanisms. Fakih et al. discovered a subcohort of patients with high
CD8+ T cell infiltration and poor clinical outcomes re-analyzing CRC patients’ data from
TCGA [59,60].

The first mathematical methods of cell type quantification from transcriptomic data
started appearing at the beginning of this century [61]. Gene Set Enrichment Analysis
(GSEA) was used to score immune cell subsets in heterogeneous samples based on previ-
ously established transcriptomic signatures for certain subclasses of immune cells both
in normal tissue and cancer [62,63]. Using these techniques, Angelova et al. developed
31 custom gene sets for TIL assessment in CRC patients [64]. With this same approach,
Charoentong et al. established 28 pan-cancer immune sets for 10 different solid tumors [65].
Next, deconvolutional methods for TILs quantification began to emerge. Estimation of
STromal and Immune cells in MAlignant Tumours using Expression data’ (ESTIMATE)
uses single sample GSEA (ssGSEA) to calculate immune and stromal scores to predict
the levels of immune and stromal cells infiltration and infer tumor purity [66]. Using
ESTIMATE on the CRC progression dataset, Liu et al. showed that decreased levels of
immune scores in primary and metastatic CRC compared to a normal colon correlate with
cancer progression [67].

Starting from linear regression-based heuristic algorithms, highly accurate tools for
identifying cell subpopulations in the TME were developed [68–71]. The Tumor Immune
Estimation Resource (TIMER) web-server allows to comprehensively investigate molecular
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characterization of tumor–immune interactions. In their original paper, Li et al. calculated
levels of six tumor-infiltrating immune subsets for 10,897 tumors from 32 cancer types,
forming a basis for estimation of tumor-infiltrating immune cells’ abundance. To predict
the abundance score, they apply a constrained least-squares fitting on the expression
of the genes that are negatively correlated with tumor purity [72]. In 2020, the authors
published TIMER version 2.0, which uses six state-of-the-art algorithms for more robust
estimation of immune infiltrating levels. Additionally, there are modules for exploration of
the associations between the levels of immune infiltrates and genetic or clinical features as
well as cancer-related associations in the TCGA cohorts [73].

Cell-type Identification by Estimating Relative Subsets of RNA Transcripts (CIBER-
SORT) uses support vector regression and allows for the estimation of the relative pro-
portions of 22 immune cell subtypes within heterogeneous tumor samples [74]. Using
CIBERSORT as a tool for TILs quantification in TCGA CRC cohorts, Zhao et al. con-
firmed immunoscore independent prognostic values [75]. A different team, using similar
methods, revealed that a high density of infiltrating tumor-associated neutrophils (TANs)
was associated with better prognosis in CRC patients while a high number of Tregs and
tumor-associated macrophages (TAMs) had shorter disease-free and overall survival [76].
Although the CIBERSORT method is useful for intratumor heterogeneity assessment, it
has limitations in intertumor comparisons. This method relies on the relative quantity
of specific mRNA transcripts so it provides an estimate of the relative percent of specific
cell types within a tumor, but this measure is not readily extended to compare cellular
composition between patients [77]. In contrast, the Microenvironment Cell Populations
counter (MCP-counter), a methodology also based on gene expression, has demonstrated
greater utility for quantifying cell subpopulations proportionally to the amount of cells
within a tumor, allowing inter-sample comparison [78]. MCP-counter has been being used
in exploratory analyses of consensus molecular subtypes (CMSs) in CRC [79–81]. This
method was used to demonstrate that the CMS1 subgroup was highly enriched in cytotoxic
T cells and had high immune checkpoint expression along with an IFNγ signature, high
class I major histocompatibility complex (MHCI) antigen expression, moderate inflamma-
tion, and angiogenesis, consistent with the initial findings of CMS grouping authors [82].
Additionally, further assessment of the TME using these methods revealed the absence
of IFNγ and high inflammatory, angiogenic, and fibroblastic invasion in CMS4 patients,
shedding light on the poor response to immune therapy in these patients [77]. Another
study utilizing the MCP-counter showed that TP53 mutation in addition to a CMS profile
has immunobiological associations with prognostic and potentially immunotherapeutic
implications [83]. Becht et al. utilized the MCP-counter and reported that the MSI-like
CMS1 subgroup contained higher densities of CD8+ and CD68+ cells compared to canoni-
cal CMS2 and metabolic CMS3 subtypes with intermediate prognosis, which exhibit low
immune and inflammatory signatures. The presence of cytotoxic T cells and low expression
of fibroblast-related genes, which is associated with low presence of cancer-associated
fibroblasts (CAFs), is correlated with good prognosis and, therefore, with the most valuable
outcome for the patients [83]. Using the MCP-counter along with pathway enrichment
analysis, Shen et al. demonstrated significant differences in cytotoxic lymphocyte (CTL)
invasion in CRC patients based on the location of the tumor and the stage and found
conserved pathways of immune dysregulation associated with survival [6]. Additionally,
they found that patients with CTL deficient right-sided metastatic CRC had the most
pathways associated with survival; particularly important as these are the patients with
the poorest survival in all subgroups.

Due to the availability of bulk transcriptomic data and cost-effectiveness of analysis,
the methods described above remain prevalent in anti-tumor immunity assessment. How-
ever, those methods are limited in some cases related to the detection of rare or unknown
cell types. Moreover, mRNA expression does not always directly correlate to protein
levels [84–86]. Newer methods focused on single-cell technology attempt to improve on
these limitations, which we will discuss below.
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4. Analysis of TME on Single-Cell Level
4.1. Single-Cell Transcriptomic, Genomic, and Proteomic Analysis

Previously described FC and IHC methods have been used for immune profiling for
many years. Recently, however, these techniques have been expanded in combination
with a number of NGS-based technologies such as single-cell transcriptomics, genome
or epigenome sequencing, and advanced analytic approaches. These newer technologies
provide high-throughput methods that enable obtaining full genetic information from
millions of cells, making it a natural fit for tumor heterogeneity studies and particularly
studies of the immune microenvironment in cancer.

Computational analysis of intratumoral heterogeneity in bulk samples is based on the
inference of subclonal structure through analysis of mutant allele frequencies. However, it
is impossible to resolve some combinations of mutant allelic frequencies computationally
from bulk genomic data. DNA analysis at the single-cell level may reveal the clonal struc-
ture and the order of genetic alterations, tracing dynamic clonal evolution and providing
insights into critical steps in oncogenesis. Thus, in one of the first single-cell sequenc-
ing studies, Yu et al. showed that colon cancer could be of a biclonal origin. They also
suggested that mutations in the SLC12A5 gene that were not seen in bulk colon cancer
sequencing data may be a cancer driver [87]. This demonstrates the power of single-cell
genomics discovery as compared to bulk sequencing techniques.

Single-cell transcriptome sequencing (scRNA-seq) may lead to further resolution of
major mysteries in intratumoral heterogeneity, including deconvolution of cell populations
in the TME, trajectory inference of cell fates, and discovery of rare cell types in cancer
ecosystems. In 2011, single-cell qPCR analysis provided by Dalerba et al. demonstrated
that colon cancer cell subpopulations mirror normal transcriptional identities of different
cellular lineages in the normal colon. This finding suggested that in vivo lineage differenti-
ation could be the major reason for intratumoral heterogeneity, at least in colon cancer [88].
Further, scRNA-seq analysis of different cancer types revealed previously unknown cell
subpopulations that may contribute to tumorigenesis, tumor progression, and other pro-
cesses. Moreover, the ability to assess gene expression within those subpopulations allows
a more detailed reconstruction of mechanisms behind cancer initiation and progression.
Thus, Li et al. developed reference component analysis (RCA) and found two distinct
subtypes of cancer-associated fibroblasts (CAFs) with high expression of epithelial-to-
mesenchymal transition (EMT) marker genes. Having analyzed gene signatures for newly
recognized cell subtypes and clinical outcomes in the TCGA, they suggested that CRC
tumors previously assigned to the enterocyte and goblet-like classes could be divided into
two subgroups with different survival outcomes [18].

Besides discovering rare cell types, scRNA-seq provides further opportunity to in-
vestigate immune cell subpopulations within the TME. These data can then be used to
illuminate anti-tumor immunity and to determine specific cellular populations that asso-
ciate with a clinical response to checkpoint blockade and other immune-based therapy.
The standard pipeline of scRNA sequencing and analysis is shown in Figure 3. Here, we
demonstrate cell preparation and capturing based on 10X Genomics technology, which is
used widely in scRNA-seq research. Single cells, reverse transcription (RT) reagents, gel
beads containing barcoded oligonucleotides, and oil are combined on a microfluidic chip.
Cells are captured by the beads and form reaction vesicles called Gel Beads in Emulsion
(GEMs). After RT, cDNAs from a single cell will have the same barcode, so the sequencing
reads will be able to be mapped back to their original single cell. Raw sequencing data are
then processed to count matrices where each cell has gene expression data. Quality control
allows the removal of potential doublets, empty cells, and cells with high expression of
mitochondrial genes as they might be apoptotic or lysed. The normalization step addresses
the issue of discrepancies in counts of identical cells due to sampling effects. Usually, a
priority list of up to 5000 “highly informative” variable genes is used for downstream
analysis [89]. Dimensionality reduction is usually performed using principal component
analysis (PCA) to use the most significant genes. Unsupervised clustering defines cell
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populations with similar gene expression patterns [90]. Downstream analysis may include
but is not limited to trajectory inference and differential analysis of each cluster. Various
methods for each step of this pipeline have been developed rapidly during the last few
years with continuous methodologic improvement.

Figure 3. Schematic representation of scRNA sequencing and data analysis pipeline.

Nevertheless, the major challenges of scRNA-seq still remain the same. The most
criticized limitation of single-cell sequencing technology is that genes with low expression
tend to be dropped or are susceptible to technological noise even if they are captured.
Sometimes those lowly expressed genes can be critical cell surface markers. The second
challenge is proper identification of cells clustered together. Current methods of cell
type identification are mainly based on determining differentially expressed genes for
each cluster and curating cell types according to the cell surface markers that were found
using conventional immune methods described above [91]. However, cells may have
more complicated expression patterns that distinguish them from other subtypes. Finally,
single-cell sequencing data does not preserve spatial information that can be important for
interpretation of immune cell function.

For immune profiling using single-cell sequencing, T cell receptor (TCR) sequencing
overcomes some of the limitations discussed above. T cells are crucial for the anti-tumor
immune response. They can detect an infinite variety of self as well as non-self cells. The
ability of T cells to recognize so many pathogens is enabled by highly heterogeneous
surface receptors called the TCR. Infinitely diverse combinations of gene segments in
alpha and beta protein chains in the TCR cause a great variety of T cell subtypes that
affect intratumor heterogeneity and, therefore, response to immunotherapy in cancer.
Additionally, subsequent heterodimeric alpha and beta chain pairing increases the number
of possible combinations [92,93]. Before the single-cell era, the TCR had been sequenced
using “bulk” sequencing technologies, which could not account for alpha and beta chain
pairings [94–96].

Single-cell sequencing overcomes that limitation and allows the researcher to dis-
tinguish T cell subtypes by getting gene expression information and the TCR repertoire
from each cell [97]. All single-cell protocols include reverse transcription and amplification
before library preparation. The resulting cDNAs can be used for TCR sequencing for
each cell along with their expression information. TraCer was an early tool to reconstruct
alpha and beta chain pairing. In their experiments, Stubbington et al. successfully applied
TraCer to show CD4+ T cell subset dynamics upon Salmonella infection [98]. Subsequently,
Zhang et al. presented STARTRAC, a framework that accounts for T cell cluster distribution
and migration across tissues, clonal expansion, and transition between developmental
states. STARTRAC uses scRNA-seq and TCR sequences from peripheral blood, tumor,
and adjacent normal tissues [14]. In the same work, Zhang et al. applied STARTRAC to
CRC patients’ samples containing 11,138 cells from the tumor, adjacent normal tissues, and
peripheral blood. As a result of clustering, 12 CD4+ and 8 CD8+ T cell clusters were found,
including CRC-specific T cell subtypes such as Th17, follicular T helper cells, follicular T
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regulatory cells. Among CD8+ cells, they identified subsets associated with exhaustion
(Tex), effector memory (Tem), recently activated effector memory (Temra), suggesting
specific patterns that may be targetable for improving immune therapy. Comparing MSI
and MSS patients’ cell content, the authors found that only CD4+ CXCL13+BHLHE40+
TH-like cell clusters were significantly enriched in patients with MSI. IGFLR1, a previously
uncharacterized gene was upregulated in that cluster as well as in CD8+ exhausted T cells.
Having provided an additional in vitro experiment, Zhang et al. suggested that IGFLR1
may be a co-stimulator in TCR signaling. Based on these findings, the authors developed
the iSTARTRAC web platform with the TIL dataset [99]. In 2020, the same group utilized
two single-cell sequencing platforms with different sensitivity and throughput to analyze
54,385 cells from 18 CRC treatment-naïve patients. Two distinct subpopulations of myeloid
cells with different responses to CSF1 blockade were found. Additionally, anti-CD40 treat-
ment activated conventional dendritic cells (cDCs) and increased Bhlhe40+ Th1-like cells
and CD8+ memory T cells [100]. This demonstrates the power of these analyses to identify
and alter treatment.

Besides the application of TCR sequence assembly to scRNA-seq data, there are other
tools for trajectory inference that use single-cell expression data [101,102]. Masuda et al.
used Monocle in their analysis of scRNA-seq, TCR sequence, and 23 surface proteins
of 37,931 single T cells from CRC patients. They found a CD38+ peripherally-derived
regulatory T cell subset that was correlated with poor clinical prognosis [103]. In their
comprehensive single-cell study of CRC molecular subtypes, Lee et al. showed that tumors
with different molecular signatures have unique immune microenvironments. Having
provided clustering, trajectory inference, and cell–cell interaction analysis, they suggested
that unique immune ecosystems might be affected by BRAF/KRAS mutations, which
were more prevalent in non-CMS2-like tumor cells and SMAD4 mutations that support
tumor cell survival in a TGF-beta-rich microenvironment formulated by myeloid cells and
myofibroblasts [104].

Although sc-RNA-seq provides excellent data for the reconstruction of high-resolution
cellular maps and discovering new cell subpopulations, it suffers from the caveat that
mRNA and protein levels do not always correlate. To detect mRNA and proteins from
each cell at the same time, new technologies were developed based on antibody-tagged
oligonucleotides. In 2017, cellular indexing of transcriptomes and epitopes by sequencing
(CITE-seq) was introduced by Stoeckius et al. [105]. The method involves the conjugation
of antibodies to the 5′ end of oligos through streptavidin–biotin interactions. Subsequently,
the cells are immunostained by antibody-oligo complexes using flow cytometry proto-
cols. Following cell lysis, cellular mRNA and antibody-derived oligos anneal via their
polyA tails to the polydT tail of the barcoding beads. During reverse transcription, both the
mRNA and antibody-derived oligos are indexed by a shared cellular barcode. The resulting
transcriptomic- and proteomic-derived material can then be separated by size and con-
verted into Illumina-based sequencing independently. The proof of concept demonstrated
simultaneous detection of 13 monoclonal antibodies.

Other single-cell, multi-omic approaches have also been developed to address this
issue. Similar to CITE-seq, RNA expression and protein sequencing assay (REAP-seq) was
used to quantify 82 antibodies and more than 20,000 genes [106]. The main difference from
CITE-seq is that REAP-seq uses amine chemistry for conjugation of oligonucleotides to
antibodies. Another single-cell protein profiling method called Abseq was also introduced
in 2017 [107]. The concept of the technology is the same as in CITE-seq and REAP-seq.
However, Abseq focuses on the detection of single-cell protein levels and no mRNA.
Furthermore, Abseq uses a highly advanced custom microfluidic workflow that consists of
three devices instead of one for CITE-seq and REAP-seq. That adds significant technological
challenges. Nevertheless, all three methods described above are able to fill the gap in
the discrepancy between mRNA levels and protein amounts in scRNA-seq. Thus, in
the study profiling myeloid cells in glioblastoma, CITE-seq revealed new cell markers
for subsets of TAMs and dendritic cells (DCs) that were not identified in scRNA-seq
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analysis [108]. Novel extensions of CITE-seq, such as ECCITE-seq, that integrates pooled
CRISPR screens into CITE-seq measurements and Perturb-CITE-seq, which combines
pooled genetic perturbation screens with CITE-seq, were used to investigate molecular
mechanisms underlying cancer immunotherapy resistance [109–111]. Although, to the best
of our knowledge, the methods described above have not been being applied in CRC yet,
CITE-seq or its modifications can expand our knowledge of intratumor heterogeneity and
immune evasion in this deadly disease.

4.2. Single-Cell ATAC-seq

As described above, one of the limitations of using scRNA-seq for cell type identifica-
tion is using cell surface markers that were discovered by non-single-cell methods. The
single-cell Assay for Transposase-Accessible Chromatin using sequencing (scATAC-seq)
allows marker-free identification of cell types using regulatory elements. Expression of
genes that are specific for particular cell types is affected by cis-acting DNA elements and
trans-acting factors. The scATAC-seq method uses mutant Tn5 transposase to cut and insert
assessable chromatin adapters into the genome. After PCR amplification with barcoding,
the libraries undergo high-throughput sequencing, which outputs multidimensional assays
of the regulatory landscape of chromatin [112]. Raw reads are then mapped to a reference
genome and the resulting files undergo peak calling and read counting. scATAC-seq down-
stream analysis uses a matrix with a number of reads on peaks for each cell. Dimension
reduction for a scATAC-seq sparse matrix is usually done using PCA, as in scRNA-seq
analysis. Latent semantic indexing (LSI) methods initially created for natural language
processing are also commonly used for dimension reduction in scATAC-seq [113].

Similar to scRNA-seq data analysis, UMAP or tSNE non-linear dimension reduc-
tion for visualization of clusters is utilized. Differential peak calling is performed using
non-parametric methods such as the Mann–Whitney U test or Wilcoxon rank-sum test
for calculation of the peaks specific for the cluster of interest versus all the cells outside
that cluster. There are different methods that are used for cell type annotation that aim to
find whether a particular TF motif is enriched in each cell [114]. Another way to identify
cells is finding significant binding overlaps between differential scATAC-seq peaks and
public ChIP-seq data [115]. Although it has the ability to precisely decipher intracellular
heterogeneity without using cell markers, scATAC-seq has been less frequently adopted
in cancer research because of its relatively high cost. Satpathy et al. used scATAC-seq to
analyze the chromatin profile before and after treatment with anti-PD1 immunotherapy in
patients with basal cell carcinoma. They found increased CD8+ exhausted T cells and T
follicular helper cells post-treatment. In addition, both cell types had shared transcription
factors along their differentiation following immunotherapy [116]. Used as a part of a
multiomics study, scATAC-seq analysis uncovered an ibrutinib-induced regulatory pro-
gram in chronic lymphocytic leukemia (CLL). Chromatin accessibility over the course of
inbrutinib treatment was measured and the results showed NF-kB mediated B cell identity
in CLL. Non-malignant immune cells’ chromatin accessibility changed in cell-type-specific
ways during the treatment sharing a quiescence-like gene signature [117]. At present, this
method has been applied primarily in non-CRC malignancies, leaving this open for future
studies in this patient sub-group.

4.3. Spatial Transcriptomics

While technologies for obtaining single-cell transcriptomic and epigenomic data
analysis provide a fine-grained picture of the TME structure, they are not able to preserve
location information of cells inside tissues. On the other hand, there are IHC and FISH
methods that allow for determination of the location of cells expressing certain markers, but
they are limited by the number and type of markers available. To combine high throughput
sequencing with mapping cell location, the spatial transcriptomics (ST) method has been
developed. Using this method, location information for gene expression data is preserved
in tissue by immobilizing barcoded oligonucleotides on a glass slide and mounting tissue
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on it. After permeabilization and reverse transcription of mRNA from the tissue, the
probe is removed, and cDNA was sequenced. The results show gene expression at their
original location in the tissue. Despite its advantage of uncovering the precise location
of sequences of interest, ST was not resolved at the single-cell level as each spot covered
several cells [118].

Slide-seq is another technology for genome-wide readout of gene expression with
spatial data. Using DNA-barcoded beads, Slide-seq allows to mark and sequence larger
tissue sections at higher resolution. They developed non-negative matrix factorization
regression (NMFreg) to reconstruct the expression of each bead as a weighted combination
of cell type signatures defined by scRNA-seq [119]. High-Definition Spatial Transcriptomics
(HDST) uses a pooling method to produce barcoded beads of 2 mm size for which the
position is decoded by a sequential hybridization and error-correcting strategy. HDST
demonstrated 25 times higher resolution than Slide-seq in one study [120].

High throughput spatial technologies are used for immune profiling less often than
scRNA-seq, which is less expensive and more accurate. Currently, spatial mRNA-seq
methods are used as an additional source of information for scRNA-seq. Thus, ST was
used for analysis of cellular composition in cutaneous squamous cell carcinoma (cSCC).
The combination of scRNA-seq and ST revealed that tumor-specific keratinocytes (TSKs)
act as a hub for intercellular communication. The study showed that physical proximity of
specific cell types such as TSK, basal, and adjacent stromal and immune cells is associated
with their invasiveness and immunosuppressive characteristics [121]. Again, this method
has not been widely applied to CRC, and there is room for utilization of this technique in
these patients.

5. Conclusions

In recent years, immunotherapy has achieved impressive results in treating various
cancer types, including a small subset of CRC patients. Despite dramatic progress in
onco-immunology research, the underlying mechanisms of immunotherapy resistance in
the majority of CRC patients remains elusive. Precise profiling of the immune contexture
of the CRC TME will help to further reveal the underpinnings of anti-tumor immune
mechanisms. Conventional methods of profiling the TME are limited in-depth and therefore
do not show a detailed and scaled picture. Next-generation sequencing and big data
technologies have greatly expanded our ability to evaluate the immune landscape of
cancers enabling the study of immune infiltration on a high throughput level. Further
development of techniques, such as scRNA-seq, have revealed rare cell subtypes, including
immune cell subpopulations with different responses to therapy [15,103]. scRNA-seq was
also successfully used to reconstruct intercellular networks among tumor and immune cells
in CRC [107]. Although scRNA-seq technology enables obtaining fine-grained information
about the TME, the main critiques of it include using surface markers for cell identification
and lack of spatial information. scATAC-seq may solve the first limitation as it uses
TFs to identify cells. Additionally, spatial transcriptomics and its novel variations may
allow for enhanced understanding and precise location of the novel cell types identified
using scRNA-seq. With advances in single-cell-based technology and analysis methods,
precise immune profiles with spatial information will reveal new information important
for immune therapy insights.
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