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1 | INTRODUCTION

Polycystic kidney disease (PKD) is a group of monogenic
disorders that result in renal cyst development. Based on
genetic patterns, PKD can be classified into autosomal

Abstract

Background: Polycystic kidney disease (PKD) is the most common hereditary kid-
ney disease. The main mutational genes causing autosomal dominant polycystic kid-
ney disease (ADPKD) are PKD1 and PKD2 as well as some rare pathogenic genes.
Unilateral PKD is rare in clinics, and its association with gene mutations is unclear.
Methods: Targeted next-generation sequencing (NGS) was performed to detect the
renal ciliopathy-associated genes (targeted NGS panel including 63 genes) in PKD
patients.

Results: Forty-eight PKD1 and PKD2 mutation sites were detected in 44 bilateral
PKD patients, of which 48 were PKD1 mutation sites (87.5%) and six were PKD2
mutation sites (12.5%). All of which exhibited typical ADPKD. Furthermore, we
detected HNF1B heterozygous mutations in three families. Although these three pa-
tients showed HNF1B heterozygous mutations, their clinical characteristics differed
and showed phenotypic heterogeneity.

Conclusions: Targeted NGS panel was helpful in detecting typical ADPKD patients
and even in non-typical PKD patients. Macromutation in HNF1B may lead to bilat-
eral PKD. The 16 novel PKD gene mutation sites and two novel PKD2 gene muta-
tion sites discovered in this study have some significance in genetic counseling for
ADPKD patients, and increase the number of studied families and expand the muta-
tion database of ADPKD.
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dominant polycystic kidney disease (ADPKD) and autoso-
mal recessive polycystic kidney disease (Harris & Torres,
2009). ADPKD is the most prevalent monogenic hereditary
kidney disorder and the most common monogenic disorder
that causes end-stage renal disease (ESRD) (Torres, Harris,
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& Pirson, 2007). Its major presentations are multiple renal
cysts that result in enlarged and irregular shaped kidneys.
Depending on geographical location, its incidence is approx-
imately 1:400-4000 (Torres et al., 2007). ADPKD devel-
ops primarily from PKD1 gene [MIM#601313] mutations
on chromosome 16 and/or the PKD2 gene [MIM#173910]
on chromosome 4 (Listed, 1994; Mochizuki et al., 1996).
Clinical data indicate that PKD1 and PKD2 mutations ac-
count for 85% and 15% of ADPKD patients, respectively
(Rossetti et al., 2007). ADPKD is heterogeneous with regard
to locus and allele heterogeneity and phenotypic variabil-
ity. PKD is usually bilateral, while unilateral PKD is rare.
Unilateral PKD typically refers to segmental cystic abnor-
malities in 1 kidney. At present, few studies exist on uni-
lateral PKD, and its pathological examination results are
the same as those of ADPKD (Gouldesbrough & Fleming,
1998). Over time, unilateral PKD can change to bilateral
PKD and further cause ESRD (Punia, Mohan, Bal, & Bansal,
2005). The pathogenesis of unilateral PKD and whether it is
associated with gene mutations are unclear.

Currently, most ADPKD patients have PKD1 and/or
PKD2 mutations; however, these mutations remain unde-
tected in some patients. To better understand whether other
genes cause ADPKD, as well as their resulting phenotypes,
and to understand whether unilateral PKD is associated with
gene mutations, we performed gene sequencing on PKD
patients. Targeted next-generation sequencing (NGS) was
performed to screen 63 renal ciliopathy-associated gene mu-
tations in these patients.

2 | MATERIALS AND METHODS

2.1 |

Gene sequencing was performed on 47 patients using our
developed kidney disease panel. Possible pathogenic mu-
tation sites were detected by Sanger sequencing. For some
patients who did not detect suspected pathogenic genes,
we further sequenced all exons and screened for suspected
mutant genes. In addition, blood samples provided by fam-
ily members of patients were used for segregation analyses.
The detected mutation sites were carefully compared with
the ADPKD Mutation Database (http://pkdb.mayo.edu),
HGMD Professional (https://www.qiagenbioinformatics.
com/products/human-gene-mutation-database/) and relevant
literature, and the mutation site pathogenicity were analyzed.

Study design

2.2 | Patients

Forty-seven unrelated PKD patients treated at the Chinese
People's Liberation Army General Hospital between 2016
and 2017 were enrolled. All patients were confirmed to
have unilateral or bilateral PKD by abdominal computed

tomography or color Doppler ultrasound and volunteered
for gene detection. The ages at PKD confirmation in these
patients were 3-58 years. Forty-four patients had bilateral
PKD, and three had unilateral PKD. Among 44 bilateral
PKD patients, 30 had clear family histories of dominant
inheritance; therefore, validation was performed on imme-
diate family members of 34 patients (a total of 65 family
members). The three unilateral PKD patients were all iso-
lated cases with no family history of this disease, and their
parents did not have consanguineous marriages. All sub-
jects or their legal guardians signed informed consent for
genetic testing. The genetic analysis was approved by the
Ethics Committee of the People's Liberation Army General
Hospital (China).

23 |

Target region capture and next-generation human gene
analysis technology were performed for ciliopathy-asso-
ciated gene region and bioinformatics analyses. A kidney
disease-associated gene analysis panel including 63 genes
was developed (Table S1). Combined with data including
disease history and imaging examination, patients with
kidney diseases and urinary system abnormalities could be
screened at an early stage to reduce the damage of chronic
kidney disease and provide gene diagnosis basis for per-
sonalized drugs in patients. This panel included many
disease-associated gene analyses including PKD, renal
tuberculosis, Joubert syndrome, Meckel syndrome, short
rib-polydactyly syndrome (asphyxiating thoracic dysplasia/
Jeune's syndrome), Bardet-Biedl syndrome, and cranioec-
todermal dysplasia.

Targeted NGS panel was used for genetic analyses. NGS
was performed on the NextSeq 500 apparatus (Illumina).
This program included five main steps. (a) Nucleic acid ex-
traction was performed on sample DNA using a genomic
DNA extraction reagent kit, and the level of DNA quality
was identified per the standard in Table S2. If the sam-
ple grade was level D, the sample was disqualified, and
blood samples were collected again for DNA extraction.
(b) The genomic library was constructed. Sample DNA
was sheared to the range of 100-700 bp using the Covaris
shearing method. The terminus was repaired, and an “A”
was added. The product was purified for PCR amplification
of the gene library, and the quality was detected per the
standard in Table S3. If the sample grade was level D, the
sample was disqualified and blood samples were collected
again per the above procedures. (c¢) The target genes were
captured. GenCap® Kidney disease gene capture probe
(MyGenostics, China) and library DNA were hybridized
under set conditions. Streptavidin-modified magnetic beads
were used to covalently bind to biotin-labeled probes to
capture target genes. Finally, a magnetic separator rack was

Targeted NGS panel
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used to adsorb magnetic beads that carried target genes.
Target genes were then eluted, purified, and enriched. (d)
The NextSeq 500 tabletop sequencer was used for large-
scale sequencing. (e) Data analyses were performed using
BWA software (http://bio-bwa.sourceforge.net/), GATK
software (http://www.broadinstitute. org/gsa/wiki/index.
php/GATK _resource_bundle), and ANNOVAR software
(http://www.broadinstitute.org/gsa/wiki/index.php/GATK _
resource_bundle). After comparison with Homo sapiens
(hg19), a mutation site that satisfied the following condi-
tions was screened: (a) it was present in target regions; (b)
it caused amino acid changes; (c) its mutation frequency in
the local population was lower than 15%; and (d) if known
in the databases, its minor allele frequency was below 1%
for autosomal recessive inheritance and 0.2% for autoso-
mal dominant transmission. All filtered variants were fur-
ther analyzed using Alamut v.2.9.0 software (Interactive
Biosoftware, La Rochelle, France) for predicting functional
effects with SpliceSiteFinder, MaxEntScan, NNSPLICE,
GeneSplicer, Human Splicing finder, Polyphen-2, SIFT,
MutationTaster, Align GVGD and UMD-Predictor (Morais
et al., 2017).

2.4 | Whole exome sequencing

Genomic DNA was isolated from lymphocytes and subjected
to exome capture using the SureSelect Human All ExonV6
human exome capture arrays (Agilent) followed by next gen-
eration sequencing on the NextSeq 500 tabletop sequencer.
Data analyses were performed following the procedure of
targeted NGS panel-based analysis.

2.5 |

After gene mutation sites were detected using NGS, they
were validated using Sanger sequencing. In addition, blood
samples provided by the patients’ family members were
also validated by Sanger sequencing. Primers were designed
using Primer software for PCR amplification. Next, capillary
electrophoresis sequencing was performed using a 3130XL
sequencer. When reference sequences were found, the refer-
ence sequences and raw data were analyzed using Mutation

Sanger sequencing

Surveyor software  (https://softgenetics.com/mutationSu
rveyor.php).
2.6 | Multiplex ligation-dependent probe

amplification

In order to confirm the presence of large gene rearrange-
ments in the HNF1B gene we performed multiplex li-
gation-dependent probe amplification (MLPA) using
the MLPA kit P241 25R (HRC-Holland, Amsterdam,
Netherlands).

: : . 3of11
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Among 44 bilateral PKD patients (Table 1), PKD1 het-
erozygous mutations were detected in 35 patients, PKD2
heterozygous mutations were detected in three patients, both
PKDI and PKD2 mutations were detected in three patients,
one PKDI heterozygous mutation and one PKHD1 (2-point
mutation sites) compound heterozygous mutation were de-
tected in one patient, and HNF1B heterozygous mutations
were detected in two patients. The MLPA results of P43 fur-
ther confirmed the heterozygous deletion of exon 1-9, that
is, the complete HNF1B heterozygous deletion.(Figure S1)
Among three unilateral PKD patients (Table 2), one HNF1B
heterozygous mutation was detected in one patient, and no
clear pathogenic gene mutations were detected in two pa-
tients. Whole exome sequencing (WES) was performed on
patient P47, and the results showed that this patient had three
heterozygous mutations in LYZ, FGA, and GLI3. Sanger
sequencing validation was performed on the patient's father,
who had a heterozygous mutation at the LYZ site but normal
FGA and GLI3. Because a blood sample could not be col-
lected from the patient's mother, Sanger validation was not
performed. We do not think the heterozygous mutations de-
tected in the autosomal recessive genes were significant in

RESULTS

Genetic characterization

the disease's development and progression.

Forty-eight mutation sites were detected in the PKDI1
and PKD2 genes (Table 1). Compared with PKDB, HGMD
Professional and literature reports, we found a total of 18
novel variants (16 in PKD1 and two in PKD2). All mutation
sites were analyzed for pathogenicity in strict accordance with
the American College of Medical Genetics and Genomics
guidelines. Sixteen definite pathogenic mutation types (14
PKDI gene sites and two PKD2 gene sites) were detected
in 16 probands. These mutations included eight nonsense,
four frameshift, three splicing, and one insertion mutation.
We speculated that the splicing mutation (c.1722+1G>C,
splicing) in PKD1 was a novel pathogenic mutation. There
were 12 likely pathogenic mutations (nine PKD1 and three
PKD2 gene sites) in 12 probands. These mutations included
four nonsense, two frameshift, and six missense mutations.
We predicted seven novel, likely pathogenic mutations (five
PKDI and two PKD2 gene sites) (Table 1). There were 20
likely neutral mutations (19 PKD1 and 1 PKD2 gene site)
in 20 probands. These mutations included 18 missense, one
splicing, and one frameshift mutation. We predicted 10 novel,
likely neutral mutations (10 PKD1 gene sites) (Table 1).

32 |

Among 42 patients with bilateral PKD caused by PKD1 and/
or PKD2 mutations, 11 (26.2%) had combined hepatic cysts
or polycystic liver. Some had already progressed to ESRD

Clinical manifestation
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and required renal replacement therapy. Two with HNF1B
mutations had no combined hepatic cysts, and their kidney

2 functions were within the normal range. P44 had type 2 dia-
é 2 2 betes mellitus, while P43 had no history of diabetes mellitus
— o — o — . . . . .
g EEE QE ZE but had increased uric acid (blood uric acid: 553.5 pumol/L).
) 5 E BE|g &8 & B "
% 3 23 % 8 & 3 The three patients with unilateral PKD had a left polycystic
:E i,‘ FZ,‘ é‘ é‘ é‘ é‘ _TE kidney with normal morphology of the right kidney. P45 had
&) 3.5 3433543 no history of diabetes mellitus but had increased blood cre-
atinine and uric acid (blood creatinine: 122.6 umol/L; blood
u
=) uric acid: 613 pmol/L). This patient's father also had a het-
s s S erozygous mutation at the same HNF1B gene site (Table 2);
3 3 = however, the father had normal bilateral kidney morphology
N N
g -t -%®TETE 3‘; with no history of diabetes mellitus. The other two unilat-
< = < = = s = . . .
E 8 2 g 2 2 @ § eral PKD patients (P46 and P47) with no detected pathogenic
& SESEEER& genes had normal creatinine and no family history of cystic
: diseases.
S
5
o
Bn = N 9
28 222585885 22 4 | DISCUSSION
2]
g e o N - . NGS can target the whole genome for detection. It has the ad-
= g g
- Q Q (3] (5] (5] Q Q Q Q . . . . ..
»n T T T T L T OE T = vantages of high resolution, high throughput, high efficiency,
g g g ghp g Yy
o and high sensitivity. It can increase gene detection efficiency
2 E and reduce gene detection costs (Mardis, 2008). After muta-
g E g o tion sites are detected by NGS, Sanger sequencing valida-
= 5 & . . .
< T><s E 3 § <%0 g %‘J 3 2 tion can further increase detection accuracy; however, NGS
o= o . . .
) 232 4288 2 B cannot detect deleted or repeated fragments in nucleic acid
® S v S n 5 O P g
£ S 249825 % % 9 sequences. Therefore, for typical ADPKD patients whose
E i (,'3_ ‘>i Z é f; ‘i S 2 gene mutations cannot be detected by NGS, MLPA should
be used to detect whether PKD1 or PKD2 have deleted or
repeated fragments to avoid missed diagnoses. Synonymous
mutations are generally considered not to affect amino acid
changes in proteins, However, if a silent mutation in ex-
onic splicing enhancer sequences may affect the splicing of
Eﬁ § MRNA (Ramser et al., 2005). Therefore, we need to make
% o < % % relevant analysis and prediction.
3 DN § 2 E“ & b § At present, diagnosis of ADPKD is based on family
= O 0 O 8 o © ® o . . . ..
% % § § 5 l%; % lg - ;{l history and ultrasound imaging. In families of unknown
2 2 = B S S genotype, the presence of three or more (unilateral or bilat-
eral) renal cysts is sufficient for establishing the diagnosis
y g g
q® o2 & 2% T - in individuals aged 15-39 years, two or more cysts in each
= = = = = . . L Lo
S S 8§ ¢ § § § § € & kidney is sufficient for individuals aged 40-59 years, and
= MR “ “ e “ four or more cysts in each kidney is required for individuals
E . . .. N 60 years (Pei et al., 2009). Which lead to a delay in or lack
_g ; é § § § g § § § § of diagnosis of ADPKD patients with no cysts in the kidneys
) % .§ E £EE E E E E E £ and no apparent family history, which may result in inappro-
E R B A AR~ A . o priate management. With the development of genetic testing
é T E N . § - - technology, it is possible to make a definitive diagnosis be-
- ‘g g @ @ @ @ @ a a a ‘§ kB fore the onset age of a patient. Genotypes can also provide
- 2 & g R AR AR AAAR g EE the basis for disease progression and prognosis (Jin et al.,
~ ~
E = @ "g 2016). Based on our research and clinical experience, we
= ) [y _ T . . . . . ..
i E S 3 g 3 E = g 3 dem'gneq the dlagnosm process for patients with a positive
= = = family history (Figure 1).
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Applying our developed targeted NGS panel detected a
pathogenic gene that caused this disease in 44 bilateral PKD
patients. Forty-two patients had detected PKD1 and/or PKD2
gene mutations, and two patients had detected HNF1B het-
erozygous mutations. Therefore, performing mutation analy-
ses on only PKD1 and PKD2 in ADPKD patients who require
gene diagnosis is insufficient, and application of our gene de-
tection panel or even WES and MLPA are necessary (MLPA
is a novel diagnostic tool for genetic screening, which is grad-
ually becoming the principal method for the detection of exon
deletion and duplication (Schouten et al., 2002), as they can
detect HNF1B, gene repetition and deletion, or other possible
pathogenic gene mutations. Currently, PKDB describes 2323
PKDI mutations and 278 PKD2 mutations. We detected 42
PKD1 mutation sites (87.5%) and six PKD2 mutation sites
(12.5%), which were similar to percentages previously re-
ported in the literature. Among 44 bilateral PKD patients, the
PKD1 (p.G3560R) missense mutation was detected in five
families. This site might be a neutral site. We speculated that
this mutation site had greater prevalence in the Chinese pop-
ulation. The pathogenicity of the novel mutation sites discov-
ered in this study must be confirmed in other families in future
studies. We detected no large gene deletions or repetitions in
this patient group, which might be due to the limitations of
NGS. We discovered 16 novel PKD1 gene mutation sites and
two novel PKD2 gene mutation sites in the Chinese popu-
lation, which could enrich the ADPKD Mutation Database.

The onset of ADPKD caused by PKD1 and/or PKD2 gene
mutations and the severity of their phenotypes are not only
associated with gene mutations (germ cell mutations) but are
also associated with somatic cell mutations or deletions in
normal alleles caused by environmental factors such as toxins
and infection (Feng, Watnick, Onuchic, & Germino, 1996).
ADPKD caused by PKD1 and/or PKD2 mutations is usually
bilateral. Its phenotypes are associated with patient gender,
whether the patient has hypertension or had a urologic event
(gross hematuria, flank pain, or cyst infection) before age 35,
and gene mutation characteristics (genotypes)(Cornec-Le et
al., 2016; Jin et al., 2016). The average age of ERSD onset
caused by PKD1 mutations is 54.3 years, while the average
age of ERSD onset caused by PKD2 mutations is 74 years
(Kurashige et al., 2015). Because the average age of this pa-
tient group was 39.4 years and most patients had not reached
the above ages, most patients had normal kidney functions.
We have not performed genotype-phenotype analyses on
these patients; however, we will continue to monitor them
and further perform genotype-phenotype analyses.

The HNF1B gene [MIM 189907] that causes the phe-
notype similar to polycystic kidneys is transcription fac-
tor 2 located on chromosome 17q12. HNF1B can directly
regulate PKHDI1 transcription. Inhibiting PKHD1 gene
expression may result in human renal cyst formation
(Hiesberger et al., 2004). HNF1B's effects on the kidneys
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FIGURE 1 The diagnosis process for patients with a positive family history. ADPKD, autosomal dominant polycystic kidney disease;

ARPKD, autosomal recessive polycystic kidney disease; MLPA, multiplex ligation-dependent probe amplification; NGS, next-generation

sequencing; WES, whole exome sequencing

may include renal cysts, solitary kidney, horseshoe kidney,
renal dysplasia, and hydronephrosis (Clissold, Hamilton,
Hattersley, Ellard, & Bingham, 2015). Renal cysts caused
by HNF1B mutations are more heterogeneous; they can
present as multiple, few, or no cysts, and some patients

will enter into ESRD (Faguer et al., 2011). The severity
of the HNFI1B mutation-associated kidney disease pheno-
type had no clear association with the genotype (Heidet et
al., 2010). We detected HNF1B heterozygous mutations in
three patients. Two patients had bilateral PKD, and their
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HNFI1B mutations were both large mutations (P43 had a
complete deletion and P44 had a frameshift mutation). We
speculated that these 2 patients’ bilateral PKD diseases
were caused by HNF1B mutations. P45 had unilateral PKD
with a point mutation in HNF1B. We found that the gene
mutation levels of these three patients might be related to
the kidney phenotype, which was more severe in patients
with large mutations and was inconsistent with previous
study results. This difference may have been due to our
fewer patients. After a larger number of patients with PKD
caused by HNF1B mutations is increased, whether kidney
phenotype is associated with genotype can be further an-
alyzed. The association between HNFIB mutations and
unilateral PKD remains unclear. Mutations in the HNF1B
gene usually cause diabetes maturity-onset diabetes of
the young type 5 (MODYS5) (Roehlen et al., 2018). Of the
three patients with the HNF1B mutation we detected, P44
(32 years old) had type 2 diabetes, while P43 (56 years old)
and P45 (39 years old) had no diabetes. The incidence of
diabetes in these three patients did not show age-related.
The phenotype caused by HNF1B mutations is diverse and
does not necessarily lead to the onset of diabetes (Chen et
al., 2010). Even mutations at the same site show multiple
phenotypes (Yorifuji et al., 2004). The father of P45 also
had an HNF1B mutation, however, he did not have diabe-
tes mellitus or renal structural abnormalities, and we have
not functionally validated this mutation site. Therefore, the
significance of this mutation site on renal cyst develop-
ment is unclear. Further larger studies would be required
to confirm whether HNF1B mutations are associated with
unilateral PKD.

Unilateral PKD is rare, as are studies of it. Among the
three cases of unilateral PKD discovered in this study, P45’s
case may have been caused by an HNF1B mutation, while
P46 and P47 had no gene mutations on the kidney disease
panel and P47 had LYZ, FGA, and GLI3 heterozygous muta-
tions on the WES. These three genes have not been reported
to be associated with PKD in the past, and this patient had no
clinical presentations associated with these three genotypes.
Whether unilateral PKD is associated with the above genes
requires further confirmation using further larger studies.

In conclusion, using our developed targeted NGS panel
for gene detection is necessary for PKD patients. It can be
used to confirm patient genotypes (with/without mutations,
mutation numbers, and mutation types) and has important
significance in confirming molecular diagnoses and pre-
dicting patient prognosis. Targeted NGS panel and WES on
unilateral PKD patients are significant. Macromutation in
HNF1B may lead to bilateral PKD. While the relationship
between HNF1B and unilateral PKD needs further studies
to confirm. We discovered 16 novel PKD1 gene mutation
sites and two novel PKD2 gene mutation sites that can en-
rich the PKDB and are significant in genetic counseling

Open Access,

for ADPKD patients, and the use of effective targeted NGS
method in the molecular diagnosis of ADPKD will increase
the number of studied families and expand the mutation
database of ADPKD.
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