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Glioblastoma is an aggressive malignant tumor of the brain and spinal cord. Due to the
blood–brain barrier, the accessibility of its treatments still remains significantly challenging.
Unfortunately, the recurrence rates of glioblastoma upon surgery are very high too. Hence,
understanding the molecular drivers of disease progression is valuable. In this study, we
aimed to investigate the molecular drivers responsible for glioblastoma progression and
identify valid biomarkers. Three microarray expression profiles GSE90604, GSE50601,
and GSE134470 containing healthy and glioblastoma-affected samples revealed
overlapping differentially expressed genes (DEGs). The interrelational pathway
enrichment analysis elucidated the halt of cell cycle checkpoints and activation of
signaling pathways and led to the identification of 6 predominant hub genes. Validation
of hub genes in comparison with The Cancer Genome Atlas datasets identified the
potential biomarkers of glioblastoma. The study evaluated two significantly upregulated
genes, SPARC (secreted protein acidic and rich in cysteine) and VIM (vimentin) for
glioblastoma. The genes CACNA1E (calcium voltage-gated channel subunit alpha1 e),
SH3GL2 (SH3 domain-containing GRB2-like 2, endophilin A1), and DDN (dendrin) were
identified as under-expressed genes as compared to the normal and pan-cancer tissues
along with prominent putative prognostic biomarker potentials. The genes DDN and
SH3GL2 were found to be upregulated in the proneural subtype, while CACNA1E in the
mesenchymal subtype of glioblastoma exhibits good prognostic potential. The mutational
analysis also revealed the benign, possibly, and probably damaging substitution
mutations. The correlation between the DEG and survival in glioblastoma was
evaluated using the Kaplan–Meier plots, and VIM had a greater life expectancy of
60.25 months. Overall, this study identified key candidate genes that might serve as
predictive biomarkers for glioblastoma.
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INTRODUCTION

Glioma is the primary malignant brain tumor affecting the glial cells
of the central nervous system (Mamelak & Jacoby, 2007). There are
multiple types of glioma known based on the cells from which it
originates. The main types are glioblastoma, astrocytoma, mixed
gliomas, anaplastic astrocytoma, ependymomas, and
oligodendroglioma. Among these, the grade IV malignant tumor
glioblastoma (GBM) is the most dangerous, with a survival rate of
merely 3%–5%. Unfortunately, the occurrence of the disease in the
brain makes it much more difficult for early-stage diagnosis (Müller
Bark et al., 2020). In general, a patient affected by GBM survives up
to 5 months. However, modern surgery, radiation, and
chemotherapy can extend the median survival rate to
approximately 12months (Banu, 2019). Due to the presence of
endothelial cell luminal and abluminal plasma membranes, the
blood–brain barrier offers physical and biochemical barriers to
the normal brain and prevents the passage of oncologic drugs,
lipophilic molecules, and monoclonal antibodies (Sarkaria et al.,
2018). GBMcauses vasogenic brain edema that results in intracranial
pressure, which eventually leads to the induction of leakage and the
disruption of the normal blood–brain barrier in most patients. The
major challenge in prognosis, therapy, and treatments of GBM is due
to their invasive nature and the inaccessibility of the brain tissues
caused by the disrupted blood–brain barrier (Dubois et al., 2014).

In 2005, the Food and Drug Administration (FDA) approved
standard-of-care temozolomide (Chang et al., 2004; Dubois et al.,
2014) to treat newly diagnosed brain tumors. In 2009, anti-vascular
endothelial growth factor (VEGF) was approved to treat GBM
(Friedman et al., 2009; Kreisl et al., 2009). Researchers have
recently identified targeting the rat sarcoma virus (RAS) and
tyrosine kinase signaling pathways, ephrin receptor subfamily of
the protein-tyrosine kinase family (EPH3A) and EGFR receptors,
and the development of monoclonal antibody bevacizumab as the
means to halt the progression of GBM (Mao et al., 2012; Pearson &
Regad, 2017). Unfortunately, the recurrence of GBM tumors
remains a major limiting factor for all the existing primary
treatment strategies (Shergalis et al., 2018; Cheng et al., 2021).
Thus, there is an unmet need to identify molecular drivers
responsible for the progression of GBM.

In this direction, discerning the key aberrant molecular targets
and pathways in the initiation and progression of GBM can be a
significant strategy for developing potential therapeutics (Rai &
Jamil, 2019; Silantyev et al., 2019). In previous studies, the
genomic, transcriptomic, and proteomic profiles of the healthy
and diseased samples have been widely used in elucidating the
pathogenesis of cancer and other diseases (Tang & Zhang, 2018;
Hsu et al., 2019; Yin et al., 2019). One such recent study
elucidated ADAM-like decysin 1 (ADAMDEC1) and fibroblast
growth factor 2 (FGF2) as novel druggable targets for GBM
(Jimenez-Pascual et al., 2019).

In the current study, we have analyzed the microarray gene
expression profiles of GBM collected from three different cohort
studies. The microarray expression profile datasets, GSE90604,
GSE134470, and GSE50161, were collected from the NCBI-Gene
Expression Omnibus database (NCBI-GEO), and the
differentially expressed genes (DEGs) with log2FC > 1 and p-

value <0.05 were identified. It has been advocated that the
integration and reanalysis of the genomics profiles from
different studies offer better solutions to the poor
reproducibility of single cohort studies and help ensure
consistency in the analysis (Bo et al., 2018; Li et al., 2020; Yan
et al., 2019). The identified DEGs were further subjected to Gene
Ontology (GO) analysis to understand the potentially significant
genes. The inter-relational pathways involved in the pathology of
GBM were also examined to identify potential prognostic
biomarkers. Additionally, the hub genes in GBM were also
identified and validated through the analysis of their
expression patterns in normal tissues and other related
cancers. Furthermore, they were also classified based on the
GBM subtypes, and the significant mutations were predicted.
Additionally, the correlation between the DEG expression and
survival in GBM was analyzed.

METHODOLOGY

Identification of Differentially Expressed
Genes
The Gene Expression Omnibus (GEO) database contained gene
expression profiles of GBM data from which three publicly
available datasets, GSE90604 (Gulluoglu et al., 2018),
GSE50161 (Griesinger et al., 2013), and GSE134470
(Golebiewska et al., 2020) were retrieved (Table 1). The
platform for GSE90604 was based on the GPL17692
Affymetrix human gene 2.1 ST array with 25 samples of
mRNA expression datasets from GBM and control. The
platform for GSE50161 was based on the GPL570 Affymetrix
human genome U133 Plus 2.0 array, and that for GSE134470 was
based on the GPL6244 Affymetrix human gene 1.0 ST array
expression profiling. The three aforementioned datasets were
chosen for the following two reasons: 1) they are from human
GBM tissues and 2) the samples were devoid of any treatment
options. The overlapping differentially expressed genes were
discerned through a meta-analysis of all three datasets using
the limma package and Bioconductor GEO2R package. Standard
data processing and analysis were implied to identify the DEGs.
The datasets were standardized and log-transformed, and
Benjamini–Hochberg false discovery rate statistics were
applied with log2FC > 1 and p-value <0.05 thresholds. The
bioinfokit (https://pypi.org/project/bioinfokit/) package
implemented in Python was used to create the volcano plot of
the DEGs. The protocol and the data files used in the study are
made available for access at https://github.com/aishwarya-sekar/
Glioma-gene-expression-analysis.git.

GeneOntology Term and Signaling Pathway
Enrichment Analysis
The DEGs were annotated for their gene ontology terms using the
Database for Annotation, Visualization, and Integrated Discovery
(DAVID) tool (https://david-d.ncifcrf.gov/) (Dennis et al., 2003).
Pathway analysis was performed using the metabolic pathway
databases REACTOME (http://www.reactome.org) (Croft et al.,
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2011) and KEGG (www.genome.jp/kegg) (Kanehisa & Goto,
2000). The ClueGO (version 2.5.7) module of the Cytoscape
software (version 3.8.2) was used to examine the inter-relational
analysis of the gene annotations and the pathway terms to predict
the most significant genes. Hypergeometric two-sided tests and
Benjamini–Hochberg methods were used (Bindea et al., 2009).

Protein–Protein Interaction and Hub Gene
Validation
The STRING database (http://stringdb.org/) was used to evaluate
the evidence-based protein–protein interactions (PPI)
(Szklarczyk et al., 2017). Active interactions based on
experiments, neighborhood, co-expression, gene fusion, co-
occurrence, and text mining were filtered at a medium
confidence score of 0.4 and a high confidence score of 0.7.
The significant PPI clusters for the up- and downregulated
DEGs were determined using the MCODE plug-in
implemented in the Cytoscape software. To predict the hub
genes, cutoff values of 3, 2, and 0.2 were selected for the
network scoring degree, K-score, and node score, respectively.
The expression profiles of the hub genes were validated using the
expression atlas platform (https://www.ebi.ac.uk/gxa/home)
(Papatheodorou et al., 2020). The analysis based on the
statistical t-tests was performed across multiple tissue levels
with a maximum of 1,642 transcripts per million (TPM)
expressions (Pellegrini et al., 2016) in comparison with the
Cancer Genome Atlas (TCGA) GBM data from the UALCAN
database (http://ualcan.path.uab.edu/cgi-bin) (Chandrashekar
et al., 2017). The mutational significance of the hub genes was
identified and interpreted through cBioPortal (www.cbioportal.
org) with the TCGA GBM datasets (Tomczak et al., 2015). The
significant substitution mutations for the hub genes were
identified using the PolyPhen-2 (http://genetics.bwh.harvard.
edu/pph2/bgi.shtml) webserver.

Survival Plot Analysis and Prognostic
Abilities of Hub Genes
Survival plot analysis was performed with Kaplan–Meier servers
(http://kmplot.com/analysis/). It was used to predict the
correlation between DEGs and the survival rates of the
patients using the log-rank p tests. The relationships below a
p-value of 0.05 were considered significant (Mishra et al., 2019).
The molecular subtypes of GBM were identified as proneural,
classical, and mesenchymal (Sidaway, 2017). The expression
levels of hub genes were evaluated using the Glioblastoma
BioDiscovery Portal (GBM-BioDP) (https://gbm-biodp.nci.nih.
gov) to identify their prognostic ability based on the GBM
subtypes (Verhaak et al., 2010) from the gene expression
datasets of Verhaak 840 Core, integrated with three
microarray platforms.

Identification of Prognostic Biomarkers
Through Pan-Cancer Analysis
The association of the hub genes and survival analysis revealed
the predominant biomarkers of GBM. The genes were analyzed
for their expression rates across multiple cancers to identify a
reliable biomarker. The pan-cancer analysis was performed using
the UALCAN database and protein atlas platform (Sasmita et al.,
2018). The genes that had a predominant alteration in the related
disease states of glioma were evaluated, and genes with significant
differences in the levels of expression for GBM were identified as
biomarkers of GBM.

RESULTS

Differentially Expressed Gene Prediction
In this work, we analyzed the microarray gene expression profiles
of three GBM datasets, namely, GSE90604, GSE50161, and

TABLE 1 | Datasets used in the current study.

GEO
accession

Platform Type of samples Samples available in
the dataset

Samples chosen for
the

study

GSE90604 GPL17692 Affymetrix
human gene 2.1 ST array

Expression data from GBM patient tumor
samples, healthy brain tissue (partly from GBM
patients) and NHA cell line and human fetal
astrocyte cell line mRNA expression dataset

7 healthy tissues, 16 GBM tissues, and 2 fetal
human astrocytes cell lines

7 healthy brain tissues
and 16 GBM tissues

GPL21572 Affymetrix
multispecies miRNA-4
array

Expression data from GBM patient tumor
samples, healthy brain tissue (partly from GBM
patients) and NHA cell line and human fetal
astrocyte cell line miRNA expression dataset

7 healthy tissues, 16 GBM tissues, and 2 fetal
human astrocytes cell lines

Nil

GSE50601 GPL570 Affymetrix
human genome U133
plus 2.0 array

Expression data from human brain tumors and
human normal brains

15 Pilocytic astrocytoma (PA), 44 ependymoma
(EPN), 32 glioblastomas (GBM), 22
medulloblastomas (MED), and 13 non-tumor
brain (NT) control samples

32 GBM and 13 NT
control samples

GSE134470 GPL6244 Affymetrix
human gene 1.0 ST array

Gene expression analysis reveals a close
resemblance between glioblastoma (GBM)
patient tumors and corresponding patient-
derived orthotopic xenografts (PDOXs)—58
samples

6 human GBM tissues, 2 normal brain tissues, 6
GBM patient-derived organoids, 5 GBM cell lines,
and 5 GBM derived xenografts

6 human GBM tissues
and 2 normal human
brain tissues
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GSE134470, obtained from the NCBI-GEO database. The
datasets were analyzed using the limma package by setting the
cutoff criterion as log2FC > 1 and a p-value < 0.05 to obtain the
DEGs. A total of 1,673 (785 upregulated and 888 downregulated),
5,375 (2,848 upregulated and 2,497 downregulated), and 2,263
(960 upregulated and 1,303 downregulated) DEGs were identified
for GSE90604, GSE50161, and GSE134470, respectively. Out of
these, 61 genes (23 upregulated and 38 downregulated) were
found to be overlapped, as shown in Figures 1A, B). A volcano
plot of all the DEGs of GSE90604, GSE50161, and GSE134470 is
shown in Figures 1C–E, respectively. The overlapped DEGs (as
listed in Supplementary File S1) were taken into consideration
for further analysis. The topmost enriched overlapping DEGs
with their biological functions are presented in Table 2.

Gene Annotations From the Differentially
Expressed Genes
From the GO analysis of the overlapping DEGs, the top ten
annotations based on their p-values were considered for
biological process (BP), molecular functions (MF), and cellular
component (CC) sub-ontologies. As shown in Figure 2A, the
upregulated genes for BP showed significant enrichment in the

regulation and migration of endothelial cells, cytokine response,
and regulation of interleukin-6 and interleukin-8. For MF, the
upregulation in clathrin adapter activity, transaminase activity, 1-
phosphatidylinositol 3 kinase regulator activity, and double-
stranded RNA binding were observed (Figure 2A). For CC, the
remarkable enrichment in the tight junctions, lysosomes, primase
complex, and CMG complexes involved in replication was
observed (Figure 2A). For BP, significant downregulation in
neurotransmitter transports, synaptic transmission, cation
channel activity, and neurotransmitter receptor activity was
observed (Figure 2B). For CC, the downregulation in axonal
and neuronal growth, exocytic vesicle membrane, and synaptic
vesicle membranes were observed (Figure 2B). For MF, the
downregulation in ionotropic glutamate receptor activity,
guanylate activity, phosphatidylinositol 4,5 bisphosphate activity,
and histone threonine kinase activity were observed (Figure 2B).

Enrichment of Pathways
The major metabolic pathway databases, Kyoto Encyclopedia of
Genes and Genomes (KEGG) and REACTOME, were used to
study the enriched pathways for the annotated genes. The
significant pathways involved in GBM were identified for the
DEGs. As shown in Figure 3A, the upregulated DEGs were

FIGURE 1 |Differentially expressed genes (DEGs) of the expression profiles GSE90604, GSE50161, and GSE134470 with log2FC > 1 and p-value < 0.05. (A) Venn
diagram representation of the overlapped upregulated DEGs (B) Venn diagram representation of the overlapped downregulated DEGs. (C) Volcano plots of the up- and
downregulated DEGs of GSE90604. (D) Volcano plots of the up- and downregulated DEGs of GSE50161 and (E) Volcano plots of the up- and downregulated DEGs of
GSE134470. Green and blue dots represent down and upregulated genes, respectively. Black dots represent the remaining genes with no significant difference.
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mainly involved in cell cycle checkpoints, mitotic G1-G1/S phase,
DNA replication, immune system signaling of interferons,
interleukins, and cytokines. Further, to ensure consistency
between the GO and pathways enrichment, the inter-relational
analysis was performed using the ClueGO module of Cytoscape.
The upregulation of DNA replication, cell cycle checkpoints,
chromosome condensation, immune responses, pulmonary
valve morphogenesis, and coronary artery developments was
noticed (Figure 3B). The downregulated DEGs were mainly
involved in GABAergic and dopaminergic synaptic
transmission, calcium signaling, osteoclast formation, SNARE
formation, and methionine salvage pathways (Figure 4A). The
interrelational analysis of downregulated DEGs was also
consistent with the underexpression of GABA receptor
activities, cell communications, synaptic transmission, and
neuron myelination (Figure 4B).

Prediction of Hub Genes Through PPI
Network
The PPI networks analysis has helped in the identification of the
hub genes playing a critical role in the GBM. In the predicted PPI

networks for up- and downregulated DEGs, a haircut operation
with a network scoring cutoff of 2 was applied using the MCODE
plug-in of Cytoscape software. It resulted in 11 and 16 nodes for
23 up and 38 downregulated overlapping DEGs with scores of 3
and 3.86, respectively. The PPI networks for up- and
downregulated DEGs are shown in Figures 5A, B,
respectively. The 11 prominent upregulated hub genes,
namely, CTSK, HSPG2, SPARC, VIM, SOCS3, HELLS, CKAP2,
ASPM, MCM3, DDX58, and CLEC7A, were identified. A total of
16 genes, namely, MAPK8IP2, CACNA1E, BZRAP1, RIMS3,
GABRD, DDN, BRSK1, NAP1L2, PPIP5K1, RASL10B,
PPP2R2C, SYNJ2, SH3GL2, LICAM, MCTP1, and SV2B, were
identified. Among them, seven upregulated DEGs—VIM,HELLS,
SPARC, HSPG2, MCM3, ASPM, and SOCS3 and three
downregulated DEGs—SH3GL2, LICAM, and SYNJ2 exhibited
interactions with a high confidence score of 0.7.

Validation of Hub Genes
The expression atlas platform was used to further elucidate the
levels of hub genes expression on the brain tissues. The set of hub
genes was validated by comparing their expression patterns against
the datasets of the pan-cancer atlas of the whole-genome

TABLE 2 | Top DEGs and their biological functions.

Enriched
DEGs

Gene names Biological process

Upregulated DEGs

CLEC7A C-type lectin domain-containing 7A Regulation of dendritic cell cytokines, regulation of cell maturation and leukocyte mediated immunity
DDX58 DExD/H-box helicase 58 Interleukin 6 and 8 production, tumor necrosis factor production, cellular response to dsRNA, RIG-I

signaling pathway
SOCS3 Suppressor of cytokine signaling 3 Cellular response to cytokine stimulus, interleukin-6-mediated signaling pathway
PTPRZ1 Protein tyrosine phosphatase receptor type Z1 Oligodendrocyte differentiation, regulation of myelination, and neural precursor cell proliferation
MCM3 Minichromosome maintenance complex

component 3
Pre-replicative complex assembly, double-strand break repair via homologous recombination nuclear
cell cycle DNA replication

SEMA5A Semaphorin 5A Regulation of endothelial cell migration, proliferation, axon extension involved in axon guidance and
regulation of cell adhesion

CTSK Cathepsin K Chromatin modification, autophagy of mitochondrion and extracellular matrix disassembly,
keratinocyte differentiation

VIM Vimentin Intermediate filament organization, cellular response to muramyl dipeptide, regulation of collagen
metabolism, and glial cell differentiation

SPARC Secreted protein acidic and rich in cysteine Cell morphogenesis, regulation of endothelial cell and epithelial cell proliferation, regulation of
anatomical structure morphogenesis

HSPG2 Heparan sulfate proteoglycan 2 Inflammatory response, angiogenesis, circulatory system development
HELLS Lymphoid-specific helicase DNA methylation, alkylation, demethylation, chromatin remodeling, centromere complex assembly,

DNA metabolic process

Downregulated DEGs

DLG2 Discs large MAGUK scaffold protein 2 Protein localization to presynapse, cellular response to potassium ion, axo-dendritic protein transport
BRSK1 BR serine/threonine kinase 1 Chemical synaptic transmission, cell morphogenesis involved in neuron differentiation, regulation of

plasma membrane bounded cell projection organization, associative learning, neuron differentiation
MAPK8IP2 Mitogen-activated protein kinase 8 interacting

protein 2
Regulation of postsynaptic membrane potential, dendrite morphogenesis, regulation of apoptotic
signaling pathway, regulation of stress-activated MAPK cascade

SHISA7 Shisa family member 7 Regulation of neuronal synaptic plasticity
CACNA1E Calcium voltage-gated channel subunit alpha1 S Chemical synaptic transmission, anterograde trans-synaptic signaling
DDN Dendrin RNA polymerase II cis-regulatory region sequence-specific DNA binding, cognitive function, maintain

bone density
SH3GL2 SH3 domain-containing GRB2-like 2,

endophilin A1
Cellular response to brain-derived neurotrophic factor stimulus, neuron projection development,
plasma membrane bounded cell projection organization, nervous system development

SV2B Synaptic vesicle glycoprotein 2B Transmembrane transporter activity, chemical synaptic transmission
SYNJ2 SYNJ2 intronic transcript 1 Brain development, phosphatidylinositol biosynthetic process
PPIP5K1 Diphosphoinositol pentakisphosphate kinase 1 Phosphate-containing compound metabolic process
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consortium (ICGC/TCGA Pan-Cancer Analysis of Whole
Genomes Consortium, 2020). GBM is reported to occur in the
regions of cerebral hemispheres and frontal and temporal lobes. As
shown in Figure 5C, MAPK8IP2, SH3GL3, and PPIP5K1 were
found to be overly expressed in the tissues of the normal cerebellar
hemisphere and cerebellum, whereas high expression of PPP2R2C
and BRSK1 was seen in the normal cerebral cortex areas of brains.
A very significant expression of SPARC at the rates of 2,327.0 TPM
and 2,758.0 TPM were observed in GBM and glioma, respectively.
It indicates SPARC to be a strong prognostic biomarker of GBM
and glioma. The expression levels of the genes were measured at a

maximum rate of 3,642 transcripts per million. We have further
extended the validation of the hub genes by comparing the
expression levels with The Cancer Genome Atlas (TCGA) data.
The expression levels of the hub genes in normal brains were
compared to the GBM brains. They were also classified based on
TP53 mutant and non-mutant tissue samples from the TCGA
datasets (TCGA pan-cancer atlas with 592 samples of GBM) and
shortlisted the ones that were in line with the previous
comparisons, as shown in Table 3. The genes PPP2R2C, DDN,
SH3GL2, MAPK8IP2, CACNA1E, and BRSK1 were found
significantly underexpressed, whereas SPARC, VIM, and MCM3

FIGURE 2 | (A) Gene Ontology (GO) term enrichment analysis of the upregulated DEGs. (B) GO analysis of the downregulated DEGs. The top ten annotations
ranked based on p-values are shown for three sub-ontologies, namely, biological process, molecular function, and cellular component.
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were highly expressed in both the TCGA datasets (including the
TP53 mutant and non-mutant types) and GEO datasets. On the
contrary, the genes CTSK, CKAP2,DDX58, andHSPG2 of GBM in
TCGA were observed to be significantly overexpressed in
comparison to their expressions in GEO datasets. The genes
SYNJ2 and RIMS3 were observed to be relatively
underexpressed in the TCGA datasets in comparison to the
GEO datasets and thus excluded from further analysis.

Mutational Analysis of the Hub Genes
Mutational analysis of the hub genes was inferred from the six
TCGA datasets using cBioportal with a total of 1,893 samples.

SH3GL2 had the highest altered frequency (2.2%) with six
missense (shallow deletion) mutations. These mutations were
classified as variants of unknown significance (VUS). BRSK1 had
six VUS mutations with five missense and one truncating
mutation with a frequency of 1.2% alterations. MCM3 had ten
VUS mutations with six missense and one truncating mutation.
MAPK8IP2 and PPP2R2C had two VUS mutations. The detailed
mutation data of the hub genes are presented in Table 3. Genes
HSPG2with 35 VUS had a higher number of mutations with 1.5%
somatic mutations followed by ASPM and CACNE1 with 26 VUS
each. The substitution polymorphism was predicted using the
PolyPhen-2 tool. It predicted the damaging effects of the hub

FIGURE 3 | (A) Pathway enrichment analysis with KEGG and REACTOME is shown for the upregulated DEGs. (B) Interrelational pathway enrichment analysis is
shown for the upregulated DEGs.
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genes.VIM had twomutations with probably damaging effects on
V161G and E95Q with scores of 1.0 and 0.980, respectively. A
possibly damaging effect with a score of 0.95 was also found on
A301T. DDN, MCM3, and MCTP1 had no mutations, while
SPARC had only one mutation, A127V, which was possibly
damaged with a score of 0.909. SH3GL2 had only three
mutations, out of which two were benign and the third where
T was replaced by N at position 320 was probably damaging.
BRSK1 had four mutations, out of which G to A substitution that
occurred at position 327 was probably damaging. CACNA1E had
22 mutations R to W substitution at 590th residue was found

recurrent in many samples. The significant substitutions of the
biomarker genes are represented in Figure 6. The genes ASPM
and HSPG2 exhibited 27 and 35 mutations, respectively. Some of
their recurrent mutations are shown in Table 4. Figures 6A–D
represents the significant substitution mutations of the four
predominant genes classified as predictive biomarkers—VIM,
SH3GL2, SPARC, and CACNA1E.

Survival Analysis
In this step, the prognostic benefits of the hub genes were
explored in correlation with the overall survival rates of GBM

FIGURE 4 | (A) Pathway enrichment analysis with KEGG and REACTOME is shown for the downregulated DEGs. (B) Interrelational pathway enrichment analysis is
shown for the downregulated DEGs.
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patients. The median months of deceased and disease-free
progression rates correlated with the hub genes expression
(Table 5). A total of nine genes, namely, DDN, SH3GL2,
PPP2R2C, MAPK8IP2, SPARC, CACNA1E, VIM, MCM3,
and BRSK1, were identified to have an overall survival of
more than 5. Log-rank p-value is only the test of
significance based on the time of events. The overexpressed
gene SPARC had an overall survival rate of 7.26 median
months and the disease-free rate of two months which
shows the progression of the disease. The underexpressed
genes MAPK8IP2, BRSK1, SH3GL2, DDN, and PPP2R2C
had overall survival rates of 10.65, 16.93, 6.54, 7.40, and
17.80 median months, respectively. The disease-free
progression rates of MAPK8IP2, BRSK1, SH3GL2, DDN, and
PPP2R2C were 11.17, 8.40, 13.21, 4.83, and 10.90 median
months, respectively. The overall and disease-free
progression of upregulated hub gene VIM had shown log-p
ranks of 0.28 and 0.04, respectively. The highest overall
survival rate was 65.33 median months. The highest

disease-free progression rate was 57.72 median months.
With five years of life expectancy, these values indicate a
good survival rate and can be proposed as a prognostic
biomarker for GBM. Figure 7 shows the overall survival
rates of eight significant genes—MAPK8IP2 (Figure 7A),
DDN (Figure 7B), PPP2R2C (Figure 7C), VIM
(Figure 7D), SH3GL2 (Figure 7E), SPARC (Figure 7F),
BRSK1 (Figure 7G), and CACNA1E (Figure 7H).

Prediction of Prognostic Potentials of Hub
Genes Across GBM Subtypes
The GBM can be classified into three subtypes, namely,
proneural, classical, and mesenchymal, based on their
prognosis and survival rates. The factors such as inter tumor,
intratumor heterogeneity, short survival, and lack of treatment
contribute to this classification. According to Verhaak et al.
(2010), proneural subtypes are found in less pathological
conditions and young patients with better survival and

FIGURE 5 | Protein–protein interaction network of the overlapped DEGs. (A) Upregulated hub genes of the PPI network with a medium confidence score of 0.4 are
shown as green nodes, and hub genes with a high confidence score of 0.7 are shown as blue nodes. (B) Downregulated hub genes of the PPI with a medium score are
shown as orange nodes, and hub genes with a high confidence score of 0.7 are shown as blue nodes. PPI, protein–protein interaction. DEGs, differentially expressed
genes. (C) Comparison of the expression levels of hub genes among the brain tissues identified from the Expression Atlas platform for TCGA datasets.
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TABLE 3 | Expression levels of the hub genes in GBM identified from pan-cancer analysis.

Gene Normal
expression

(TPM)

p-value Tumor
expression

(TPM)

Tumor
p-value

TP53
mutant

expression
(TPM)

TP53 mutant-p-
value

TP53-non
mutant

expression
(TPM)

TP53 non-mutant—p-
value

DDN-dendrin 203.728 0.056201 1.335 0.056605 1.449 0.056879 1.21 0.56348
SH3GL2- SH3 domain-containing GRB2-like 2,
endophilin A1

226.596 0.03476 6.651 0.032862 10.784 0.167819 5.264 0.032098

CACNA1E-calcium voltage-gated channel
subunit alpha1 E

28.652 0.030956 0.805 0.02822 1.15 0.0274 0.72 0.0418

PPP2R2C-protein phosphatase 2 regulatory
subunit B’gamma

185.898 0.0070628 3.91 0.0073005 3.506 0.096261 4.072 0.0074367

MAPK8IP2-mitogen-activated protein kinase 8
interacting protein 2

345.321 0.0134587 24.288 0.0139826 22.916 0.146618 25.11 0.0143359

BRSK1-BR serine/threonine kinase 1 161.358 1.62436730732907E-
12

24.98 <1E-12 23.686 0.82764 4.92 <1E-12

RIMS3-regulating synaptic membrane
exocytosis 3

96.441 0.054177 4.115 0.052856 4.611 0.48738 3.571 0.052296

CLEC7P-C-type lectin domain containing 7P 4.501 1.64369999999803E-
06

9.959 7.7704999990047E-08 9.537 0.90746 9.801 4.78749999643924E-08

SPARC-secreted protein acidic and rich in
cysteine

238.338 <1E-12 2055.527 1.62447832963153E-
12

1,849.872 0.0162786 2,168.427 1.62436730732907E-12

VIM-vimentin 315.18 1.55431223447522E-
15

3,474.583 1.62447832963153E-
12

3,051.469 0.85376 3,571.568 1.62436730732907E-12

MCM3-assembly factor for spindle microtubules 14.75 1.6278089987054E-12 49.41 1.11022302462516E-
16

53.018 0.0021043 45.933 9.99200722162641E-16

SYNJ2-synaptojanin 2 50.67 0.112542 4.872 0.114896 5.7 0.28404 4.85 0.116481
SCOCS3-suppressor of cytokine signaling 31.655 0.65318 45.307 0.42558 34.5 0.15806 48.45 0.36338
PPIP5K1-diphosphoinositol pentakisphosphate
kinase 1

24.329 0.030397 5.723 0.030943 5.779 0.031338 5.674 0.031338

CTSK-cathepsin K 5.425 1.15290000002322E-
06

20.731 1.62503344114384E-
12

18.61 0.67398 20.63 1.43880463099322E-11

CKAP2-cytoskeleton-associated protein 2 7.45 2.4300994549975E-10 23.446 <1E-12 24.46 0.038943 21.966 7.7715611723761E-16
DDX58-DEAD-box helicase 58 4.18 0.00193986 6.882 0.0026363 6.947 0.8288 6.82 0.0020031
HSPG2-heparan sulfate proteoglycan 4.52 3.74589248508528E-

13
31.03 1.62436730732907E-

12
32.04 0.97406 29.68 <1E-12
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prognosis rate. Recurrent GBM with a high incidence of the
tumor, inflammation, and necrosis shifts to mesenchymal types
and is considered the worst of all. The classical subtype showed
various amplifications, including chromosome 7, deletion of
chromosome 10, and lack of p53 mutations. Upon combative
radiotherapy and chemotherapy, classical types had a reduced
mortality rate (Zhang P et al., 2020). GBM Biodp database
enabled the identification of prognostic potentials of the hub
genes across the GBM subtypes and their expression levels are
represented in Supplementary Figure S1. DDN was identified to
be upregulated in the proneural subtype and downregulated in
the classical subtype (Sidaway, 2017), while SH3GL2 was
upregulated in proneural and downregulated in classical, thus
making them good prognostic biomarker candidates. CACNA1E
with a hazards ratio of 1.01 was found upregulated in
mesenchymal but downregulated in proneural. SPARC with a
hazards ratio of 0.86 was observed in higher levels only during the
later stages of GBM. They tend to be upregulated in classical and
mesenchymal while exhibiting downregulated expressions in
proneural. VIM had a higher hazards ratio of 1.07 and was
observed upregulated in classical and downregulated in
proneural. Both MCM3 and MAPK8IP2 were upregulated in

proneural and downregulated in mesenchymal with the
potential to act as prognostic biomarkers. When assessing
their significant mutual exclusivity and co-occurrence ability
filtered with a p-value <0.05, it was found that most of the
genes including DDN, SPARC, VIM, BRSK1, PPP2R2C, and
MAPK8IP2 were free from mutual exclusivity and co-
occurrence. MCM3 was found to be co-occurring with MCTP1
and PPP2R2C, while SH3GL2 co-occurred with SYNJ2. Hence
based on the classification of genes at the proneural type four
genes, namely, SH3GL2,MCM3,MAPK8IP2, and DDN, have the
potential to be suitable biomarker candidates.

Identification of Prognostic Biomarkers
Through Pan-Cancer Analysis
We performed a pan-cancer analysis to ascertain the occurrence
and expression patterns of hub genes in normal and GBM tissues
in comparison to other cancer tissues. Although the SPARC and
VIM genes had higher expression rates in GBM, they were found
high in other cancer types. In GBM, they can be considered as
significantly overexpressed genes. Their upregulation in the
mesenchymal and classical subtypes reveals that they are

FIGURE 6 | Lollipop plot exhibiting the significant substitution mutations of genes classified either as benign or damaging. (A) Significant mutations of VIM. (B)
Significant mutations of SH3GL2. (C) Significant mutations of SPARC. (D) Significant mutations of CACNA1E.
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involved in the more aggressive stages of GBM. Four genes,
namely, MAPK8IP2, DDN, CACNA1E, and SH3GL2, were
significant, with higher expression rates of 345.24 TPM, 7.93

TPM, 21.65 TPM, and 7.92 TPM, respectively, in the normal
brain and were significantly lower in GBM with respective
expression rates of 24.28 TPM, 1.313 TPM, 0.8 TPM, and 3.06

TABLE 4 | Mutational analysis of the hub genes.

Gene Somatic
mutation
frequency

(%)

No.
of

VUS

No of
missense

No.
of

truncating

No.
of inframe/

splice

Significant
substitutions

Damaging
effect

Score

ASPM-assembly factor for spindle microtubules 0.7 26 20 5 1 T2339P Probably
damaging

0.999

S270P Benign 0
A3137D Probably

damaging
1.00

HSPG2-heparan sulfate proteoglycan 1.5 35 33 1 — A1766D Possibly
damaging

0.623

A2856T Possibly
damaging

0.926

CACNA1E-calcium voltage-gated channel subunit
alpha1 E

1.0 26 25 1 — S1322F Probably
damaging

0.99

A709T Probably
damaging

0.991

R590W Probably
damaging

1.0

SH3GL2-SH3 domain-containing GRB2-like 2,
endophilin A1

0.3 6 6 0 0 S213N Benign 0.002
R260Q Benign 0.062
T320N Probably

damaging
0.093

SPARC-secreted protein acidic and rich in cysteine <0.1 1 1 0 0 A127V Possibly
damaging

0.909

VIM-vimentin 0.1 3 3 0 0 V161G Probably
damaging

1.00

A301T Possibly
damaging

0.95

E95Q Probably
damaging

0.980

MAPK8IP2-mitogen-activated protein kinase 8
interacting protein 2

0.1 3 2 1 0 P499L Benign 0.001

BRSK1-BR serine/threonine kinase 1 0.3 7 6 1 0 G327A Probably
damaging

1

R418* Probably
damaging

0.999

F136L NA —

K135Q NA —

PPI5K1-diphosphoinositol pentakisphosphate
kinase 1

<0.1 1 1 0 0 NA — —

PPP2R2C-protein phosphatase 2 regulatory
subunit B’gamma

0.1 2 2 0 0 E128K Benign 0.006
R274H Benign 0.013

MCM3-assembly factor for spindle microtubules 0.5 12 6 6 0 NA — —

SYNJ2-synaptojanin 2 0.5 13 12 1 0 P812S Benign 0.160
R376H Probably

damaging
1.00

MCTP1-multiple C2 and transmembrane domain-
containing 1

0.4 9 2 4 3 NA

SV2B-synaptic vesicle glycoprotein 2B 0.3 10 8 1 1 L294M Probably
damaging

1.0

K295R Benign 0.01
A438T Benign 0.535
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TABLE 5 | Survival analysis of the hub genes.

Gene Molecular subtype Mutual exclusivity or
co-occurrence

Hazards
ratio

Overall survival Disease-free survival

Log p-
rank

Number of
cases

Number
of deceased

cases

Median
monthsa

Log
p-rank

Number of
cases

Number
of recurred

cases

Median
months

DDN Upregulated—proneural No significant co-
occurrence or mutual
exclusivity

1.08 0.54 13 10 7.40 (6.02–NA) 0.3 8 5 4.83 (4.80–NA)
Downregulated—classical

SH3GL2 Upregulated—proneural Co-occurrence with SYNJ2 1 0.57 43 41 6.54
(5.39–19.80)

0.73 22 14 13.21
(8.50 -NA)Downregulated—classical

CACNA1E Upregulated—mesenchymal No significant co-
occurrence or mutual
exclusivity

1.01 0.77 118 97 13.00
(7.39–15.70)

0.81 63 44 11.17
(8.02–14.98)Downregulated—proneural

PPP2R2C NA No significant co-
occurrence or mutual
exclusivity

NA 0.57 10 7 17.80
(17.77–NA)

0.23 6 4 10.90
(10.87–NA)

MAPK8IP2 Upregulated—proneural No significant co-
occurrence or mutual
exclusivity

0.63 0.94 32 29 10.65
(4.73–15.70)

0.34 15 10 11.17
(3.91–NA)Downregulated—mesenchymal

BRSK1 NA No significant co-
occurrence or mutual
exclusivity

NA 0.88 15 10 16.93
(16.90–NA)

0.44 8 4 8.40 (5.65–NA)

SPARC Upregulated—classical No significant co-
occurrence or mutual
exclusivity

0.86 0.43 5 5 7.26 (7.23–NA) 0.61 4 4 2.00 (2.00–NA)
Downregulated—proneural

VIM Upregulated—classical No significant co-
occurrence or mutual
exclusivity

1.07 0.28 12 7 65.30
(26.33–NA)

0.04 5 5 57.72
(50.70–NA)Downregulated—proneural

MCM3 Upregulated—proneural Co-occurrence with
MCTP1 and PPP2R2C

0.82 0.89 9 2 NA 0.086 4 2 12.16
(12.16–NA)Downregulated—mesenchymal

aNA: Data were not available to report.
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TPM. In contrast, MCM3 was found to be lowest in the normal
brain with 16.09 TPM with a higher expression level of 121.564
TPM. Although MCM3 was upregulated in proneural, it had
exceptionally higher levels in GBM than in normal brains. It
cannot be ascertained as a biomarker for GBM due to its similar
higher expression patterns in various cancers. However,
MAPK8IP2 was significantly downregulated in GBM, lower
brain grade glioma, and paraganglioma, as compared to the
normal brain tissues. MAPK8IP2 also loses its importance as a
biomarker for GBM as it is also observed in all other cancer types.
The highest expression level ofDDNwas seen in the normal brain
tissues and a distinguishable reduction was observed in GBM.
Similar lower levels of DDN were observed only in
pheochromocytoma paraganglioma (PCPG), head and neck
squamous carcinoma (HNSC), esophageal carcinoma (ESCA),
colon adenocarcinoma (COAD), and rectal adenocarcinoma
(READ). Apart from GBM, SH3GL2 deviation was marked in
the kidney chromophobe tumor (KICH), kidney renal cell
carcinoma (KIRC), pancreatic adenocarcinoma (PAAD),
prostate adenocarcinoma (PRAD), and sarcoma (SARC).
Similar to DDN and MAPK8IP2, only the normal brain tissues
had the highest expression of CACNA1Ewith a marked reduction
of expressions in GBM. Lower expression levels of CACNA1E

were found in pheochromocytoma, paraganglioma (PCPG),
kidney renal clear cell carcinoma (KIRC), and sarcoma
(SARC). Interestingly, due to less common occurrence in other
cancer types, larger differences in expression rates in GBM than
the normal tissue three genes, namely, CACNA1E, DDN, and
SH3GL2, Figure 8 can be proposed as potential prognostic
biomarkers of GBM. Although the survival rates of patients
with DDN and SH3GL2 were lower, they can still be
considered putative diagnostic markers in GBM. This is due to
the fact that they demonstrated a significant drop in expression
rate as compared to the normal brain tissues. Significant
overexpression of VIM with high overall survival correlated
with previous findings as a strong biomarker of the
mesenchymal and classical types of GBM (Shai et al., 2003).

DISCUSSION

GBM is the deadliest type of brain tumor. Unfortunately, to date,
both the diagnosis and treatment are extremely challenging. In its
aggressive form, the blood–brain barrier is disrupted, which
worsens the delivery of oncogenic drugs and treatment
(Hoelzinger et al., 2005). Elucidation of the molecular

FIGURE 7 |Overall survival analysis by Kaplan–Meir plots of the hub genes. (A)Overall survival rate ofMAPK8IP2 in GBM patients. (B)Overall survival rate ofDDN in
GBMpatients. (C)Overall survival rate of PPP2R2C in GBMpatients. (D)Overall survival rate of VIM in GBM patients. (E)Overall survival rate of SH3GL2 in GBMpatients.
(F) Overall survival rate of SPARC in GBM patients. (G) Overall survival rate of BRSK1 in GBM patients. (H) Overall survival rate of CACNA1E in GBM patients.
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biomarkers and pivotal pathways assist in the early detection of
the disease progression. In this aspect, computational gene
profiling strategies have been advocated for GBM and other
cancer types (Piao et al., 2021). In the current study, we have
conducted an extensive investigation of the underlying gene
expressions in GBM with an aim to identify the key candidate
genes and molecular drivers responsible for their progression.
Using integrated bioinformatics analysis, we have identified 61
differentially expressed genes (23 upregulated and 38
downregulated genes) by comparing the microarray expression
profiles- GSE90604, GSE50161, and GSE134470, obtained from
the NCBI-GEO database.

In the subsequent gene ontology analysis, we have identified
that the voltage-gated ion channels of calcium,
neurotransmitter receptor activities, cell communication,
neuronal growth, synaptic transmission, and GABA
receptor functions were disrupted in the GBM.
Furthermore, the overexpressed immune responses,
including interleukin, interferon, and cytokines were
significant in GBM along with enhanced DNA replication.

The pathway enrichment determined by KEGG and
REACTOME for the annotated genes reveals the inter-
relationships, interactions, and regulation of how each gene
affects the other. Pathways overexpressed by the upregulated
DEGs were cell cycle checkpoints, mitotic G1-G1/S phase,
DNA replication, immune system signaling of interferons,
interleukins, and cytokines, while the downregulated
pathways were GABAergic and dopaminergic synaptic
transmission, calcium signaling, osteoclast formation,
SNARE formation, and methionine salvage pathways.

The detailed functional annotation revealed that the
upregulation of DEGs such as HSPG2, SOCS3, DDX58, and
CLEC7A was involved in inflammatory response—cytokine,
interleukin 6 and 8, and interferon signaling. MCM3 and
HELLS responsible for the initiation of DNA replication,
replication assembly complex, DNA methylation, and
alkylation were enriched, which signifies the escalation of cell
proliferation. The rise in cell morphogenesis and endothelial
and epithelial cell proliferation was remarkably seen with the
upregulated SPARC gene. The intermediate filament vimentin

FIGURE 8 | Expression levels of the hub genes in pan-cancer tissues. (A) Lower expression levels of DDN observed in GBM. (B) Lower expression levels of
SH3GL2 observed in GBM. (C) Lower expression levels of CACNA1E observed in GBM.
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shot up the cellular response to muramyl dipeptide and
regulation of collagen metabolism. A surge in neuronal
mechanisms such as glial cell differentiation, axon extension,
and regulation of myelination and neural precursor cell
proliferation was seen due to the enrichment of VIM,
SEMA5A, and PTPRZ1. In low-grade glioma, SEMA5A was
underexpressed, exhibiting its tumor suppressor nature, but it
is compromised in high-grade GBM (X. Li et al., 2012).
Remarkable elevation of oligodendrocyte differentiation and
angiogenesis were observed in GBM. Functional annotation
unraveled the dwindling mechanisms of synaptic
transmission, axodendritic transport, neuronal differentiation,
postsynaptic membrane potential, transmembrane transport
activity, and neuronal plasticity due to the underexpression
of DLG2, BRSK1, MAPK8IP2, SHISA7, SV2B, and CACNA1E.
All the downregulated DEGs were related to curtailment of
brain development, neuronal transport, and synaptic
transmission signals. SV2B was found to be differentially
expressed in glioma grade II. Both over and underexpression
of the gene were previously noted in GBM (Zhang Y et al., 2020).
RNA polymerase II cis-regulatory region sequence-specific
DNA binding, cognitive function, cellular response to brain-
derived neurotrophic factor stimulus, neuron projection
development, plasma membrane bounded cell projection
organization, and nervous system development were declined
with the reduction of their responsible genes—DDN and
SH3GL2. The most remarkable pathway of the brain, the
phosphatidylinositol biosynthetic process involved in aging,
was downregulated due to the phosphatidylinositol 3-kinase
(PI3K) dysfunction as seen in many neurodegenerative
processes (Thakur & Rattan, 2012).

Protein–protein interaction profiles of the overlapped
DEGs with a high confidence score unraveled interesting
upregulated and downregulated protein interactions. The
11 upregulated hub genes were identified as CTSK, HSPG2,
SPARC, VIM, SOCS3,HELLS, CKAP2, ASPM,MCM3, DDX58,
and CLEC7A. Based on their PPI network, 16 downregulated
hub genes viz. MAPK8IP2, CACNA1E, BZRAP1, RIMS3,
GABRD, DDN, BRSK1, NAP1L2, PPIP5K1, RASL10B,
PPP2R2C, SYNJ2, SH3GL2, LICAM, MCTP1, and SV2B
were identified. Among them, seven upregulated
DEGs— VIM, HELLS, HSPG2, MCM3, ASPM, SPARC, and
SOCS3 and three downregulated DEGs—SH3GL2, LICAM,
and SYNJ2 exhibited interactions with a high confidence score
of 0.7. All the hub genes were validated by comparing their
expression patterns in the GBM datasets of TCGA from which
the genes PPP2R2C, DDN, SH3GL2, MAPK8IP2, CACNA1E,
and BRSK1 were found significantly underexpressed, whereas
SPARC, VIM, and MCM3 were highly expressed in both the
TCGA datasets (including the TP53 mutant and non-mutant
types) and GEO datasets. On the contrary, the genes CTSK,
CKAP2, DDX58, and HSPG2 of GBM in TCGA were observed
to be significantly overexpressed in comparison to their
expressions in GEO datasets. The genes SYNJ2 and RIMS3
were observed to be relatively underexpressed in the TCGA
datasets to the GEO datasets. We were also interested in
predicting the driver or passenger mutations for the hub

genes. We found HSPG2 with 35 VUS had the higher
number of mutations followed by ASPM and CACNA1E
with 26 mutations each. The mutational frequency of the
three genes demands more insight and analysis to be identified
as marker genes. CACNA1E, the member of voltage-gated
calcium channels, was identified as a significantly
downregulated gene and was identified to be one of the
unique genes of GBM (Phan et al., 2017). Predominant
substitution mutations of the hub genes were inferred to
understand if they are benign or damaging.

Furthermore, we have conducted a survival analysis to
identify the putative biomarkers of GBM, and a similar
approach for biomarker identification has been reported in
other studies (Gulluoglu et al., 2018; Gulluoglu et al., 2018;
Piao et al., 2021). The overall survival and disease-free survival
analysis narrowed down the initially identified hub genes to
eight noteworthy genes, namely, SH3GL2, SPARC,MAPK8IP2,
DDN, BRSK1, CACNA1E, VIM, and PPP2R2C, whose overall
survival rate was greater than five months. VIM, with a log-
rank p-value of 0.28, had a better life expectancy of more than
five years and their expression levels are strikingly high
in GBM.

The most interesting findings of this study are the
identification of potential biomarkers in GBM. Genes,
namely, PPP2R2C (protein phosphatase regulatory subunit
B gamma), SH3GL2 (SH3 domain-containing GRB2-like 2,
endophilin A1), BRSK1 (BR serine/threonine kinase 1), DDN
(dendrin), CACNA1E (calcium voltage-gated channel subunit
alpha1 E), and MAPK8IP2 (mitogen-activated protein kinase
8 interacting protein 2) were harmoniously underexpressed in
GBM than in the normal tissues. These genes were also
observed to be significantly downregulated in GBM, as
indicated by the pan-cancer analysis. Interestingly, as per
GeneCards, the PPP2R2C gene was already reported to be
involved in cell cycle regulation, beta-adrenergic receptor
signaling, and PI3-Akt signaling, as well as being
responsible for inflammatory bowel disease (Lizcano et al.,
2004). MAPK8IP2 was responsible for AKT, ERK, and MAP
signaling pathways and was responsible for spinocerebellar
ataxia (Ziats et al., 2019). DDN is a significant gene validated
to have a role in causing autism with properties to heal
impaired bone density (Cousminer et al., 2018). BRSK1 was
reported to be a biomarker for lung large cell carcinoma with a
role in LKB1 signaling (Lizcano et al., 2004)). SH3GL2
exhibited an important role in clathrin-mediated
endocytosis and its underexpression caused pediatric
pilocytic astrocytoma (Yao et al., 2014). Hence, the lower
expression levels of the above said five genes correlated with
either disruption of signals or causing neurological distress.
The two predominant upregulated hub genes, namely, VIM
(vimentin) and SPARC (secreted protein acidic and rich in
cysteine), showed significantly higher expression rates in
GBM than in normal brains. Vimentin (VIM), the major
intermediary filament constituent, was associated with
neuritogenesis, cell signaling, attachment, and migration,
causing congenital cataracts (Griesinger et al., 2013). There
is ample evidence on VIM as a potential biomarker or
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therapeutic candidate for GBM. VIM, a multifunctional
protein, exhibits interactions with diverse proteins and
ascertains itself to be a marker for highly aggressive and
metastatic forms of almost all cancers (Shai et al., 2003).
The histochemical profiles of VIM revealed that it was
widely distributed in gliomas, cerebellar pilocytic
astrocytomas, neurinomas, and endothelial cells of various
cancer cells (Schiffer et al., 1986). Higher expression of VIM
was attributed to the progression of glioblastoma and was
linked to a reduced survival rate (Zhao et al., 2018). Cell
surface vimentin on the GBM has been shown to initiate
tumors in the adjacent cells, and two monoclonal antibodies
86C and pritumumab were successful to target cell surface
vimentin offering promising treatment options to GBM (Noh
et al., 2016; Babic et al., 2018). VIM was seen upregulated in
the classical and mesenchymal subtypes and evidently the
transitions from classical to mesenchymal GBM were
correlated to higher expressions of VIM (Schiffer et al.,
1986; Herrera-Oropeza et al., 2021). Upregulation of
vimentin protein was evident in the proliferation and
migration of GBM. The invasion of cancer cells was found to be
suppressed by vimentin knockdown strategies (Nowicki et al., 2019).
Although pan-cancer analysis showed overexpression of VIM in
most cancer types, its overall survival rate was promising, with
65.3 months of life expectancy in patients, thus making it an
attractive diagnostic biomarker for aggressive stages of GBM. It is
also due to the fact that it has a very high expression rate in
mesenchymal and classical subtypes. SPARC, also termed
osteonectin, was associated with brittle bone disorder with
significance in metastasis and cancer invasion. It was found
upregulated in mesenchymal and classical subtypes (Delany et al.,
2008) due to which the overall survival rate of SPARC was just
7 months and disease-free survival was 2.2 median months. Similar
to VIM, although SPARC was remarkably overexpressed in most
cancer types, a ten-fold increased expression seen in GBM makes it
crucial (Liu & Lathia, 2016); (Yao et al., 2014); (Herrera-Oropeza
et al., 2021). The fact that the expression of DDN and SH3GL2 were
attributed to the proneural subtype makes them strong prognostic
GBM biomarker candidates. CACNA1E was attributed to the
mesenchymal subtype, which is the most aggressive form of
GBM, thus making it a significant diagnostic biomarker for
GBM. Furthermore, pan-cancer analysis of the hub genes
revealed three genes, namely, CACNA1E, DDN, and SH3GL2,
which were predominantly downregulated in GBM but not
identified in more than five cancer types, could also make them
putative prognostic biomarkers for GBM.

There is enough evidence on the prognostic biomarkers of
GBM. Putative biomarkers for the GBM stem cells were identified:
upregulation of CD133 (encoded by PROM1) is linked to self-
renewal of stem cells and resistance to temozolomide (Han et al.,
2016), CD44 is found to be involved in tumor cell migration and
proliferation (Nishikawa et al., 2018), CD15 (a trisaccharide 3-
fucosyl-N-acetyllactosamine) as seen inmany cancers is attributed
to the GBM grades and survival during hypoxic conditions (Ishii
et al., 2021), CD70 (CD27 L—type II transmembrane protein that
belongs to the tumor necrosis factor (TNF) receptor family) is
attributed to tumor immunosuppression and aggressiveness of

GBM (Pratt et al., 2017), S100A4 is a metastasis inducer capable of
initiating a tumor and forming spheres of GBM (Liang et al.,
2014), ALDH1A3 (aldehyde dehydrogenases) is linked to tumor
proliferation in multiple cancers (Fedele et al., 2019), nanog
(homeodomain transcription factor) is linked to low survival in
both low- and high-grade glioma (Elsir et al., 2014), OCT-4
(octamer-binding protein transcription factor 4) is found to be
upregulated in the hypoxic conditions of GBM (Krogh Petersen
et al., 2016), SOX-2 (sex-determining region Y) is found to have an
increased expression in GBM stem cells linked to the growth of
tumors and relapse after chemo and radiotherapy (Ren et al.,
2016), and nestin (an intermediate filament) is attributed to tumor
initiation, angiogenesis, metastasis, and aggressive growth (Nowak
et al., 2018). Although several putative prognostic biomarkers for
GBM are already predicted, they are found in multiple cancer
types (Hassn Mesrati et al., 2020). Mutations on IDH1 (isocitrate
dehydrogenase) were considered significant with prognostic
benefits, while deletion of CDKN2A (cyclin-dependent kinase
inhibitor 2A) in IDH mutants was a marker for malignancy.
TERT (telomerase and reverse transcriptase) promoter mutations,
H3F3A (replication-independent histone 3.3 linked to high-grade
gliomas) alterations, and methylation of MGMT (O6-
methylguanine-DNA methyltransferase) promoters were
proposed as potential markers of GBM (Śledzińska et al.,
2021). The potential prognostic biomarkers, namely, epidermal
growth factor (EGFR), p53 (tumor suppressor protein), platelet-
derived growth factor receptor (PDGFR), phosphoinositide 3-
kinase (PI3K), phosphatase and tensin homolog (PTEN), and
1p/19q (codeletion of chromosomes 1p and 19q) have also been
identified, but they failed to achieve prognostic effect in the clinical
studies (Karsy, 2015). Nanoparticle protein typing of the
extracellular vesicles revealed the protein markers EGFR
(epidermal growth factor receptor), IDH1, PDPN (podoplanin),
TGFB (transforming growth factor-beta), IL-8 (interleukin 8),
TIMP1 (TIMP metallopeptidase inhibitor 1), and ZAP70 (zeta
chain-associated protein kinase 70). According to GBM subtype
classification, chromosome 7 amplification together with the
deletion of chromosome 10 and EGFR amplification, were
identified as a classical GBM (Verhaak et al., 2010).
Mesenchymal GBM showed mutations in neurofibromatosis
type 1 (NF1) with the upregulation of necrosis and
inflammation genes (Fadhlullah et al., 2019). Proneural subtype
GBM was marked with IDH1 point mutations and platelet-
derived growth factor receptor alpha (PDGFRA) aberrations
(Verhaak et al., 2010). Sequencing of the circulating tumor
DNAs revealed the presence of mutations in IDH1, IDH2,
TP53, TERT, ATRX (nuclear alpha-thalassemia/mental
retardation X-linked syndrome), H3F3A, and HIST1H3B
mutations claiming them to be significant biomarkers of GBM.
The drawback of the predicted circulating tumor DNAs is that
they are very rarely detected. SH3GL2, a tumor suppressor gene
widely prevalent in the central nervous system, was identified to be
downregulated by the miRNA biomarker—mir330, thereby
causing malignancy in GBM (Yao et al., 2014). Although there
were a remarkable number of biomarkers already reported, they
either failed to exhibit prognostic effects in clinical studies or were
invariably seen in many cancer types, making them futile.
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Altogether, through this study, we provide sufficient
background for the genes SH3GL2, DDN, and CACNA1E to be
the potential putative prognostic biomarker candidates of GBM.
BRSK1, PPP2R2C, andMAPK8IP2 with striking lower expression
levels and better survival rates can also play a role in the early
diagnosis of GBM. The study evaluated the biomarkers in
comparison with GEO datasets, TCGA datasets, and the Pan-
Cancer Analysis of Whole Genomes datasets adding strong
validation to the predicted biomarkers.

CONCLUSION

This study sheds light on the identification of the key molecular
drivers of GBM. The study elucidated putative prognostic
biomarkers through a top–down integrated bioinformatics
approach. Through this study, we have predicted novel GBM
biomarkers DDN and SH3GL2 along with the already reported
VIM, CACNA1E, and SPARC genes. It provides a promising
preliminary investigation that employs multiple steps of
validation right from the comparison of expression levels
between normal and GBM brain tissues to predicting the
prognostic potential based on the GBM subtypes. Further
biological validation will be more valuable. Also, the clinical
examination of the hub genes will endorse the prognostic
biomarker candidates obtained through this study.
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