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ABSTRACT

Purpose: The prevalence of food allergy, triggered by T-helper type 2 (Th2) cell-mediated 
inflammation, is increasing worldwide. Interleukin (IL)-18 plays an important role in 
inflammatory diseases by binding with the IL-18 receptor. IL-18/IL-18 receptor α (IL-18Rα) is a 
cofactor for immunoglobulin E (IgE) production and Th2 cell development. Studies have not 
investigated the association between the IL-18/IL-18Rα signaling pathway and food allergy. 
Here, we investigated the role of IL-18Rα in food allergy induction and development.
Methods: Wild-type (WT) and IL-18Rα-null mutant (IL-18Rα−/−) C57BL/6 mice were sensitized 
and challenged using ovalbumin (OVA) for food allergy induction. Food allergy symptoms, 
T cell-mediated immune responses, and signal transducer and activator of transcription 
(STAT)/suppressors of cytokine signaling (SOCS) pathways were analyzed in mice.
Results: IL-18Rα expression was increased in WT mouse intestines after OVA treatment. 
Food allergy-induced IL-18Rα−/− mice showed attenuated systemic food allergic reactions, 
OVA-specific IgE and mouse mast cell protease-1 production, inflammatory cell infiltration, 
and T cell activation. Ex vivo experiments showed that cell proliferation and Th2 cytokine 
production were lower in IL-18Rα−/− mouse splenocytes than in WT mouse splenocytes. IL-
18Rα blockade in WT splenocytes attenuated cell proliferation and Th2 cytokine production. 
Moreover, STAT3 phosphorylation was reduced in IL-18Rα−/− mice, and SOCS3 and SOCS1 
activation were diminished in IL-18Rα−/− intestinal T cells.
Conclusions: IL-18Rα regulates allergic reactions and immune responses by regulating T 
cell responses in food allergies. Moreover, IL-18Rα is involved in the STAT/SOCS signaling 
pathways. Targeting IL-18Rα signaling might be a novel therapeutic strategy for food allergy.

Keywords: Food allergy; interleukin-18; receptors; Th2 cells; STAT3 transcription factor; 
suppressors of cytokine signaling proteins; pathophysiology

INTRODUCTION

Food allergy is an immunoglobulin E (IgE)-mediated adverse hypersensitivity reaction 
to ingested food and is an increasing public health concern affecting millions of people 
worldwide over the past few decades.1 Clinical symptoms of food allergy can be mild 
reactions, such as itching and swelling, to life-threatening systemic anaphylaxis.2,3 Despite 
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their increased prevalence, current therapeutic strategies are limited by our incomplete 
understanding of the immunologic events that initiate and propagate type 2 inflammation.4 
Thus, a better understanding of the underlying immune mechanisms and signaling pathways 
of food allergy is warranted to develop more effective and safe therapies that provide long-
term protection in patients of various ages and with different responsiveness.5-7 Typically, 
when food allergens penetrate the epithelial barrier, naïve T cells differentiate into CD4+ 
T-helper type 2 (Th2) cells, initiating the transcription of several cytokines, including 
interleukin (IL)-4, IL-5, and IL-13. Th2 cells promote antigen-specific IgE development 
through class-switching via B cells, ultimately inducing Th2 cell-mediated effector responses 
through mast cells during food allergy.8,9 Furthermore, T cell responses activate signal 
transduction pathways, including Janus kinase (JAK)/signal transducer and activator of 
transcription (STAT) signaling. STAT protein activation is regulated by cytokine-induced 
phosphorylation and suppressors of cytokine signaling (SOCS) proteins.10 SOCS is a direct 
target gene for STAT, which is not only driven by the cytokine-mediated activation of JAK/
STAT signaling but also acts as a negative regulator that inhibits JAK signaling.11 SOCS family 
proteins also contribute to Th cell differentiation during immune responses.12,13

IL-18 is an IL-1 family cytokine produced by various cells such as antigen-presenting cells, T 
cells, and natural killer cells.14-16 IL-18 receptor (IL-18R) is a heterodimeric complex composed 
of a signaling alpha subunit (IL-18Rα) and a ligand-binding beta subunit (IL-18Rβ). IL-
18Rα is an extracellular signaling domain, whereas IL-18Rβ is an adapter molecule.17 In 
the downstream signaling pathway of IL-18R, myeloid differentiation factor 88 (MyD88) 
and IL-1 receptor-associated kinase 4 trigger the nuclear translocation of nuclear factor-κB 
and transcription of pro-inflammatory genes.14,18,19 IL-18 and its receptors are pleiotropic 
molecules involved in several inflammatory disorders, and polymorphisms in the IL-
18Rα/IL-18 receptor accessory protein locus are associated with disease susceptibility.20-23 
Furthermore, IL-18Rα is regulated during CD4+ T cell differentiation to T-helper type 1 (Th1) 
or Th2 pathways in a sophisticated manner.24 Although IL-18/IL-18Rα is primarily involved 
in Th1-associated functions, it also augments Th2 responses.16,24,25 IL-18 is a cofactor in 
inducing IL-4 and IL-13 production, as well as interferon (IFN)-γ expression in T cells, and 
IL-18 administration to mice increases IL-4 and serum IgE production and induces Th2 
cell development.25 Although IL-18 is thought to be associated with allergy and intestinal 
barrier function, the role of IL-18/IL-18Rα in food allergy and the major cellular source and 
downstream consequences of this interaction remain unexplored.

Based on previous studies, we hypothesized that IL-18/IL-18Rα signaling is associated with 
Th2 cell-mediated food allergy. Here, we aimed to establish an ovalbumin (OVA)-induced 
food allergy mouse model and compare immune responses between wild-type (WT) and 
IL-18Rα-null mutant (IL-18Rα−/−) mice. Our results could provide novel insights into the 
pathogenesis of food allergy and lead to the development of new therapeutic strategies for 
food allergy. Il18r1tm1Aki

MATERIALS AND METHODS

Mice
WT female C57BL/6 mice at 5 to 6 weeks of age were purchased from Orient Bio Inc. 
(Seongnam, Korea). IL-18Rα−/− mice were obtained from The Jackson Laboratory (B6. 129P2-
Il18r1tm1Aki/J; Bar Harbor, ME, USA). The mice were housed in an air-conditioned room (23°C ± 
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2°C) with a 12 hours/12 hours light/dark cycle and allowed free access to food and tap water. 
Age-, sex-, and weight-matched mice were used in all experiments. All animal experiments 
were approved by the Institutional Animal Care and Use Committee at Yonsei University 
(Seoul, Korea; #2020-0266).

Experimental food allergy
Mice were sensitized intraperitoneally with 50 μg OVA (grade V; Sigma-Aldrich, Munich, 
Germany) plus 10 μg cholera toxin (CT; 100B; List Biological Laboratories, Los Angeles, 
CA, USA) in 150 mL phosphate-buffered saline (PBS) on days 0 and 14. Two weeks after the 
second sensitization, mice were challenged intragastrically with 100 mg OVA in 200 mL PBS 
6 times within 2 weeks. Control mice were sensitized and challenged using only PBS. The 
rectal temperature was measured before and 30 minutes after the last oral OVA challenge. 
Mice showing profuse liquid stool within 60 minutes after the final challenge were recorded 
as diarrhea-positive. Intestinal tissue, spleen, and blood samples were collected from mice 1 
day after the last challenge.

Quantitative real-time polymerase chain reaction (PCR)
Total RNA was isolated from the small intestine and intestinal T cells using TRIzol reagent 
(Invitrogen, Carlsbad, CA, USA), and cDNA was synthesized using a qPCR RT master mix 
kit (Toyobo, Osaka, Japan) according to the manufacturer’s instructions. Real-time PCR 
was performed with a StepOnePlus™ Real-Time PCR System using Power SYBR green PCR 
master mix (both from Applied Biosystems, Foster City, CA, USA). β-actin was used as the 
housekeeping gene, and results were quantified using the 2−ΔΔCT method.

Western blot analysis
Total intestinal proteins were extracted using radioimmunoprecipitation assay buffer 
containing proteinase inhibitor cocktail (both from Thermo Fisher Scientific, Waltham, MA, 
USA). Western blotting was performed as previously described with 20 µg of the quantified 
protein samples.26 Membranes were incubated overnight at 4°C with primary antibodies 
against IL-18Rα (Invitrogen) and glyceraldehyde 3-phosphate dehydrogenase (Cell Signaling 
Technology, Danvers, MA, USA), followed by incubation for 1 hour at room temperature 
with a horseradish peroxidase-conjugated anti-rabbit secondary antibody (Santa Cruz 
Biotechnology, Santa Cruz, CA, USA).

Enzyme-linked immunosorbent assay (ELISA)
IL-18Rα protein levels in the small intestine were determined using an ELISA kit (Cusabio, 
Waltham, MA, USA) according to the manufacturer’s instructions. To determine anti-OVA IgE 
serum levels, 96-well plates were coated with 20 μg/mL OVA, and subsequently, the IgE ELISA 
kit (BD Biosciences, San Diego, CA, USA) was used as previously described.27 Mouse mast cell 
protease-1 (MCPT-1) serum levels were measured using the ELISA kit (eBioscience, San Diego, 
CA, USA) according to the manufacturer’s instruction. IL-5 and IL-13 levels in the supernatant 
of splenocytes were determined using an ELISA kit (R&D Systems, Minneapolis, MN, USA). 
ELISAs for phosphorylated STAT3 (Tyr705) and total STAT3 (Abcam, Cambridge, MA, USA) 
were performed with intestinal lysates according to the manufacturer’s instructions. Analyte 
values in intestinal lysates were normalized to the total protein concentration.

Histological analysis
The small intestine was fixed with 4% paraformaldehyde and subsequently embedded in 
paraffin. Paraffin sections (4-μm-thick) were stained with toluidine blue for mast cell staining 
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and hematoxylin and eosin (H&E) for eosinophil staining. Mast cell and eosinophil numbers 
in the small intestine were evaluated in 3 sections from at least ten mice. Representative 
microscopic images were obtained using a BX43 Upright Microscope (Olympus, Tokyo, 
Japan) at ×400 magnification based on a high-power field (HPF).

Isolation of leukocytes
Leukocytes were isolated from the intestinal lamina propria and spleen according to 
previously described procedures with slight modifications.26,28,29 In brief, the small intestine 
was cut into 1 cm segments with a rotary incubator for 20 minutes in Hanks’ Balanced Salt 
Solution (HBSS) medium (Thermo Fisher Scientific) containing 5% fetal bovine serum (FBS) 
and 2 mM ethylenediaminetetraacetic acid. This process was repeated twice. The remaining 
tissue was chopped finely and digested with 1 mg/mL collagenase type 4 (Worthington 
Biochemical, Lakewood, NJ, USA) and 100 μg/mL DNase 1 (Sigma-Aldrich) for 30 minutes. 
The digested intestinal tissue and supernatant were passed through a 100 μm cell strainer 
(BD Biosciences). Cell suspensions were separated using 40% Percoll underlaid with 75% 
Percoll (GE Healthcare, Pittsburgh, PA, USA). Leukocytes were collected from the interface 
and subsequently washed and suspended in HBSS medium. The spleen was passed through 
a 40 μm cell strainer, and the obtained cells were centrifuged and washed with Roswell Park 
Memorial Institute (RPMI) medium containing 5% FBS. Ammonium-chloride-potassium 
lysis buffer was used to lyse red blood cells. Leukocytes were washed and suspended in RPMI 
medium containing 5% FBS.

Flow cytometry
Lamina propria mononuclear cell suspensions were obtained from small intestines as 
described previously herein. Cell suspensions were stained with the following monoclonal 
antibodies: anti-CD3 (PerCP-Cyanine5.5), anti-CD4 (allophycocyanin), anti-CD44 
(phycoerythrin), anti-CD62 ligand (CD62L; fluorescein isothiocyanate), and anti-IL-18Rα 
(phycoerythrin-Cy7). Dead cells were excluded by staining with Fixable Viability Dye eFluor 
780. All fluorochrome-labeled antibodies were purchased from eBioscience. Cells were 
analyzed using a BD LSR Fortessa™ X-20 (BD Biosciences) with FlowJo 10 software (Tree Star, 
Ashland, OR, USA).

Ex vivo cell culture and antibody treatment
WT and IL-18Rα−/− mice were sensitized intraperitoneally with 50 μg OVA plus 10 μg CT twice, 
with a 2-week interval in between. Leukocytes from the spleens of sensitized WT or IL-18Rα−/− 
mice were obtained as described previously herein. Splenocytes were stimulated with or 
without 10 mg/mL OVA, followed by treatment with 1 µg/mL anti-immunoglobulin G (Cell 
Signaling Technology) or anti-IL-18Rα antibody in a 96-well plate. After 5 days of culture, 
1 × 106 cells per well plate were centrifuged, and supernatants were collected. In total, 2 × 
105 cells per well plate were added to the Cell Counting Kit-8 solution (Dojindo Molecular 
Technologies, Rockville, MD, USA), and plates were incubated for 4 hours before absorbance 
was measured on a microplate reader.

CD4+ T cell sorting
The Dead Cell Removal Kit (Miltenyi Biotec, Bergisch Gladbach, Germany) was used to 
remove dead cells among the lamina propria mononuclear cells using magnetic cell sorting 
(auto-MACS; Miltenyi Biotec). Thereafter, CD4+ T cells were isolated using a CD4+CD62L+ T 
Cell Isolation Kit (Miltenyi Biotec) with auto-MACS according to the manufacturer’s protocol.
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Statistical analyses
All data were analyzed using Prism (GraphPad Software, San Diego, CA, USA). They are 
presented as the means ± standard error of the mean of at least 3 independent experiments. 
Comparisons of 2 groups were performed using a Student’s t-test. When more than 3 groups 
were compared, the one-way analysis of variance followed by Tukey’s test was used. P values 
< 0.05 were considered statistically significant.

RESULTS

IL-18Rα expression levels are increased in the food allergy mouse model
To investigate the pathophysiological relevance of IL-18Rα in food allergy, we established a 
mouse model of OVA-induced food allergy and analyzed IL-18Rα expression in the intestine. 
Mice were intraperitoneally sensitized and intragastrically challenged with OVA (Fig. 1A). 
OVA-challenged WT mice showed increased IL-18Rα mRNA expression compared to PBS-
challenged WT mice (Fig. 1B). Additionally, the results of western blotting and ELISA showed 
elevated IL-18Rα protein levels in OVA-challenged WT mice (Fig. 1C-E), demonstrating the 
involvement of IL-18Rα in food allergy.

IL-18Rα regulates systemic immune reactions
To investigate the effect of IL-18Rα in a mouse model of food allergy, WT and IL-18Rα−/− mice 
were sensitized and challenged with OVA, and their immune responses were compared. 
Following the last challenge with OVA, WT mice showed a significant decrease in rectal 
temperature (−1.34°C ± 0.21°C), whereas IL-18Rα−/− mice had a relatively lower drop (−0.63°C ± 
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Fig. 1. Elevated IL-18Rα expression in murine models of food allergy. (A) Experimental scheme for the induction of food allergy in mice. Mice were sensitized via 
i.p. injection with 50 μg OVA plus 10 μg CT and challenged via i.g. administration with 100 mg OVA. The intestines were harvested 1 day after the last challenge. 
(B) IL-18Rα mRNA expression levels in the intestine were measured using real-time polymerase chain reaction. (C) IL-18Rα protein expression levels in the 
intestine were analyzed using western blotting, and (D) the signal intensity was quantified using ImageJ software. (E) Protein levels of IL-18Rα in intestinal lysates 
were assessed using an enzyme-linked immunosorbent assay. Data are representative of 3 independent experiments (n = 11 for each group) and presented as the 
mean ± standard error of the mean. 
IL-18Rα, interleukin-18 receptor α; i.p., intraperitoneal; OVA, ovalbumin; CT, cholera toxin; i.g., intragastric; PBS, phosphate-buffered saline; GAPDH, 
glyceraldehyde 3-phosphate dehydrogenase. 
*P < 0.05; †P < 0.001.



0.12°C, Fig. 2A). Furthermore, OVA-challenged WT mice exhibited profuse diarrhea compared 
with PBS-challenged WT mice. However, OVA-challenged IL-18Rα−/− mice showed a relatively 
low incidence of allergic diarrhea compared to OVA-challenged WT mice (Fig. 2B). In serum, 
antigen-specific IgE level was increased in food allergy-induced WT mice. The expression of 
MCPT-1, which is released from mucosal mast cells upon allergen-dependent crosslinking of 
IgE, was also increased upon allergen challenge. However, OVA-challenged IL-18Rα−/− mice 
showed reduced levels of antigen-specific IgE and MCPT-1 compared to OVA-challenged 
WT mice (Fig. 2C and D). We also observed histopathological changes in the intestine using 
toluidine blue and H&E staining. The number of migrated mast cells was increased in OVA-
challenged WT mice; however, these were relatively less abundant in OVA-challenged IL-18Rα−/− 
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mice (Fig. 2E and G). H&E staining illustrated histological changes such as a damaged villus 
and the infiltration of immune cells. Intestinal damage and eosinophilic infiltration were milder 
in OVA-challenged IL-18Rα−/− mice than in OVA-challenged WT mice (Fig. 2F and H). These 
findings collectively demonstrated that IL-18Rα mediates the systemic immune responses of 
food allergy.

IL-18Rα activates CD4+ T cells
A diverse range of effector and regulatory CD4+ T cells are distributed in the lamina propria, 
and CD4+ T cells constitutively express IL-18Rα.24,30 To determine whether IL-18Rα is 
expressed on CD4+ T cells of the intestinal lamina propria during the development of food 
allergy, we first assessed the population of IL-18Rα+ T cells in WT mice using flow cytometry. 
The percentage of CD3+CD4+ T cells and IL-18Rα+ T cells were higher in OVA-challenged WT 
mice than in PBS-challenged WT mice (Fig. 3A and B). As T cells are the important cellular 
source of IL-18Rα, we investigated whether IL-18Rα deficiency affected T cell activation in the 
intestinal lamina propria. OVA-challenged IL-18Rα−/− mice had a reduced rate of effector T 
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*P < 0.05; †P < 0.01; ‡P < 0.001; §P < 0.0001.



cell populations (CD3+CD4+CD44highCD62Llow) in the intestinal lamina propria compared to 
their OVA-challenged WT counterparts (Fig. 3C and D). In addition, real-time PCR revealed 
decreased expression of Th2 cytokines such as IL-4, IL-5, and IL-13 in the intestinal tissue of 
OVA-challenged IL-18Rα−/− mice compared to that in OVA-challenged WT mice (Fig. 3E-G). 
Additionally, the expression of Th1 cytokines such as IFN-γ and tumor necrosis factor-α was 
also decreased in the intestine of OVA-challenged IL-18Rα−/− mice compared to that in OVA-
challenged WT mice (Supplementary Fig. S1). These data demonstrated that IL-18Rα+ T cells 
were enriched in the lamina propria by food allergy induction and suggested that IL-18Rα 
plays an important regulatory role in T cell activation and intestinal allergic inflammation.

IL-18Rα affects T cell proliferation and differentiation
Given that IL-18Rα might play an important role in T cell activation, we further evaluated 
T cell responses in an ex vivo experiment using splenocytes from OVA-sensitized WT and 
IL-18Rα−/− mice. The results revealed higher cell proliferation rates in OVA-treated WT 
splenocytes than in media-treated WT splenocytes and lower cell proliferation rates in 
OVA-treated IL-18Rα−/− splenocytes than in OVA-treated WT splenocytes (Fig. 4A). Moreover, 
Th2 cytokines such as IL-5 and IL-13 showed decreased levels in the supernatant of cultured 
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splenocytes from OVA-treated IL-18Rα−/− mice compared to those from OVA-treated WT mice 
(Fig. 4B and C). Additionally, anti-IL-18Rα antibody treatment reduced cell proliferation and 
Th2 cytokine secretion in WT splenocytes upon OVA treatment, similar to that observed 
in OVA-treated IL-18Rα−/− splenocytes (Fig. 4). These results suggested that IL-18Rα 
could mediate Th2 inflammation in secondary lymphoid tissue via the proliferation and 
differentiation of T cells and IL-18Rα neutralization could be a potential therapeutic target for 
Th2 inflammatory disease.

IL-18Rα is involved in STAT3 activation and SOCS3 and SOCS1 expression
IL-18R is known to induce two major intracellular pathways. One involves the adaptor 
molecule of MyD88, and the other induces STAT3 phosphorylation. STAT3 plays an 
important role in allergy, and SOCS protein, a direct target gene of STAT, contributes to 
the pathogenesis of inflammatory diseases caused by Th cell differentiation.31,32 To evaluate 
the involvement of IL-18Rα signaling in the CD4+ T cell-mediated induction of intestinal 
inflammation, we investigated the interaction between IL-18Rα and the STAT/SOCS signaling 
pathway in food allergy. The ratio of STAT3 phosphorylation in the intestine was increased 
in OVA-challenged WT mice compared to that in PBS-challenged WT mice. OVA-challenged 
IL-18Rα−/− mice demonstrated inhibited STAT3 phosphorylation compared to OVA-challenged 
WT mice (Fig. 5A). SOCS, the target gene for STAT, is predominantly expressed in T cells and 
plays an important role in regulating the onset and maintenance of allergic immune disease.13 
Therefore, we hypothesized that dysregulation of SOCS expression in T cells might play a role 
in food allergy. Further experiments on sorting intestinal CD4+ T cells showed that SOCS3 
and SOCS1 mRNA expression was significantly upregulated in OVA-challenged IL-18Rα+/+ 
intestinal T cells compared with PBS-challenged IL-18Rα+/+ intestinal T cells. However, the 
expression of SOCS3 and SOCS1 in IL-18Rα−/− intestinal T cells was significantly lower than 
that in IL-18Rα+/+ intestinal T cells after food allergy induction (Fig. 5B and C). Thus, our 
findings demonstrated that IL-18Rα activated STAT3 signaling pathways by targeting SOCS3 
and SOCS1 in T cells.

DISCUSSION

In this study, we used a food allergy mouse model and showed that IL-18Rα expression 
is significantly increased in the intestine, especially in intestinal CD4+ T cells. IL-18Rα 
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deficiency attenuated systemic food allergic reactions and decreased T cell activation, 
proliferation, and differentiation. Moreover, IL-18Rα affected STAT3 phosphorylation in the 
intestine by targeting SOCS3 and SOCS1 in T cells (Fig. 6).

Several studies have demonstrated that IL-18 is an important mediator in the pathogenesis 
of inflammatory diseases such as asthma, rheumatoid arthritis, and colitis.20,21,23 IL-18 and 
IL-18Rα proteins were strongly expressed in an allergic asthmatic patient.33 Additionally, 
the IL-18R chromosome (2q12) was observed as a candidate gene associated with elevated 
susceptibility to asthma in pediatric patients, and polymorphisms of this gene are associated 
with airway hyperresponsiveness.22,34,35 Moreover, IL-18Rα+ cells and IL-18Rα mRNA levels 
are increased in patients with eosinophilic esophagitis, and serum IL-18 levels correlate with 
esophageal eosinophilia.36 However, little is known about the function of IL-18Rα in food 
allergy pathogenesis. In the present study, we demonstrated that IL-18Rα expression was 
increased in the intestines of food allergy-induced mice. The elevated levels of IL-18Rα are 
strongly associated with various inflammatory diseases, thereby making IL-18Rα a potentially 
useful prognostic or diagnostic marker.

A better understanding of the underlying mechanisms is needed to develop more accurate 
diagnostic methods and prevent and treat food allergy.37 The present study showed that the 
decrease in body temperature and occurrence of diarrhea was reduced in the food allergy-
induced IL-18Rα−/− group compared to those in the WT group. In addition, IL-18Rα might play 
a pivotal role in food allergic reactions by regulating IgE production, degranulation of mast 
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cells, and inflammatory cell infiltration. These findings indicated that IL-18Rα promotes 
immune responses in food allergy. Our observation correlates well with previous studies 
in which IL-18 was found to be a cofactor for IgE production and Th2 cell development.25,38 
IL-18 is also involved in the pathogenesis of eosinophilic esophagitis, a food allergen-induced 
inflammatory disease.36 Additionally, IL-18Rα regulates intestinal inflammation by regulating 
Foxp3+ regulatory T cells in colitis.39 Thus, these studies suggested that IL-18/IL-18Rα is 
involved in food allergy and intestinal inflammatory responses.

IL-18/IL-18R signaling is primarily involved in Th1 cell polarization and acts as a cofactor in 
Th2 cell development and IgE production by promoting Th2 cytokine production. It also 
contributes to Th17 cell differentiation; thus, IL-18/IL-18R signaling plays an important role in 
the T cell immune response.25,39,40 In this study, the development of OVA-induced food allergy 
in WT mice was dependent on CD4+ T cell infiltration into the intestine, and IL-18Rα was 
predominantly expressed in intestinal CD4+ T cells. IL-18Rα deficiency reduced the intestinal 
effector CD4+ T cell populations and Th2 cytokine expression compared to those in WT mice 
after food allergy induction. Similarly, an ex vivo study demonstrated that IL-18Rα deficiency 
attenuated the cell proliferation and Th2 cytokine production in OVA-stimulated leukocytes. 
Consistent with our findings, another study showed IL-18Rα involvement in rheumatoid 
arthritis, mediated by reducing proinflammatory cytokine expression and suppressing T 
cell accumulation in IL-18Rα−/− mice.21 Furthermore, IL-18Rα expression is enhanced on both 
effector and regulatory CD4+ T cells in the intestinal lamina propria, and the neutralization 
of IL-18 or IL-18 binding protein ameliorates colitis.39,41,42 Moreover, anti-IL-18 antibody 
administration to mice protects against eosinophil-mediated allergic airway inflammation.43 
Similarly, in our ex vivo studies, IL-18Rα blockade attenuated cell proliferation and Th2 
cytokine expression. Collectively, IL-18Rα neutralization could be a potential therapeutic 
strategy for the treatment of patients with food allergy.

Th2 cytokines play an important role in allergic diseases and exert their biological functions 
through JAK and STAT transcription factors. STAT3 is a well-known critical transcription factor 
for cytokine signaling and allergic immune responses.32 A previous study showed that the 
inhibition of STAT3 phosphorylation prevents Th2 cell differentiation and lung inflammation 
in an asthmatic mouse model.44 In addition, STAT protein activation is regulated by SOCS 
proteins, which contribute to Th cell differentiation during immune responses.12 SOCS3 and 
SOCS1 expression levels are also associated with allergic and inflammatory diseases, such 
as asthma and atopic dermatitis.13,45 SOCS3 is predominantly expressed in Th2 cells and 
participates in intestinal inflammation.46 SOCS3 silencing in primary CD4+ T cells attenuates 
Th2 responses in vitro.47 Moreover, the STAT/SOCS signaling pathway is a well-known mediator 
of several biological processes, and STAT3 is associated with IL-18R-related intracellular 
pathways. However, the role of the STAT/SOCS signaling pathway in food allergy is poorly 
studied. Our results revealed that IL-18Rα increased STAT3 phosphorylation in the intestine 
and the expression levels of SOCS3 and SOCS1 in intestinal CD4+ T cells. Therefore, we 
conclude that in IL-18Rα-mediated food allergy, dysregulation of the STAT/SOCS signaling 
pathway contributes to intestinal inflammation. IL-18/IL-18Rα is also involved in other signaling 
pathways such as mitogen-activated protein, phosphoinositide-3, and AMP-activated protein 
kinases.48,49 Therefore, further studies of various pathways are needed to confirm the role of IL-
18Rα in the pathogenesis of food allergy.

In conclusion, our current findings define a novel role for IL-18Rα in the pathogenesis of food 
allergy via T cell immune responses and provide evidence that IL-18Rα might play a pivotal role 
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in food allergy by activating the STAT/SOCS signaling pathway. Collectively, our results suggest 
that IL-18Rα is a potential biomarker and therapeutic target to prevent and treat food allergy.
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Supplementary Fig. S1
Reduced T-helper type 1 cytokine expression in OVA-challenged IL-18Rα−/− mice. mRNA 
expression levels of (A) IFN-γ and (B) TNF-α in the intestinal tissue obtained from WT and IL-
18Rα−/− mice were assessed using real-time polymerase chain reaction. Data are representative 
of 3 independent experiments (n = 7–9 for each group) and are presented as the mean ± 
standard error of the mean.
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