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ABSTRACT The role by which the gut microbiome influences host health (e.g., en-
ergy equilibrium and immune system) may be partly mediated by short-chain fatty
acids, which are bacterial fermentation products from the dietary fibers. However, lit-
tle is known about longitudinal changes in gut microbiome metabolites during co-
habitation alongside social contact. In common marmosets (Callithrix jacchus), the
gut microbiome community is influenced by social contact, as newly paired males
and females develop convergent microbial profiles. Here, we monitored the dynam-
ics of short-chain fatty acid concentrations in common marmoset feces from the
prepairing (PRE) to postpairing (POST) stages. In males, we observed that the con-
centrations of acetate, propionate, isobutyrate, and isovalerate significantly increased
in the POST stage compared to the PRE stage. However, no significant changes were
found in females. We further found that the propionate concentration was signifi-
cantly positively correlated with the abundance of Phascolarctobacterium in the male
feces. Thus, the sex difference in the changes in the concentrations of short-chain
fatty acids might be related to sex-biased gut microbiome transmission after pairing.
We suggest that the significant changes in the gut microbiomes and some short-
chain fatty acids of the common marmoset during cohabitation may contribute to
physiological homeostasis during pairing.

IMPORTANCE This study addressed a knowledge gap about longitudinal changes in
the gut microbiome metabolites during animal pairing. This research in the labora-
tory common marmoset can control for the confounding factors such as diet and
other environmental conditions. Phascolarctobacterium showed the highest contribu-
tion to the sex-biased transmission of the female to the male after pairing. Here, we
observed the sex difference in the increase in short-chain fatty acid concentration in
the feces of newly paired marmosets, which may be caused by the sex-biased gut
microbiome transmission after pairing.

KEYWORDS common marmosets, cohabitation and social contact, short-chain fatty
acids, sex difference

armosets (Callithrix jacchus) are family-living primates, with groups consisting of

adult males and females, who form long-term socially monogamous and coop-
erative breeding relationships, and their offspring. The principal bacteria in the mar-
moset gut microbiome include Firmicutes (~39%), Bacteroidetes (~29%), and Acti-
nobacteria (~27%) (1). We have previously reported that newly paired marmosets
displayed a significant convergence in their gut microbiomes during the first 8 weeks
of cohabitation: significantly increase in the abundance of five genera (Phascolarcto-
bacterium, Alloprevotella, Anaerobiospirillum, Sutterella, and Coprobacter) in both male
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and female feces after pairing (1). This finding may be associated with their social
contact and affiliative behavior (e.g. social grooming, genital investigation, social
approach, and mounts and copulations) (2-4). In addition, considering the pairing
experiment performed at the same time, the unknown factors other than pairing could
also have affected gut microbiome changes.

Phascolarctobacterium showed the highest contribution in the gut microbiome
transmission in the newly paired marmosets, and this microbiome group exhibited the
highest contribution to the sex-biased transmission pattern of the female to the male
(1). Some studies have suggested that the transmitted gut microbiome within primate
social groups may be beneficial to the host health, but with no direct evidence (5, 6).

The gut microbiome plays an important role in host immune development and
health (7, 8). Short-chain fatty acids (SCFAs) are the end products of fermentation of
dietary fibers and protein by the gut microbiome (9-12). SCFAs (including acetate
[ACE], propionate [PA], butyrate [BUTY], isobutyrate [ISOB], and isovalerate [ISOV]) have
a key role in the maintenance of intestinal homeostasis and help maintain energy
equilibrium, immune system function, and health (9-12). For example, PA can increase
host serotonin (5-hydroxytryptamine) biosynthesis in the intestine and affect gut
motility and hemostasis (10). PA also reduces host inflammation, enhances tissue
insulin sensitivity, maintains homeostasis of glucose, and induces hormone release (e.g.,
of leptin) (11, 12).

Phascolarctobacterium can produce short-chain fatty acids, such as propionate (PA)
(13). Based on the significant elevation in Phascolarctobacterium following social pairing
in marmosets, we hypothesized that these changes in gut microbiome community
following pairing would result in significant increases in production of SCFAs,
especially PA.

We measured the concentration of five SCFAs (acetate [ACE], propionate [PA],
butyrate [BUTY], isobutyrate [ISOB], and isovalerate [ISOV]) from 228 fecal samples.
The main SCFAs in these samples were ACE (mean: 44.91 + 1.369 umol/g), PA
(mean: 10.86 = 0.331 umol/g), and BUTY (mean: 2.75 + 0.151 umol/g). The concen-
trations of the other two SCFAs were very low (ISOB: 0.35 *+ 0.298 umol/g; 1SOC:
0.41 = 0.341 umol/g). We compared the SCFA concentration from prepairing (PRE) to
postpairing (POST) for each sex. In males, we observed that the concentrations of ACE,
PA, ISOB, and ISOV significantly increased in the POST stage compared to the PRE stage.
No significant changes were found in female fecal samples after pairing, but the
changes in PA after pairing were at the marginally significant level (Table 1, Benjamini-
Hochberg [B-H] correction). Although there were significant increases in the abundance
of five genera (Phascolarctobacterium, Alloprevotella, Anaerobiospirillum, Sutterella, and
Coprobacter) in fecal samples from both males and females, the PA concentration was
significantly associated only with the abundance of Phascolarctobacterium in fecal
samples from male marmosets (Fig. 1, B-H correction). Therefore, we speculated that
the highest contribution of Phascolarctobacterium to the sex-biased transmission pat-
tern of the female to the male after pairing might result in the sex differences in the
abundance changes of some SCFA concentrations.

Phascolarctobacterium bacteria are Gram-negative, obligately anaerobic, and non-
spore-forming environmental microorganisms and have been found in soil, water, and
some mammal feces (e.g., koala, human, and nonhuman primate) (1, 13-15). One of the
main end products of the fermentation in Phascolarctobacterium is PA (13), which may
have beneficial effects on the host (10-12, 16-18). For example, Phascolarctobacterium
is positively correlated with the human positive mood (17), and Phascolarctobacterium
has beneficial effects on host health and putatively decreases susceptibility to hepatic
steatosis based on a rat model of nonalcoholic fatty liver (18). Moreover, PA is the
essential mediator in the link between host nutrition, symbiotic gut microbiomes, and
host physiology (19, 20). The purpose of physiological homeostasis is to neutralize or
repair disturbance and to maintain stability (e.g., blood glucose level and blood
pressure) (21). In addition, several diseases in humans (e.g., diabetes, obesity, and
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TABLE 1 Average concentrations of the main short-chain fatty acids between PRE and POST stages®

mSphere’

Female Male
Avg concn (umol/g) of SCFA: Avg concn (umol/g) of SCFA:

Stage Pair ACE PA BUTY ISOB ISOV Pair ACE PA BUTY ISOB ISOV

PRE P1 32.276 6.589 2.521 0.372 0.511 P1 43.541 8.295 2.583 0.405 0.574
P2 33.776 11.238 1.110 0.229 0.301 P2 38.163 10.448 4.359 0.044 0.106
P3 30.114 9.722 1.059 0.673 0.730 P3 41.156 14.046 3.994 0.547 0.596
P4 32.658 8.962 0.618 0.062 0.019 P4 41.897 11.548 1.786 0.283 0.283
P6 47.386 10.619 4511 0.256 0.383 P6 30.623 6.957 0.849 0.099 0.123
P7 39.489 9.689 2.639 0.273 0.323 P7 39.194 8.065 1.515 0.376 0.211
P8 44.570 6.651 3.818 0.153 0.361 P8 35.155 8.191 0.810 0.126 0.098
P9 40.672 7.107 2.040 0.000 0.043 P9 38.607 2.172 2.871 0.000 0.027

POST P1 35.469 12.332 1.768 0.607 0.644 P1 50.912 10.543 2.908 0.520 0.662
P2 43.088 13.829 2.903 0.248 0.288 P2 55.097 10.527 3417 0.345 0.532
P3 20.327 8.337 0.928 0.158 0.195 P3 54.263 18.076 3.102 0.479 0.510
P4 41.029 11.197 2.116 0.605 0.657 P4 48.224 13.614 3.638 0.384 0.476
P6 73.356 15.450 7412 0.400 0.459 P6 49.268 11.374 2.276 0.495 0.224
P7 50.789 12.073 3.576 0.546 0.660 P7 38.472 11.733 1.148 0.501 0.538
P8 59.063 12.432 5.889 0.142 0.370 P8 33.851 11.686 2.135 0.469 0.513
P9 47.334 12.822 2.552 0.517 0.616 P9 54.085 7.554 3.210 0.313 0.489

Wilcoxon 0.078Ns 0.016N> 0.055N> 0.148N> 0.195Ns 0.039* 0.008* 0.461N> 0.016* 0.016*

paired
test

aThe main short-chain fatty acids in this study include acetate (ACE), propionate (PA), butyrate (BUTY), isobutyrate (ISOB), and isovalerate (ISOV). Wilcoxon paired test,
uncorrected P value based on Wilcoxon paired test. *, significance after Benjamini-Hochberg correction (e = 0.05) within each sex. NS, nonsignificance after
Benjamini-Hochberg correction (a > 0.05) within each sex.

autoimmune disorders) are associated with reduced SCFA production in the gut

(22-25).

Interestingly, the establishment of social bonds within pairmates (e.g., pair bonding)
is important for maintaining physiological homeostasis (26). The data presented here
extend these findings to the sex difference in changes in the fermentation metabolites
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FIG 1 Concentrations of propionate (wmol/g, y axis) and the relative abundance of five genera (Phascolarctobacterium, Alloprevotella, Anaerobiospirillum,
Sutterella, and Coprobacter). Dashed line, significant correlation based on the uncorrected P value. Solid line, nonsignificant correlation based on the uncorrected
P value. The propionate concentration was significantly associated only with the abundance of Phascolarctobacterium in fecal samples from males after
Benjamini-Hochberg correction (e = 0.05).
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of the gut microbiome during pair formation. Although the fecal SCFAs do not entirely
reflect the total intestinal production (19, 20), examining SCFAs in common mar-
moset feces is a possible way (noninvasive method) to show SCFA metabolism in
the intestine indirectly. We suggest that the gut microbiome metabolites in mar-
mosets may have effects on the host physiology after pairing. Therefore, this study
provides the new insight that one of the putative mechanisms between social
bonding and physiological homeostasis in humans and nonhuman primates might
involve microbial transmission in the gut and the associated metabolites under the
condition of sex difference.

Newly paired marmoset experiment. We examined fecal short-chain fatty acid
concentrations in eight adult common marmoset pairs (eight females and eight males,
aged 1.5 to 7.5 years). Baseline fecal samples (PRE; 59 fecal samples) were collected
during a 2-week period prior to pairing (PRE), during which marmosets resided with an
opposite-sex partner or in a family group (1). Marmosets were then rehoused in a new
enclosure with a new opposite-sex partner who was a previously unfamiliar and
unrelated marmoset. Fecal samples were collected in the postpairing phase (POST; 169
fecal samples) for an 8-week period following pairing. During both phases, marmosets
were fed a consistent diet (commercial marmoset diet [Zupreem; Science Diet], Tenebrio
larvae, scrambled eggs, fruits [red apple and cantaloupe], and gum arabic [Mazuri]).
Fresh fecal samples were collected from marmosets in sterilized aluminum pans
immediately after the light-on phase of the photoperiod. Samples were snap-frozen in
liquid nitrogen and stored at —80°C. Most of these fecal samples were used in the
previous gut microbiome study (1). This study was performed following the guidelines
of the University of Nebraska Medical Center and the University of Nebraska at Omaha
Institutional Animal Care and Use Committee. The protocol was approved by the
University of Nebraska Medical Center/University of Nebraska at Omaha Institutional
Animal Care and Use Committee (16-104).

SCFA measurement. Fecal samples were taken from the —80°C freezer and thawed
at room temperature. Fecal samples (0.21 g) were homogenized with 1 ml sterile
phosphate-buffered saline and then centrifuged (10,000 X g, 5 min). Next, 0.4 ml of
supernatant from each sample was mixed with 0.1 ml of internal standard (7 mM
2-ethylbutyrate) followed by acidification, extraction into diethyl ether, and quantifi-
cation by gas chromatography (Clarus 580; PerkinElmer, Waltham, MA, USA) based on
the standard protocol (27). For each pair, we estimated two single average points, one
from the PRE stage, the other from the POST stage (days after pairing: from 29 to 55).
Wilcoxon paired tests were used to calculate the P value from these two groups (PRE
versus POST) within each sex. The relationships between the abundance of the five gut
microbiome genera (significantly increased in both females and males after pairing)
and the concentration of PA were tested via linear and quadratic models. The better
model was selected according to the lower value of Akaike’s information criterion (28).
False discovery rates were addressed by the Benjamini-Hochberg procedure (B-H
correction, a = 0.05) for multiple-comparison testing within each sex (29). The above
statistical analysis and plotting were conducted in R software (30).
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