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Abstract

Defective DNA replication can result in genomic instability, cancer, and developmental defects. 

To understand the roles of DNA damage response (DDR) genes on carcinogenesis in mutants 

defective for core DNA replication components, we utilized the Mcm4Chaos3/Chaos3 (“Chaos3”) 

mouse model which, by virtue of an amino acid alteration in MCM4 that destabilizes the MCM2-7 

DNA replicative helicase, has fewer dormant replication origins and an increased number of 

stalled replication forks. This leads to genomic instability and cancer in most Chaos3 mice. We 

found that animals doubly mutant for Chaos3 and components of the ATM double strand break 

response pathway (Atm, p21/Cdkn1a, Chk2/Chek2) had decreased tumor latency and/or increased 

tumor susceptibility. Tumor latency and susceptibility differed between genetic backgrounds and 

genders, with females demonstrating an overall greater cancer susceptibility to Atm and p21 

deficiency than males. ATM deficiency was semilethal in the Chaos3 background and impaired 

embryonic fibroblast proliferation, suggesting that ATM drug inhibitors might be useful against 

tumors with DNA replication defects. Hypomorphism for the 9-1-1 component Hus1 did not affect 

tumor latency or susceptibility in Chaos3 animals, and tumors in these mice did not exhibit 

impaired ATR pathway signaling. These and other data indicate that under conditions of systemic 

replication stress, the ATM pathway is particularly important both for cancer suppression and 

viability during development.
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INTRODUCTION

Genomic studies have shown that many individual genes are spontaneously mutated or 

misregulated at low frequencies in cancers, but together comprise disruptions in a few key 

pathways 1-3. Alterations in DNA checkpoint and repair pathways are particularly 

significant. The BRCA1 and BRCA2 genes are altered in over 1/3 of serous ovarian and basal 

type breast cancer cases, highlighting the importance of the homologous recombination 

(HR) pathway of DSB repair 2, 4. During HR repair, DSBs are bound by the MRN (MRE11/

RAD50/NBS1) damage sensor complex, the Ataxia Telangiectasia Mutated (ATM) serine/

threonine kinase becomes activated via autophosphorylation and, in conjunction with 

mediator proteins such as BRCA1, signals to downstream transducer and effector kinases to 

elicit checkpoint and repair responses (reviewed by 5, 6). DDR pathways are responsible for 

helping maintain genomic stability and suppressing tumorigenesis 7. To control cell cycle 

progression under conditions of DNA damage or replication stress, DDR genes also target 

components of the DNA replication machinery, including the Minichromosome 

maintenance 2-7 (MCM2-7) replicative helicase complex. MCM2 is a direct target of ATR 

(ATM and RAD9-related), and MCM3 is a target of ATM 8, 9.

Whereas the relationship between defects in various DNA repair systems to cancer is well 

studied, this is not the case for DNA replication - the process during which the greatest 

opportunity for mutations exists. Accumulating evidence points to associations between 

deficiencies of the core DNA replication machinery and cancer. For example, mice bearing 

mutations in the proofreading functions of the major replicative polymerases δ and ε exhibit 

mutator phenotypes and cancer predisposition 10-13. Furthermore, Pol ε is frequently 

mutated in human colorectal cancers 14. In addition to DNA polymerases, mutations in 

components of the pre-replication complex (pre-RC) have been linked to cancer 

susceptibility. These complexes assemble at replication origins during G1 phase (but not 

during S phase), and a subset of these components constitute the CDC45/MCM2-7/GINS 

(CMG) replicative helicase complex that unwinds DNA in front of the replisome during S 

phase 15-17. The highly conserved MCM2-7 heterohexameric complex is an essential 

component of the pre-RC and constitutes the core of the replicative helicase (reviewed 

in 18). Whereas Mcm2-7 are essential genes, hypomorphic alleles in mice cause GIN, cancer 

susceptibility, and cell proliferation defects 19-21, as does overexpression and 

haploinsufficiency 22-24.

To better understand the in vivo impact of the DDR on cancer incidence and tumor latency 

under conditions of increased replication stress, we utilized the Mcm4Chaos3/Chaos3 

(“Chaos3”) mouse model that bears a single amino acid mutation in MCM4 (Phe345Ile). 

Chaos3 mice have dramatically elevated GIN, and depending on the strain background, 

Chaos3 mice are predisposed to various cancers including mammary tumors, histiocytic 

sarcoma, lymphoma, and bone tumors 19, 24, 25. The Chaos3 mutation destabilizes the 

MCM2-7 helicase by disrupting MCM4:MCM6 interaction, somehow triggering a post-

transcription decrease in the levels of all MCM2-7 mRNA and proteins 24-26. This reduces 

the number of dormant replication origins available as backups to replicate DNA near stalled 

replication forks. These defects contribute to elevated chromosome breakage and 

segregation defects in Chaos3 mouse embryonic fibroblasts (MEFs) 25. Studies of diploid S. 
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cerevisiae engineered to carry the identical Chaos3 amino acid change in MCM4 indicated 

that the defective helicase causes replication fork collapse, leading to DSBs that require 

repair by HR 27. Consistent with replication fork damage leading to DSBs that trigger HR, 

Chaos3 MEFs have increased levels of RAD51 and BLM foci 25. Additionally, they exhibit 

upregulation of p53/TRP53 and p21, indicative that cell cycle checkpoint responses are 

activated in these cells 28.

DDR pathways aid proper DNA replication by stabilizing transiently stalled forks to prevent 

the dissociation of replisome components, promoting replication restart, and facilitating fork 

movement on difficult-to-replicate templates. The ATM pathway is activated in response to 

DSBs, while the ATR pathway is activated by RPA-coated ssDNA at stalled replication 

forks. However, there is clearly overlap and cross-signaling between the pathways 29. 

Failure to safeguard genome integrity during DNA replication is associated with increased 

cancer predisposition 30, 31.

Despite intact DDR pathways, the elevated GIN in Chaos3 mice eventually result in 

recurrent segmental copy number alterations that apparently drive carcinogenesis, with a 

mean latency of 12 months in the case of mammary tumors 19, 32. Here, we exploit this 

model, in conjunction with mutations in DDR genes, to better understand cellular responses 

to endogenous replication stress on an organismal level and the impact on carcinogenesis in 

vivo.

RESULTS

We generated Chaos3 mice that were also deficient for the ATM pathway (Atm or Chk2), 

ATR pathway (Hus1), or the cyclin-dependent kinase inhibitor p21 that is downstream of 

both signaling pathways (Figure 1a). At the time of crossing, Mcm4Chaos3 (abbreviated 

hereafter as Mcm4C3, or just “C3” in the figures) was congenic in strain C3H/HeBFeJ 

(C3H), but the other mutations were on different strain backgrounds (see Materials and 

Methods). C3H-Mcm4C3/C3 females develop exclusively mammary adenocarcinomas, but 

males of that genotype and strain background were not reported to be tumor prone 19. In a 

mixed genetic background however, other tumor types in females arise (including 

lymphoma and histiocytic sarcoma) 19, 25. Additionally, males of mixed strain background 

were also found to be tumor prone, though the sample size was small and most mice were 

not aged past 14 months 19. Here, mutant and control mice of both sexes were aged for 

eighteen months or until they showed signs of disease, after which a complete necropsy was 

performed. The results for each set of compound mutants are described below.

ATM deficiency impacts viability, cell proliferation, tumor latency, and tumor susceptibility 
of Chaos3 mice

Activation of ATM in response to DSBs triggers several key downstream events. It directly 

phosphorylates H2AX residing at (and near) the site of DNA breaks. It also phosphorylates 

downstream targets such as CHK2 to activate the DNA damage checkpoint, leading to cell 

cycle delay or apoptosis (Figure 1a) 33. ATM deficiency is associated with the development 

of lymphomas and leukemias in humans and mice. Atm−/− mice develop thymic lymphomas 

at 2-4 months of age 34, 3536, 37. We analyzed 648 weaned offspring from mouse crosses 
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bearing Atm and Mcm4 genotype combinations, but only 25 of the expected 65 double 

homozygotes were obtained (P=6.03*10-6) (Supplementary Figure 1a). To investigate the 

nature of the semi-lethal phenotype, we examined mid-late gestation embryos from timed 

matings that would yield double mutants and controls. Mcm4C3/C3 Atm−/− embryos were 

present at expected ratios at and prior to E15.5 (χ2 P=0.97 and P=0.65, respectively; 

Supplementary Table 1), but at E18.5 they were smaller than control littermates and/or 

apparently dead or dying (Supplementary Figure 1b). To better understand the basis for the 

embryonic lethality at the cellular level, cell proliferation assays were conducted on MEFs 

of various genotypes. Complete absence of ATM dramatically decreased growth rate 

regardless of Chaos3 genotype, but Atm heterozygosity also reduced proliferation in 

Mcm4C3/C3 but not Mcm4C3/+ MEFs (Supplementary Figure 1c). The results suggest that 

reduced cell proliferation is not entirely responsible for the synthetic lethality of Atm−/− 

Mcm4C3/C3 embryos.

The early-onset lymphoma susceptibility caused by complete ATM deficiency obscured the 

detection of potential effects on mammary tumorigenesis. Nearly all Mcm4C3/C3 Atm−/− and 

Mcm4C3/+Atm−/− mice succumbed to lymphoma at ~2-4 months of age (Supplementary 

Table 2, Supplementary Table 3), compared to much longer tumor latency in Mcm4C3/C3 

animals (Figure 1b, Supplementary Table 2). While several studies have reported that 

heterozygosity for Atm null mutations (alone or in conjunction with ApcMin or p53 

mutations) had no effect on mouse spontaneous tumor frequencies 38-41, a role for ATM in 

mammary tumor prevention was evident in Mcm4C3/C3 Atm+/− and Mcm4C3/+ Atm+/− 

animals. Females of these genotypes had median mammary tumor latencies of 10.95 and 9.3 

months, respectively, both significantly shorter than Mcm4C3/C3 alone (14.95 months; 

respectively: LRMCT P=0.001, P=0.0027; GBWT P=0.0031, P=0.0005). Mcm4C3/C3 

Atm+/− males neared statistical significance for decreased tumor latency (LRMCT 

P=0.0751; GBWT P=0.0729), and Mcm4C3/+ Atm+/− male tumor latency was similar to 

Mcm4C3/C3 alone (LRMCT P=0.472; GBWT P=0.4339) (Figure 1b, Supplementary Table 

2).

Heterozygosity for Atm had a striking effect on the spectrum of tumors in mice bearing the 

Chaos3 allele. Whereas histiocytic sarcoma was prevalent in Mcm4C3/C3 mice of mixed 

strain background (41% in females; 60% in males), its incidence declined in Mcm4C3/C3 

Atm+/− mice (≤5% in females and males). Meanwhile, lymphoma and other cancer types 

increased (FET P=0.0093; P=0.0001; Figure 1c). The tumor spectrum also differed between 

genotypes and gender. Nearly all females (98%) of the Mcm4C3/C3, Mcm4C3/C3 Atm+/−, and 

Mcm4C3/+ Atm+/−genotypes developed cancer by the end of the study, vs. 72% of males of 

the same genotypes (FET P=0.0001). In particular, Mcm4C3/+ Atm+/− females were far more 

susceptible to cancer than males (FET P=0.0223; Figure 1b, Figure S1). The incidence of 

mammary tumors was also high in females of these genotypes, but absent in males, 

influencing overall differences in tumor spectrum.

Chk2 deficiency impacts tumor latency in Chaos3 females and susceptibility in males

CHK2 is a phosphorylation target of ATM and serves as a downstream effector of the DSB 

checkpoint response (Figure 1a)42. In some circumstances, CHK2 can also be activated by 
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ATR 43, 44. When activated, the CHK2 kinase can phosphorylate p53, protecting it from 

MDM2-catalyzed ubiquitination and degradation 42. Other targets include BRCA1, which is 

involved in HR repair 4546. In sum, CHK2 activation can lead to DNA repair, cell cycle 

arrest, or apoptotic cell death. Unlike Atm or p53, several studies have shown that Chk2 null 

mice do not spontaneously develop tumors 4748-51. However, Mcm4C3/C3 Chk2−/− females 

had decreased tumor latency compared to Mcm4C3/C3 alone in a mixed C3H x B6 

background (LRMCT P=0.0189, GBWT P=0.027; Figure 2, Supplementary Table 2). 

Interestingly, although the overall tumor incidence was identical, the fraction of mammary 

tumors in Mcm4C3/C3 Chk2−/− females rose significantly from 15% to 50% (Supplementary 

Figure 2; FET P=.002). Mcm4C3/C3 Chk2−/− males did not have a statistically different 

latency compared to Mcm4C3/C3 alone, and their cancer incidence was similar to females of 

the same genotype (Figure 2). However, Mcm4C3/+ Chk2+/− males were more susceptible to 

cancer (73%) than Mcm4C3/+ controls (44%; Supplementary Figure 2).

Hus1 deficiency has no impact on tumor latency or cancer susceptibility in Chaos3 mice

The study of ATR pathway genes in tumorigenesis is complicated by embryonic lethality 

that occurs in nulls for Atr, Chk1, the RAD9-RAD1-HUS1 (9-1-1) complex members Rad9a 

and Hus1, and the 9-1-1 clamp loader Rad17. The 9-1-1 complex is a PCNA-like clamp that 

loads onto damage sites and recruits the ATR activator TOPBP1 52. Mice with genetically 

reduced HUS1 levels are viable, normal in appearance, but are not tumor susceptible, and do 

not experience accelerated tumorigenesis in a p53-deficient background 53. Graded levels of 

Hus1 expression can be achieved using the following combinations of null (Hus1Δ1) and 

hypomorphic (Hus1neo) alleles: Hus1+/neo (71.4% of WT), Hus1Δ1/+ (43.5% of WT), and 

Hus1Δ1/neo (20.8% of WT) 53. We used these allele combinations to examine the effects of 

ATR pathway perturbation upon cancer latency and frequency in Mcm4C3/C3 mice. 

However, none of the Hus1 mutant genotypes had significantly different cancer 

susceptibility or latency compared to Mcm4C3/C3 Hus1+/+ mice (Figure 3a, Supplementary 

Figure 3, Supplementary Table 2).

The lack of an effect upon cancer phenotypes led us to test whether the hypomorphic Hus1 

genotypes actually impact checkpoint signaling in Mcm4C3/C3 mammary tumors. Consistent 

with previous genomic analyses of Mcm4C3/C3 mammary tumors showing that p53 deletions 

are infrequent in this model 32, p53 levels were robust in most of the 8 tumors tested by 

Western blotting (Figure 3b), likely reflecting checkpoint-mediated stabilization 54. There 

was no correlation between levels of p53 and four genotypes of Hus1 representing a 

gradation of HUS1 levels (see above). CHK1 activation, as indicated by phosphorylation of 

SER345 that is catalyzed by ATR in response to replication or genotoxic stress 55, roughly 

paralleled the p53 levels in this tumor set. These data indicate that Hus1 hypomorphism has 

little impact on ATR axis damage signalling in these tumors. Interestingly however, 

Mcm4C3/C3 Hus1Δ1/neo mice exhibited abnormal craniofacial features (not shown) similar to 

mice deficient for both Hus1 and Atm 56, suggesting that there is an impact of HUS1 

deficiency in some non-tumorigenic cell types during development of Mcm4C3/C3 mice.
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p21 deficiency exacerbates tumor frequency and onset in Chaos3 mice

p21 is a cyclin-dependent kinase inhibitor and downstream target of p53 that halts cell cycle 

progression when activated (Figure 1a). It functions by blocking the activity of cyclin-CDK 

complexes (CDK2 and CDC2), and can inhibit proliferating cell nuclear antigen (PCNA) 

and therefore DNA replication 57. Despite being a p53 target, mice lacking p21 are not 

cancer-prone as are p53 mutants 58. Mice homozygous for Chaos3 or the hypomorphic 

Mcm2 allele (Mcm2IresCreERT2) exhibit modestly elevated p53 phosphorylation and p21 

expression. Furthermore, p53 mutation in either of these backgrounds increases embryonic 

lethality and accelerates cancer formation in survivors 23, 28. These results are indicative of 

important cellular roles for the downstream targets of checkpoint pathways in replication-

deficient mice.

To explore if p53 signaling to p21 (Figure 1a) is important for tumor prevention in animals 

with intrinsic replication stress, the effects of p21 deficiency was examined in Chaos3 mice. 

While embryonic development of double mutant animals was not affected as are p53/

Mcm4Chaos3 embryos 28, p21 nullizygosity significantly decreased time to tumor onset of 

Chaos3 males and females (Figure 4; Supplementary Table 2), with the predominant tumor 

class being histiocytic sarcomas in this mixed C3H × B6 background (Supplementary Figure 

4). Mcm4C3/C3 p21+/− females, but not males, also had significantly decreased tumor 

latency compared to Mcm4C3/C3 alone (Figure 4; Supplementary Table 2). Finally, cancer 

susceptibility was elevated in Mcm4C3/+ p21−/− and Mcm4C3/+ p21+/− vs. Mcm4C3/+ 

females (55%, 42% and 21%, respectively; Supplementary Figure 4).

DISCUSSION

Much is known about the molecular biology of the ATM and ATR pathways, their roles in 

responding to various types of DNA damage, and the impacts upon the cell cycle. However, 

most of this knowledge is based upon in vitro biochemical studies or experiments performed 

in cultured cells or in yeast. Regarding in vivo roles, mouse knockout models have been 

created for most genes in the ATM and ATR pathways, and phenotypes defined and 

compared to corresponding human diseases. Especially for the ATM pathway, these mouse 

models (and cells derived from them) have been exploited to characterize the types of DNA 

damage to which they primarily respond, such as DSBs. However, certain complications 

have limited studies on the effects of, and responses to, replication stress in vivo, despite the 

recognition that it is a major driver of genomic instability and tumorigenesis 59, 60. These 

complications include the embryonic lethality of null mutations in the Atr pathway, and the 

dearth of suitably relevant models of non-oncogene-associated replication stress.

Here, we utilized the Chaos3 mouse model to better understand the importance of DDR 

pathways in whole organisms with intrinsic replication stress, particularly with respect to 

carcinogenesis. This model is powerful and unique in that the replicative helicase mutation it 

bears (Mcm4Chaos3) is not so disruptive that development is affected. The mutation 

destabilizes the MCM2-7 hexamer but not its unwinding activity, causes a decrease in 

dormant replication origins, and triggers multiple fork recovery pathways. These defects 

ultimately lead to elevated chromosome breaks, chromosome segregation defects and 

tumorigenesis 19, 25, 26. Thus, there is opportunity to study the roles of both major DDR 
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pathways (ATR and ATM) in cancer susceptibility without applying exogenous agents. 

Finally, the Chaos3 model does not involve artificial oncogene overexpression, the most 

commonly used strategy for inducing and studying replication stress in cancer 59.

Disruption of the ATM pathway via Atm or Chk2 mutation had the effect of exacerbating 

Chaos3 phenotypes. Most dramatic was that the Mcm4C3/C3 Atm−/− genotype caused 

semilethality that was traceable to retarded in utero growth. One interpretation of this result 

is that Chaos3 cells, which sustain elevated DSBs that may arise from collapsed and/or 

persistently stalled replication forks that fail to be compensated by nearby dormant origin 

firing (dormant origins are reduced in Chaos3 mice 25), accumulate a lethal level of 

persistent unrepaired DNA damage from the concurrent lack of DDR signaling. Stochastic 

factors or segregating background genetic variation may underlie the incomplete penetrance 

of lethality. Although early lymphoma onset in all Atm−/− animals obscured possible effects 

of Chaos3 upon other cancer susceptibilities, both Mcm4C3/C3 Atm+/− and Mcm4C3/+ 

Atm+/− mice exhibited decreased tumor latency and/or increased tumor susceptibility 

compared to controls (Mcm4C3/C3 and Mcm4C3/+, respectively). Heterozygosity for Atm 

alone does not markedly elevate cancer rates or decrease latency in mice 34, but it does 

render them sensitive to sublethal doses ionizing irradiation 61. Considering that Mcm4C3 

heterozygotes have modestly elevated GIN (2-5 increase in erythrocyte micronuclei vs. 20 

fold in homozygotes) but are not cancer prone 19, these data indicate that a synthetic 

phenotype results from the combination of either genetic (Chaos3 heterozygosity) or 

environmental (radiation) genomic stresses with a normally benign genetic reduction in 

ATM signaling. Similarly, heterozygosity for Chk2 also increased tumor incidence in 

Mcm4C3 heterozygotes. We consider these results as being supportive of the concept that 

heterozygosity of multiple key genes can drive carcinogenesis 62. Notably, there is some 

evidence that human ATM mutation carriers are at moderately elevated risk for breast and 

possibly other cancers (for example, see 63); it is unclear whether cancer outcome in these 

individuals is strictly an issue of penetrance or is modified by genetic background or 

environmental factors.

Chk2 deficiency also increased tumor incidence and decreased tumor latency in Chaos3 

mice, although viability wasn't affected as with the Mcm4C3/C3 Atm−/− genotype. We 

interpret this to indicate that most cells from such animals do not retain a catastrophic level 

of unrepaired DSBs. The presence of ATM is predicted to allow initial localized responses 

to DSBs that may occur at collapsed forks, such as H2AX phosphorylation (γH2AX) and 

subsequent HR repair by RAD51 64, which may reduce the damage burden below the 

threshold of cellular lethality or compromised proliferation. It is also possible that in the 

absence of CHK2, ATM activates CHK1 to stimulate repair responses 65. Overall, both sets 

of experiments indicate that perturbation of the ATM pathway, which is involved primarily 

in the response to DSBs, increases cancer susceptibility in mice with intrinsic replication 

stress and elevated chromosomal instability/DSBs.

HUS1 was shown to be is critical for CHK1 phosphorylation in response to exogenous 

genotoxins 66, and genetic reduction of Hus1 expression was shown to increase genome 

instability and hypersensitivity to replication inhibitors but not cancer susceptibility 53. 

Using this hypomorphic Hus1 model for putative ATR pathway attenuation, we reasoned 
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that Chaos3 mice might provide a sensitized system for uncovering possible roles of the 

ATR pathway in tumor suppression in mice with genetically predisposed replication stress. 

Notably, Chaos3 MEFs exhibit signs of ATR pathway activation in the form of modestly 

increased levels of RPA foci, RAD17 phosphorylation, and Chk1 phosphorylation (the latter 

in the B6 but not (B6 x C3H)F1 background 25, 28. However, overall tumor latency and 

susceptibility were not altered in Chaos3 mice deficient for Hus1. In contrast, depletion of 

Atr in mice has been shown to suppress oncogene-induced tumors that normally exhibit 

replication stress 67, 68. These observations contribute to the proposal that while ATR may 

suppress neoplastic transformation to some degree via its role in DNA damage responses, it 

may be required for subsequent survival and proliferation of tumors 68, 69. Interestingly, 

severe depletion of ATR in a human patient was associated with growth defects and 

genomic instability but not cancer 70. In light of those reports, we can offer two 

interpretations for our observations. One is that ~80% of HUS1 in Hus1Δ1/neo mice does not 

impact the levels of replication stress in Mcm4C3/C3 cells. Another is that HUS1 may have a 

more significant role in DNA repair activities distinct from checkpoint signaling 71, 72, a 

concept not inconsistent with findings that compound deficiency for Atm & Hus1 or Hus1 & 

p53 severely affects animal growth and mammary epithelial maintenance, respectively, 

without increasing tumorigenesis.

As mentioned earlier, the strong interaction between p53 and MCM deficiency (Chaos3 or 

McmIresCreIRCT2 homozygosity) demonstrated that intrinsic replication stresses ultimately 

trigger p53-dependent damage responses that preserve normal development and inhibit 

neoplastic transformation 2328. A previous study suggested that the p21 upregulation 

observed in (C3HxB6)-Chaos3 mice was unlikely to contribute to tumor suppression 

because the mean tumor latency in Mcm4C3/C3 p21−/− was very similar to that of 

Mcm4C3/C3 p21+/− 28. However, that study did not include Mcm4C3/C3 animals as controls. 

We expanded that study to include both male and female mice and all the relevant control 

genotypes from related litters. The results indicate a role a tumor suppressive role of p21 in 

the Chaos3 model, but that it is probably relevant only in a subset of cells bearing a level of 

DNA damage that results in p53-mediated p21 transcription.

During the course of this project, a total of 687 detailed necropsies were performed 

(Supplementary Table 4). Overall, the results are consistent with previous studies showing 

that genetic MCM depletion causes extreme cancer predisposition, but that genetic 

background is the primary determinant of cancer type 19, 23-25. Because of this strong 

influence of strain background, possible Mcm- or checkpoint gene-specific alterations in 

tumor spectrum must be analyzed with caution. With this caveat, the shift towards mammary 

tumor susceptibility in the Chk2 -deficient Chaos3 mice of mixed background is notable. 

Although overall cancer rates were similar, the mammary tumor incidence in Mcm4C3/C3 

Chk2−/− females (50%) was > 3 fold higher than that of Mcm4C3/C3 relatives (15%, 

consistent with that in true C3HxB6 F1s 25). Therefore, rather than a factor of genetic 

background, the increased mammary tumorigenesis may be attributable to Chk2 deficiency. 

Certain Chk2 alleles (not null alleles) are known to convey a 2-3 fold increased breast cancer 

risk 73. Since Chk2 deficiency alone has not been associated with cancer in mice, the 

Chaos3 mutation may bring out a susceptibility that is evident in longer-living humans.
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In addition to genetic background effects, we found that tumor latency and susceptibility 

differed between genders in some of genotypes. Aside from cancers related to sexually 

dimorphic tissues such as mammary, ovary and prostate, differences in latency or frequency 

between sexes has been a longstanding puzzle. Differences are often hypothesized to be 

related to factors such as hormones, immune system differences, and differences in sex 

chromosome constitution 74. Here, we observed that females had an overall greater cancer 

susceptibility to Atm and p21 deficiency than males. Cancer incidence in Mcm4C3/+ p21+/− 

and Mcm4C3/+ Atm+/− females was double that of males of the same genotypes. 

Additionally, p21 nullizygosity increased the cancer incidence of Mcm4C3/+ females by 

34%, but had no effect on males (Supplemental Fig 4). These results hint at a role for DNA 

repair pathways in sexual dimorphism in cancer susceptibility, which is not unprecedented 

in consideration of the consequences of BRCA1/2 deficiencies in female cancers. In 

humans, certain inherited Atm and p21 polymorphisms (ATM Ex1-81G>A, ATM D126E, 

and CDKN1A S31R) lead to decreased DDR response and efficiency, which is associated 

with increased risk of developing lung cancer in African American women 75. It is possible 

that further studies in mice can get at the root of cancer susceptibility gender differences and 

interactions with genetic background.

Overall, this study marks the importance of intact DDR pathways in responding to 

replication stress, providing protection from carcinogenesis when the DNA replication 

machinery is defective from birth. It remains unclear if lifelong exposure to exogenous 

sources of replication stress would benefit from the same DDR genes, but in vitro studies 

indicate this is likely to be so. Our findings also indicate that gender and genetic background 

significantly impacts cancer susceptibility and tumor latency when DNA replication 

integrity and DDR pathways are concurrently compromised. DDR pathways are being 

recognized as potential therapeutic targets in cancer treatment, since tumor cells can be 

hypersensitized to DNA damaging drugs when both overlapping pathways are inactivated or 

attenuated 76. With increasing use of personalized genomics, it may be possible to 

effectively characterize the status of a tumor's endogenous DDR, and exploit weaknesses in 

an effective and targeted manner.

MATERIALS AND METHODS

Mice

p21 mice (B6;129S2-Cdkn1atm1Tyj) were purchased from the Jackson Laboratory. Hus1 

mutant mice (Hus1tm2Rsw , abbreviated as Hus1neo; Hus1tm1Led, abbreviated as Hus1Δ1) 

were obtained from R. Weiss 77, 78 as were Atm mutants (Atmtm1Led, abbreviated as Atm-) 36, 

and Chk2 (Chek2 tm1Mak , abbreviated as Chk2-) from Tak Mak 79. At the time of crossings, 

Chk2 and p21 mutants were congenic in C57BL/6J (B6), Atm was congenic in FvB, and the 

Hus1 animals were congenic in 129S6. Chaos3 C3HeB/FeJ (C3H) congenic animals were 

crossed to DDR mutants to generate double mutant animals that were of mixed genetic 

background. Progeny were genotyped as described in the original publications or as 

indicated by The Jackson Laboratory for those mice obtained from that source (http://

jaxmice.jax.org). Double mutants and littermates of the same gender were aged to a terminal 

endpoint of eighteen months or until animals showed clinical signs of disease. Prism 
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(GraphPad 5) statistical software was used to analyze survival curves and generate Kaplan-

Meier plots.

MEF studies

Timed matings were conducted to collect embryos at embryonic days 12.5, 13.5, and 18.5. 

MEFs were generated, cultured, and cell proliferation assays performed as previously 

described 19.

Histopathology

Tumor samples were formalin-fixed and embedded in paraffin for sectioning and 

histological analysis. Slides were stained with hematoxylin and eosin (H&E) prior to 

histopathological evaluation.

Statistical analyses

The following tests of significance were performed and abbreviated as follows: LRMCT= 

Log-rank/Mantel-Cox Test; GBWT= Gehan-Breslow-Wilcoxon Test. LRMCT and GBWT 

are alternative methods that are applied to the survival curves; the latter gives more weight 

to deaths at earlier time points. The analysis was performed with Prism software 

(Graphpad). χ2 analysis was used to determine statistical significance of observed versus 

expected genotype ratios. FET was used to examine the significance of the association 

(contingency) between genotypes and gender to cancer susceptibility/frequency or subtype.

Western Blotting—Tissues were homogenized in T-PER (Pierce), plus complete EDTA-

free proteinase inhibitor (Roche). Then, 40 ug of protein was subjected to electrophoresis on 

a 10% denaturing PAGE gel, transferred to a polyvinylidene difluoride membrane and 

blocked with 5% milk in Tris-buffered saline with 0.1% Tween 20 (TBST). Membranes 

were incubated with the following antibodies at 1:1000 in 5% BSA in TBST overnight at 4 

deg C: p53 Abcam #26 and CHK1 (SER345) Cell Signaling #2341. Beta-actin (Sigma 

#A1978) was employed at 1:10,000 in 5% BSA in TBST.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Atm deficiency impacts Chaos3 tumor latency and tumor susceptibility
(A) DNA damage response pathways. Key genes in DDR pathways are shown with the ATR 

and ATM DNA damage sensors emphasized in gray boxes. Genes perturbed in this study are 

indicated by red ovals. (B) Kaplan-Meier graphs of the indicated genotypes and sexes. 

Mcm4C3/C3 Atm+/− and Mcm4C3/+ Atm+/− females have significantly decreased tumor 

latency compared to Mcm4C3/C3 alone (see statistics in Supplementary Table 2). Mcm4C3/C3 

Atm+/− males neared statistical significance for decreased tumor latency, and Mcm4C3/+ 

Atm+/− male tumor latency was similar to Mcm4C3/C3 alone (Supplementary Table 2). C3 = 

Mcm4C3. (C) Tumor spectra of selected genotypes. HS=histiocytic sarcoma, MT=mammary 

tumor, BT=bone tumor, Ly=lymphoma, None=healthy (no detectable cancer), PCT=plasma 

cell tumor, RCT=round cell tumor, GCT=granulosa cell tumor, Lv=liver, MH=myeloid 

hyperplasia, AD=adrenal ganglioneuroma, Un=unknown tumor type. Note that tumor 

spectrum is affected by genotype and gender, and that Mcm4C3/+ Atm+/− females are more 

susceptible to cancer than males. C3 = Mcm4C3.
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Figure 2. Effects of Chk2 deficiency upon tumorigenesis in Chaos3 mice
Kaplan-Meier graphs of the indicated genotypes and sexes are shown. Mcm4C3/C3 Chk2−/− 

female mice have significantly decreased time to tumor onset than Mcm4C3/C3 alone. C3 = 

Mcm4C3.
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Figure 3. Hus1 deficiency has no effect upon tumorigenesis or checkpoint signaling in Chaos3 
mice and tumors
(A) Chaos3 x Hus1 tumor latency. Mcm4C3/C3 x Hus1 mice do not have significantly 

different (see statistics in Supplementary Table 2) time to tumor onset than Mcm4C3/C3 

alone. C3 = Mcm4C3. (B) Western blot analysis of Mcm4C3/C3 mammary tumors with a 

gradation of Hus1 hypomorphism. The genotypes are abbreviated as follows: “Δ” is a null 

allele (Hus1Δ1); “Neo” is a hypomorphic (Hus1neo) allele; “+” is the WT allele. For levels of 

HUS1 in these genotypes, see the text. Antibodies used are as indicated to the left of the 

panels. The results shown are from the same Western blot that was stripped and reprobed 

sequentially, following verification of effective stripping.
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Figure 4. p21 deficiency impacts Chaos3 tumor latency in males and females and tumor 
susceptibility in females
Kaplan-Meier graphs of the indicated genotypes and sexes are shown. Mcm4C3/C3 p21−/− 

male and female mice have significantly decreased time to tumor onset than Mcm4C3/C3 

alone. Mcm4C3/C3 p21+/− females, but not males, also have significantly decreased tumor 

latency compared to Mcm4C3/C3 alone. See statistics in Supplementary Table 2. C3 = 

Mcm4C3.
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