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Abstract
BACKGROUND 
Heart diseases are the primary cause of death all over the world. Following 
myocardial infarction, billions of cells die, resulting in a huge loss of cardiac 
function. Stem cell-based therapies have appeared as a new area to support heart 
regeneration. The transcription factors GATA binding protein 4 (GATA-4) and 
myocyte enhancer factor 2C (MEF2C) are considered prominent factors in the 
development of the cardiovascular system.

AIM 
To explore the potential of GATA-4 and MEF2C for the cardiac differentiation of 
human umbilical cord mesenchymal stem cells (hUC-MSCs).

METHODS 
hUC-MSCs were characterized morphologically and immunologically by the 
presence of specific markers of MSCs via immunocytochemistry and flow 
cytometry, and by their potential to differentiate into osteocytes and adipocytes. 
hUC-MSCs were transfected with GATA-4, MEF2C, and their combination to 
direct the differentiation. Cardiac differentiation was confirmed by semiquant-
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itative real-time polymerase chain reaction and immunocytochemistry.

RESULTS 
hUC-MSCs expressed specific cell surface markers CD105, CD90, CD44, and vimentin but lack the 
expression of CD45. The transcription factors GATA-4 and MEF2C, and their combination induced 
differentiation in hUC-MSCs with significant expression of cardiac genes i.e., GATA-4, MEF2C, 
NK2 homeobox 5 (NKX2.5), MHC, and connexin-43, and cardiac proteins GATA-4, NKX2.5, cardiac 
troponin T, and connexin-43.

CONCLUSION 
Transfection with GATA-4, MEF2C, and their combination effectively induces cardiac differen-
tiation in hUC-MSCs. These genetically modified MSCs could be a promising treatment option for 
heart diseases in the future.

Key Words: Heart disease; GATA binding protein 4; Myocyte enhancer factor 2C; Transcription factors; 
Differentiation; Human umbilical cord-mesenchymal stem cells
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Core Tip: Transcription factors have great potential to direct cell fate decisions during embryonic 
development. In this study, we investigated the overexpression of cardiac transcription factors in human 
umbilical cord mesenchymal stem cells to enhance their differentiation into cardiac-like cells. The 
synergistic effect of GATA binding protein 4 and myocyte enhancer factor 2C transcription factors 
increased the expression of cardiac genes and proteins. The results of this study will aid in the 
development of new therapeutic strategies aimed at curing heart diseases.
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INTRODUCTION
Heart failure is the most challenging issue after myocardial infarction[1,2]. The environmental and 
genetic risk factors cause the deregulation of cardiomyocytes as well as endothelial, smooth muscle, and 
inflammatory cells of heart tissue[3]. Cardiomyocytes largely fail in adult life to divide or enter the cell 
cycle[4,5]. Therefore, the adult heart has a limited endogenous repair and regeneration mechanism[6-8]. 
Current interventions rely on heart transplantation, mechanical assistance devices, and medicinal 
therapies for the management of damaged organ. However, these options cannot revert the normal 
functioning of the heart. The future therapeutic strategy for cardiac diseases is to regenerate damaged 
tissue for restoring complete heart function[9,10].

Cell based therapies are promising for damaged heart tissue. Stem cells possess the remarkable 
potential to stimulate endogenous myocardial repair and regeneration processes[11-15]. However, the 
low viability of transplanted stem cells due to inadequate supply of blood and inflamed myocardium 
has been a major challenge[12-14]. Adult mesenchymal stem cells (MSCs) have the potential to make 
bone, muscle, nerve, cardiac, and fat cells[16,17]. Furthermore, MSCs help in the formation of new blood 
vessels, induce apoptotic resistance, and provide anti-fibrotic effects[18,19]. One of the recently emp-
loyed innovative approaches is the use of forward programming with tissue type-specific transcription 
factors for the differentiation of stem cells[20].

The successful cell fate reprogramming requires a temporospatial expression pattern of transcription 
factors[21]. Heart development is a complex process that requires the coordination of a series of events 
such as specification, proliferation, and differentiation[22]. Cardiac transcription factors, including 
GATA binding protein 4 (GATA-4), myocyte enhancer factor 2A (MEF2A), NK2 homeobox 5 (NKX2.5), 
and serum response factor (Srf), have a paradoxical role in the differentiation and homeostasis of 
myocardial cells[23]. It has been documented that three cardiac transcription factors, GATA-4, NKX2.5, 
and T-Box transcription factor 5 (TBX5), programmed extra-cardiac mesoderm of mouse embryo into 
cardiac tissue[24]. Also, a combination of GATA-4, NKX2.5, TBX5, and BAF60C can induce the differen-
tiation of embryonic stem cells into cardiac lineage[25]. Altogether, these research studies display that 
transcription factor mediated stem cell reprogramming is a valuable strategy that directs cardio-
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myogenic differentiation of various stem cell types.
The current study aimed to examine the effects of overexpressing two cardiac transcription factors, 

GATA-4 and MEF2C, in cardiac differentiation of human umbilical cord MSCs (hUC-MSCs). After 
introducing the transcription factors either individually or in combination, hUC-MSCs were analyzed 
for the expression of cardiac genes and proteins. These genetically modified MSCs could be a promising 
treatment option for cardiovascular diseases.

MATERIALS AND METHODS
Ethics committee approval
The current research project was approved by the institutional bioethical committee of University of 
Karachi (protocol #: ICB KU-92/2020).

Human umbilical cord collection
Human umbilical cords (n = 12) were collected from healthy pregnant females at the Dow University of 
Health Science, OJHA campus, Karachi, Pakistan after obtaining the consent from the donors.

Isolation and propagation of hUC-MSCs
Human umbilical cord tissue was longitudinally cut and thoroughly washed with sterile phosphate-
buffered saline (PBS). The human cord tissue was cut into 2-5 mm in size and placed in 1 × (0.25%) 
trypsin (GIBCO, United States) for 20 min at 37 °C. Partially digested cord tissues were kept in a T-25 
tissue culture flask having 3-5 mL of DMEM (GIBCO, United States) supplemented with 10% fetal 
bovine serum (FBS), 100 units/mL penicillin/streptomycin, and 1 mmol sodium pyruvate. Explants 
were placed at 37 °C with 5% CO2 (Heracell, United States). The medium was changed every third day. 
MSCs attached to the tissue culture flask during 15-20 d of the first culture. After adhesion of the MSCs, 
tissues were discarded and fresh DMEM was added for the proliferation of cells. Once the MSCs 
reached 70% to 80% confluence, they were detached using 1 × (0.25%) trypsin. hUC-MSCs at passage (P) 
1-2 were used for experiments.

Immunocytochemistry
Isolated hUC-MSCs were characterized by immunocytochemistry to detect the specific markers of 
MSCs. Briefly, 4% paraformaldehyde (PFA) was added to the cells and then incubated with 0.1% Triton 
X-100. The permeabilized cells were then kept in a blocking solution for 1 h. After incubation, the 
solution was discarded and cells were kept at 4 °C with anti-mouse primary antibodies against CD90, 
CD105, vimentin, CD44, and CD45. After overnight incubation, cells were thoroughly washed 4-5 times 
with PBS. Alexa fluor 488 conjugated goat anti-mouse secondary antibody was added to each well. The 
negative control cells were incubated only with the secondary antibody. DAPI (4’,6-diamidino-2-
phenylindole) was used to stain the cell nuclei. Lastly, cells were mounted and observed under a 
fluorescence microscope (NIE, Nikon, Japan).

Flow cytometry
MSCs were washed 2-3 times with PBS and incubated with dissociation buffer at 37 °C for 40 min. The 
cells were pelleted down through centrifugation and then the cell pellet was mixed in FACS solution 
containing 1% BSA, 1 mmol EDTA, and 0.1% Na-azide. The tubes were centrifuged for 5 min and then 
the blocking solution was added to all the tubes. Primary antibodies against CD44, CD90, and CD73 
were added and the tubes were incubated at 4 °C. After washing with FACS solution, Alexa fluor 488 
conjugated goat anti-mouse secondary antibody was added. Unlabeled and isotype labeled cells were 
used as controls. Data were analyzed using BD FACS Diva software.

Adipogenic and osteogenic differentiation
Approximately 4 × 105 hUC-MSCs were seeded in a 6-well plate for 24 h. After confirming cell prolif-
eration, cells were washed with sterile PBS. For osteogenesis, low glucose DMEM supplemented with 10 
mmol glycerol-2-phosphate, 0.2 mmol ascorbic acid, 0.1 μmol dexamethasone, 10% FBS, 100 μg/mL 
streptomycin, 100 units/mL penicillin, and 2 mmol L-glutamine were added into the cell culture plate. 
The medium was replaced every 4th day till 21 d. After the completion of 21 d incubation period, ice 
cold 75% ethanol was used for cell fixation, and then the cells were stained with 2% Alizarin stain.

For adipogenesis, hUC-MSCs were cultured in adipogenic induction and maintenance medium for 21 
d. Adipogenic induction medium contains 10 μg/mL insulin, 100 μmol indomethacin, 1 μmol 
dexamethasone, 10% FBS, 100 μg/mL streptomycin, and 100 units/mL penicillin in low glucose DMEM. 
After 21 d, 4% PFA was used for cell fixation and then cells were stained with 0.5% Oil Red O. Finally, 
images were taken under a phase contrast microscope (CKX41, Olympus, Japan).
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hUC-MSC transfection
GATA-4 and MEF2C plasmids were purchased from Addgene (plasmid No. 46030 and No. 46031, 
respectively). Plasmid DNA was isolated by using a maxiprep plasmid DNA isolation kit (Thermo 
Scientific, United States). Briefly, Escherichia coli were harvested by centrifugation at 5000 × g. The pellet 
was mixed in resuspension solution and then lysis solution was added. The suspension was incubated 
at room temperature for 3 min and a neutralization solution followed by endotoxin binding reagent was 
added to the tube. The tube was incubated at room temperature for a further 5 min and 96% ethanol 
was added. The supernatant was collected through centrifugation, mixed with 96% ethanol, and then 
shifted to the purification column. The tube was centrifuged at 2000 × g for 3 min. Wash solution 1 was 
added to the column and centrifuged at 3000 × g. This step was repeated with wash solution 2. The 
plasmid DNA was eluted in elution buffer and quantified using a nano-drop spectrophotometer. hUC-
MSCs were transfected separately with GATA-4 and MEF2C, and co-transfected with 1 μg each of 
GATA-4 and MEF2C plasmids using lipofectamine 3000 kit (Invitrogen, United States). Briefly, the 
plasmid vector (1 μg for GATA-4 or MEF2C) was diluted in serum free DMEM, and 2 μL of P3000 
reagent was added per 1 μg of plasmid DNA. Lipofectamine TM 3000 reagent and DNA were mixed 
and kept at room temperature for 15 min. Cells at 70%-80% confluence were incubated with DNA-lipid 
complex at 37 °C for 24 h. After 24 h, lipofectamine was replaced with FBS containing DMEM. The cells 
were kept for 2 wk at 37 °C using an air jacketed CO2 incubator. The medium was changed every 3 to 4 
d. The following experimental groups were used in this study: Untreated control, GATA-4 transfected, 
MEF2C transfected, and combination group of GATA-4 + MEF2C transfected hUC-MSCs.

Gene expression analysis of transfected hUC-MSCs
The overexpression of the GATA-4 and MEF2C genes in transfected hUC-MSCs was confirmed by 
semiquantitative real-time polymerase chain reaction (RT-PCR). RNA was extracted from transfected 
and control hUC-MSCs using TRIzol reagent. For RNA isolation, cells were harvested and the pellet was 
gently mixed with TRIzol reagent. In the next step, chloroform was added to the tube and incubated at 
room temperature for 15 min. The cell suspension was centrifuged at 12000 × g for 15 min. Isopropyl 
alcohol was added to the separated aqueous phase followed by centrifugation at 12000 × g. The RNA 
pellet was air dried and then resuspended in RNAase-free water. The RNA absorbance was calculated 
at 260 nm. cDNA was synthesized using a cDNA synthesis kit (Invitrogen, United States) and then 
amplified using primers corresponding to GATA-4 and MEF2C genes. Human beta-actin was used as a 
housekeeping gene. Reverse transcription reaction products were initially denatured for 30 s at 94 °C, 
followed by 40 cycles of amplification: Denaturation at 94 °C for 3 s and annealing at 60 °C for 30s. 
Primer sequences and melting temperatures of each gene are enlisted in Table 1.

Analysis of cardiac genes and proteins
For gene expression, RT-PCR of untreated and transfected hUC-MSCs was performed at day 14 of 
transfection. For cardiac protein expression, immunocytochemistry staining of untreated and 
transfected hUC-MSCs was performed also on day 14 of transfection. Primary antibodies for cardiac 
specific proteins, i.e., GATA-4, connexin-43, NKX2.5, and cTnT, were used. The negative control cells 
were incubated only with the secondary antibody. Finally, cells were mounted and images were taken 
under a fluorescence microscope (NIE, Nikon, Japan). The fluorescence intensities were calculated 
through Image J software (NIH, United States).

Statistical analysis
Data were analyzed by using IBM SPSS Statistics 20 software. One way ANOVA and Tukey’s post hoc 
test were used for comparisons among multiple groups. All data were collected from three independent 
experiments. A P value less than 0.05 (aP < 0.05) was considered statistically significant.

RESULTS
Morphological features of MSCs derived from human umbilical cord tissue
Adherent cells started to grow during 15 d to 20 d of isolation and are termed P0 cells, as shown in 
Figure 1. The P0 cells were sub-cultured once they reached 80% confluence and termed P1 cells. The 
hUC-MSCs appeared in colonies and showed a fibroblast-like morphology (Figure 1). P1 to P2 cells 
were used in this study.

Characterization of hUC-MSCs
Immunocytochemistry analysis showed positive expression of the MSC markers CD105, CD90, CD44, 
and vimentin, while CD45, a hematopoietic marker, was not expressed in these cells (Figure 2A). The 
immunophenotypic analysis showed positive expression of CD90, CD73, and CD44 in hUC-MSCs 
(Figure 2B). The osteogenic and adipogenic differentiation was confirmed, respectively, by Alizarin Red 
staining which revealed mineral deposits, and Oil Red O staining which revealed lipid droplets 
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Table 1 Primer sequence and annealing temperature of cardiac genes

Gene Primer sequence (5’-3’) Annealing temperature (°C)

Forward: 5’-TGGGCATGGGTCAGAAGGATTC-3’Beta-actin

Reverse: 5’-AGGTGTGGTGCCAGATTTTCTC-3’

60

Forward: 5’-CGAGATGCCAGTCTCCATCC-3’Myocyte enhancer factor 2C

Reverse: 5’-CAGAGAAGGGTGAGCCAGTG-3’

60

Forward: 5’-AGTGTGCGTCTGCCTTTCC-3’NKX2.5

Reverse: 5’-CACAGCTCTTTCTTTTCGGCTC-3’

60

MHC Forward: 5’-GACAGGTGCAGCAAAA CAGG-3’ 
Reverse: 5’-AAGGGTATCCTGCAACTGCC-3’

60

Forward: 5’-CTTCATGCTGGTGGTGTCC-3’Connexin-43

Reverse: 5’-ACCACTGGTCGCATGGTAAG-3’

60

Forward: 5’-CTGCCCTCCGTCTTCTGC-3’GATA-4

Reverse: 5’-CTCGCAGGTCAAGGAGCC-3’

60

NKX2.5: NK2 homeobox 5; MEF2C: Myocyte enhancer factor 2C; MHC: Myosin heavy chain; GATA-4: GATA binding protein 4.

Figure 1 Isolation and morphology of human umbilical cord mesenchymal stem cells. A-D: A stepwise method of isolation and proliferation of 
human umbilical cord mesenchymal stem cells (hUC-MSCs), which show a spindle-shaped fibroblast-like cell morphology under the phase contrast microscope at P0 
and P1. All images were captured under a phase contrast microscope (scale bar: 100 μm).

(Figure 2C).

Molecular analysis of transfected hUC-MSCs
hUC-MSCs were successfully transfected with GATA-4 and MEF2C genes. RT-PCR analysis showed a 
significant increase in GATA-4 and MEF2C expression after 24 h of transfection compared with the 
control (Figure 3).
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Figure 2 Human umbilical cord mesenchymal stem cell characterization by immunocytochemical analysis, flow cytometry, and lineage 
differentiation assays. A: Immunocytochemsitry of human umbilical cord mesenchymal stem cell (hUC-MSC) showing positive expression of CD44, CD90, 
CD105, and vimentin, and negative expression of CD45, a hematopoietic marker. Images were captured under a fluorescence microscope (scale bar: 50 μm); B: 
Flow cytometry of hUC-MSCs showing positive expression of CD44, CD73, and CD90. Data were analyzed using BD FACS Diva software; C: Adipogenic and 
osteogenic lineage differentiation of hUC-MSCs. Images were captured under a phase contrast microscope (scale bar: 100 μm).

Morphological changes and gene expression analysis of transfected hUC-MSCs
After 14 d of culture, the transfected cells displayed extended cytoplasmic processes and myotube like 
structures which are the typical features of cardiomyocytes (Figure 4A). hUC-MSCs transfected with 
GATA-4, MEF2C, and their combination showed significant expression of cardiac genes including 
MEF2C, NKX2.5, GATA-4, connexin-43, and myosin heavy chain (MHC) (Figure 4B). Moreover, the 
combination group for the evaluation of the synergistic effect of both transcription factors showed 
significant expression of cardiac genes as compared to the individual groups (Figure 4B).

Expression of cardiac proteins in transfected hUC-MSCs
Cardiac differentiation of transfected hUC-MSCs was further confirmed using immunocytochemistry. 
hUC-MSCs transfected with GATA-4, MEF2C, or their combination exhibited positive expression of 
cardiac specific proteins, including connexin-43, cTnT, GATA-4, and NKX2.5 as compared to the 
untreated control at day 14 (Figure 5A). Moreover, the fluorescence intensity of hUC-MSCs transfected 
with GATA-4, MEF2C, and their combination was also calculated using Image J software. Statistical 
analysis showed significant up-regulation of GATA-4, connexin-43, and NKX2.5 in all three treatment 
groups as compared to the untreated control. However, the late cardiac marker cTnT was not up-
regulated at day 14 (Figure 5B).

DISCUSSION
This study determined the effects of two cardiac transcription factors, GATA-4 and MEF2C, on the 
differentiation of hUC-MSCs towards cardiac lineage in vitro. GATA-4 is an important transcription 
factor that regulates the proliferation, survival, and fate commitment of many cell types[26]. Moreover, 
GATA-4 plays a vital role in the process of heart development[27]. The myocyte enhancer factor 2C 
(MEF2C) acts as a transcriptional regulator in cardiovascular growth[28]. It is demonstrated by various 
studies that MEF2C acts together with GATA factors to induce gene transcription in cardiomyocytes
[27]. Based on their widely documented role in the structure and function of the heart, we hypothesized 
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Figure 3 Gene expression analysis of GATA binding protein 4 and myocyte enhancer factor 2C transfected human umbilical cord 
mesenchymal stem cells. Semiquantitative real-time polymerase chain reaction (RT-PCR) analysis was performed to show the gene expression levels of GATA 
binding protein 4 and myocyte enhancer factor 2C transfected mesenchymal stem cells, separately and in combination, in comparison to the control. Results are 
expressed as the mean ± SE (n = 3). Differences between groups are considered statistically significant where bP < 0.01 and cP < 0.001. GATA-4: GATA binding 
protein 4; MEF2C: Myocyte enhancer factor 2C.

that GATA-4 and MEF2C overexpression may have the potential to induce the differentiation of hUC-
MSCs into cardiac-like cells.

In this study, hUC-MSCs were isolated by the explant method[29]. The characterization studies of 
isolated cells were performed according to the standard criteria of the International Society for Stem Cell 
Research (ISSCR)[30]. The isolated cells showed a fibroblast-like morphology and positive expression of 
CD105, CD90, CD44, and vimentin, whereas they lack the expression of the hematopoietic marker 
CD45. MSCs specific markers CD73, CD90, and CD44 were also verified by flow cytometry analysis. 
Moreover, cord derived MSCs showed the differentiation potential of adipocytes and osteocytes. The 
results of our study confirmed that the cord derived cells possess the main characteristics of MSCs. 
Next, we analyzed the overexpression of GATA-4 and MEF2C mRNA in control and transfected hUC-
MSCs. The expression of GATA-4 and MEF2C was maximum 24 h after transfection. Based on these 
gene expression data, we selected 24 h transfected hUC-MSCs for further experiments. hUC-MSCs were 
transfected with GATA-4 and MEF2C separately and in combination for 24 h, and then their cardiac 
differentiation potential at day 14 was analyzed. We observed elongated cells with extended cyto-
plasmic processes in the transfected groups in comparison with the control group. The transfected cells 
had a morphology similar to cardiomyocytes and these results are also in line with earlier studies[31,32].

The cardiac differentiation of transfected cells at day 14 was analyzed via analysis of mRNA 
expression of early and late cardiac specific markers, such as GATA-4, MEF2C, NKX2.5, connexin-43, and 
MHC. Cardiac markers were initiated to express in the GATA-4 and MEF2C transfected cells, while 
their significant up-regulation was prominent in the combination group. The cardiac transcription factor 
GATA-4 facilitates the binding of various transcriptional factors and co-activators including GATA-6, 
NKX2.5, Srf, MEF2, dHAND, YY1, and NFAT[33]. MEF2C participates in the growth and maturation of 
myocardial cells with GATA-4[34]. It has been found that the overexpression of transcription factors 
induces cardiomyocyte differentiation in stem cells[35,36]. The combination of precardiac mesodermal 
transcription factors (Csx/NKX2.5 and GATA-4) has been reported to induce cardiac differentiation of 
9-15c stem cells[37]. It has been found that GATA-4, MEF2C, and TBX5 generated cardiomyocyte like 
cells from mouse heart fibroblast[38]. The gene expression data revealed that GATA-4, MEF2C, and 
their combination were capable of directing stem cell fate into cardiomyocytes in vitro. Additionally, in 
the combination group, the significantly higher expression of cardiac specific genes indicates their 
synergistic effect on cardiac differentiation.

To complement gene expression data, we analyzed cardiac specific proteins in the GATA-4, MEF2C, 
their combination, and control groups. The combination group showed significant up-regulation of 
connexin-43, NKX2.5, and GATA-4 proteins at day 14 of transfection. The transcription factor NKX2.5 is 
expressed at the early and late stages of heart development[39]. NKX2.5 transcription is regulated by 
binding with GATA-4 and MEF2C[40,41]. The late stage marker troponin T regulates cardiac rhythm 
and maintains thin filaments in cardiac and skeletal muscles[42]. The heart rhythm regulation and 
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Figure 4 Morphological changes and cardiac-specific gene expression in transfected human umbilical cord mesenchymal stem cells. A: 
Images showing human umbilical cord mesenchymal stem cells trasnfected with (b) GATA binding protein 4 (GATA-4), (c) myocyte enhancer factor 2C (MEF2C), and 
(d) GATA-4 + MEF2C, and (a) the corresponding untreated control. All images were captured at day 14 under a phase contrast microscope (scale bar: 100 μm); B: 
Bar diagrams showing fold change analysis of cardiac gene expression by semiquantitative real-time polymerase chain reaction (RT-PCR) in the transfected cells in 
comparison to the control cells after 14 d of culture. Results are expressed as the mean ± SE (n = 3). Differences between groups are considered statistically 
significant where aP < 0.05, bP < 0.01, and cP < 0.001. GATA-4: GATA binding protein 4; MEF2C: Myocyte enhancer factor 2C; MHC: Myosin heavy chain; NKX2.5: 
NK2 homeobox 5.

coordinated contraction are controlled by a complex network of interconnected cardiomyocytes. Gap 
junction proteins help cardiomyocytes to communicate with their surrounding cells[43]. Connexin-43 is 
the major connexin protein involved in the propagation of electrical signals essential for the structural 
and functional maintenance of cardiac cells[44].
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Figure 5 Cardiac-specific protein expression in transfected human umbilical cord mesenchymal stem cells. A: Fluorescence images showing 
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human umbilical cord mesenchymal stem cells (hUC-MSCs) transfected with GATA binding protein 4 (GATA-4) and myocyte enhancer factor 2C (MEF2C), 
separately and in combination, in comparison to the control cells (scale bar: 50 μm); B: Bar diagrams showing quantification of positive cells using ImageJ software. 
Also shown is the comparison between the individual and combination groups. Results are expressed as the mean ± SE (n = 5). Differences between groups are 
considered statistically significant where aP < 0.05 and cP < 0.001. GATA-4: GATA binding protein 4; MEF2C: Myocyte enhancer factor 2C; CTnT: Cardiac troponin T; 
NKX2.5: NK2 homeobox 5; NS: Not significant.

Collectively, the results of the current study demonstrate that hUC-MSCs overexpressing GATA-4 
and/or MEF2C have the potential to generate cardiac-like cells. These genetically modified MSCs may 
be used as a new therapeutic approach for the regeneration of heart tissue.

CONCLUSION
It is concluded from this study that overexpression of the cardiac transcription factors in hUC-MSCs 
enhanced their differentiation potential into cardiac-like cells. The expression of early and late cardiac 
genes was significantly higher in all treatment groups. However, the combination group showed 
enhanced synergistic effect on cardiac differentiation. GATA-4 and MEF2C delivery seems to have the 
potential for the development of a cell-based treatment approach for cardiovascular diseases. However, 
further research is needed to explore the therapeutic effects of transfected hUC-MSCs in in vivo models.

ARTICLE HIGHLIGHTS
Research background
Myocardial infarction is the leading cause of death worldwide. Following myocardial infarction, billions 
of cardiomyocytes die, resulting in a significant loss in cardiac function. Cell-based therapies have 
emerged as a new area to support heart regeneration. GATA binding protein 4 (GATA-4) and myocyte 
enhancer factor 2C (MEF2C) are considered important transcription factors in the formation of cardiac 
cells during the embryonic development.

Research motivation
Stem cell based therapies are considered a promising approach for repairing the damaged heart. 
However, the underlying mechanisms that control stem cell mediated cardiac cell fate decisions are still 
poorly understood. Since GATA-4 and MEF2C are the critical regulators of cardiac differentiation, use 
of these factors for transfection of mesenchymal stem cells (MSCs) may enhance the potential of these 
stem cells for cardiac differentiation.

Research objectives
Considering the critical role of cardiac transcription factors in maintaining the structure and function of 
the heart during the development process, their role in cardiac differentiation is highly anticipated. 
These genetically modified MSCs could be a promising future therapeutic option for heart diseases.

Research methods
Human umbilical cord-MSCs (hUC-MSCs) were isolated and characterized morphologically and 
immunologically. The cord derived MSCs were identified by the presence of specific markers via 
immunocytochemistry and flow cytometry, and by their potential for osteogenic and adipogenic differ-
entiation. hUC-MSCs were transfected with GATA-4, MEF2C, and their combination to direct cardiac 
differentiation. Cardiac differentiation was confirmed by semiquantitative real-time polymerase chain 
reaction and immunocytochemistry.

Research results
GATA-4, MEF2C, and their combination induced the differentiation of hUC-MSCs with significant 
expression of cardiac genes and proteins. Moreover, myotube like structure, which is the main charac-
teristic of cardiomyocytes, was also observed in the transfected cells.

Research conclusions
Overexpression of GATA-4 and MEF2C in hUC-MSCs induces the differentiation of stem cells into 
cardiac-like cells. This study is an attempt to provide deeper insights into the mechanism of trans-
cription factors in the cardiac differentiation of stem cells.
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Research perspectives
The knowledge of the current study offers a promising therapeutic approach to improve treatment 
strategies for heart diseases. The genetically modified MSCs may serve as an ideal source for cardiac 
tissue repair and regeneration.
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