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Abstract

Introduction

Streptococcus pneumoniae is a cause of infections that range in severity from acute otitis

media (AOM) to pneumonia and invasive pneumococcal disease (IPD). The 10-valent pneu-

mococcal conjugate vaccine (PHiD-CV10) was introduced into the Icelandic paediatric

immunisation programme in 2011. The aim was to estimate the population impact and cost-

effectiveness of PHiD-CV10 introduction.

Methods

Data on primary care visits from 2005–2015 and hospitalisations from 2005–2017 were

obtained from population-based registries. A Bayesian time series analysis with synthetic

controls was employed to estimate the number of cases of AOM, pneumonia and IPD that

would have occurred between 2013–2017, had PHiD-CV10 not been introduced. Prevented

cases were calculated by subtracting the observed number of cases from this estimate. The

cost of the programme was calculated accounting for cost-savings due to prevented cases.

Results

The introduction of PHiD-CV10 prevented 13,767 (95% credible interval [CI] 2,511–29,410)

visits for AOM from 2013–2015, and prevented 1,814 (95%CI -523-4,512) hospitalisations

for pneumonia and 53 (95%CI -17-177) admissions for IPD from 2013–2017. Visits for AOM

decreased both among young children and among children 4–19 years of age, with rate

ratios between 0.72–0.89. Decreases were observed in both pneumonia hospitalisations

(rate ratios between 0.67–0.92) and IPD (rate ratios between 0.27–0.94). The total cost of
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implementing PHiD-CV10 in Iceland was -7,463,176 United States Dollars (USD) (95%CI

-16,159,551–582,135) with 2.1 USD (95%CI 0.2–4.7) saved for every 1 USD spent.

Conclusions

The introduction of PHiD-CV10 was associated with large decreases in visits and hospitali-

sations for infections commonly caused by pneumococcus and was cost-saving during the

first five years of the immunisation programme.

Introduction

Pneumococcal conjugate vaccines (PCV) have been shown to provide direct protection against

acute otitis media (AOM), pneumonia and invasive pneumococcal disease (IPD) in rando-

mised controlled trials [1–4]. Vaccines can also provide indirect protection among unvacci-

nated individuals through herd immunity. Indirect protection against IPD and pneumonia

have been reported in unvaccinated children and adults [5–7]. However, indirect protection

against AOM is less established [8, 9].

The combined direct and indirect effects of PCV are generally estimated by comparing

rates of infection after vaccine introduction to pre-vaccine rates in order to infer the total

impact of vaccination. This approach is unable to separate the effects of vaccine introduction

from coincident changes in healthcare utilization and reporting unrelated to the vaccine.

Methods to mitigate this that utilise time series analysis and trends in unrelated diseases as

synthetic controls have been developed and have been used to estimate the impact of PCV on

pneumonia hospitalisations and mortality [6, 10–12].

Cost-effectiveness analyses have shown PCV to be a cost-effective intervention [13]. How-

ever, most of the studies were conducted before the vaccine was implemented, and the results

depend on assumptions rather than observations with regard to both direct and indirect pro-

tection [14]. Two post-implementation cost-effectiveness studies of PCV have been published,

which evaluated the introduction of the 7-valent PCV in the United States in 2000 and in Aus-

tralia in 2005 [15, 16]. Neither study directly estimated the impact of PCV on AOM, pneumo-

nia or IPD but instead relied on previously published estimates or efficacy data. Both found

that cost-effectiveness was dependent on indirect protection.

In 2011, the 10-valent pneumococcal Haemophilus influenzae Protein D conjugate vaccine

(PHiD-CV, Synflorix1) was incorporated into the Icelandic paediatric immunisation pro-

gramme, with a two plus one schedule given at three, five and 12 months of age. Vaccine

uptake was immediately high with over 97% of vaccine eligible children receiving the primary

vaccination by their first birthday [17]. Vaccine eligible birth cohorts (2011–2015) in Iceland

have previously been shown to have experienced fewer AOM visits and hospitalisations for

pneumonia and IPD compared to vaccine non-eligible birth cohorts (2005–2010) [9, 18].

The aim of this study was to evaluate the direct and indirect impact of the vaccinations on

AOM, pneumonia and IPD in Iceland, and analyse post-implementation cost-effectiveness

using directly observed data.

Materials and methods

Data sources

The study is a population-based time series analysis. Data were obtained from the Primary

Care Registry and National Drug Prescription Registry of the Icelandic Directorate of Health,
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and the patient registry of Landspitali–The National University Hospital of Iceland. Data were

linked between registries using national identification numbers, and subsequently anonymised

before being released to the study’s authors. During data extraction, International Classifica-

tion of Diseases, 10th revision (ICD-10) diagnostic codes were not restricted to the primary

diagnosis and all codes associated with each visit or hospitalisation were included. Multiple

visits or hospitalisations by the same individual associated with the same ICD-10 code within

the same calendar-month were grouped together. No data had missing identification numbers.

The study was approved by The National Bioethics Committee (VSNb2013010015/03.07), the

National Data Protection Authority (2013010100VEL/—) and the Directorate of Health, Ice-

land (1301266/5.6.1/gkg)

The Primary Care Registry contains information on all primary care visits in Iceland. Visits

associated with diagnostic codes compatible with AOM were extracted and used as the out-

come measure. Visits associated with other chapters of the ICD-10 diagnostic coding system

were also extracted as synthetic controls (Table 1). The observation period was 1 January 2005

to 31 December 2015, as the Primary Care Registry was not updated for 2016 and 2017. Data

on all outpatient antimicrobial prescriptions were extracted from the National Drug Prescrip-

tion Registry using Anatomical Therapeutic Chemical code J01. AOM visits associated with an

antimicrobial prescription were used as an alternate case-definition in sensitivity analyses.

Data for patients hospitalised for pneumonia and IPD were obtained from Landspitali Uni-

versity Hospital’s patient registry for the period 2005–2017. Hospitalised pneumonia was

defined as any hospital admission associated with ICD-10 diagnostic codes compatible with

pneumonia (Table 1). Hospitalised IPD was based on microbiological data from the Depart-

ment of Clinical Microbiology at Landspitali University Hospital and linked to the patient reg-

istry. Hospitalised IPD was defined as any hospital admission associated with culture or PCR-

confirmed Streptococcus pneumoniae from joint fluid, bone, cerebrospinal fluid or blood,

regardless of ICD-10 discharge diagnosis. Hospitalisations associated with specific chapters of

the ICD-10 coding system were extracted and used as synthetic controls (Table 1).

AOM, pneumonia and IPD were used as outcome measures. Each was given two alternate

case-definitions that were used in sensitivity analyses, along with urinary tract infection as a

negative control. Outpatient antimicrobial prescriptions were obtained from the National

Drug Prescription Registry and linked to visits using national identification numbers. Inpa-

tient microbiological and radiographical testing was ascertained through cost data. All other

codes were used as synthetic controls. When applicable, codes associated with pneumococcal

infections were excluded from control groupings.

For each hospitalisation or visit to the emergency department, a detailed breakdown of

associated costs was available, and was extracted for each of the disease categories included in

the study. No cost data were available for primary care visits. Because the Children’s Hospital’s

paediatric emergency department serves as a walk-in clinic for the greater capital area, the dis-

tribution of costs for otitis media visits to the emergency department was assumed to reflect

that of primary care visits. The number of PHiD-CV10 doses purchased by the Government

and the unit price for each dose per calendar year were obtained from the Directorate of

Health. The yearly employment rate of individuals 15 to 24, 25 to 54, and 55 to 64 years old,

from 2011–2017, was extracted from The Organization for Economic Cooperation and Devel-

opment (OECD) Labour Force Statistics [19], and the deciles of regular total wage for working

Icelanders from 2011–2017 obtained from Statistics Iceland (www.statice.is). The consumer

price index for medical care obtained from Statistics Iceland was used to convert all direct

health care costs to 2015 price levels in Icelandic kronas (www.statice.is). All costs were con-

verted to United States Dollars (USD) using the official exchange rates of the Icelandic Central

Bank (www.sedlabanki.is).
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Table 1. The International Classification of Diseases, 10th revision (ICD-10) codes used to define disease states and synthetic controls used in the time series

analyses.

Group ICD-10 Description Exclusions

Outcomes and

alternatives

H65, H66, H70, H72 Acute otitis media -

- H65, H66, H70, H72, and antimicrobial

prescription

Acute otitis media (alternate) -

- H66 Acute otitis media (alternate) -

- J12, J13, J14, J15, J16, J17, J18 Pneumonia -

- J13, J15.8, J15.9, J18.1, J18.8, J18.9 Pneumonia (alternate) -

- J13, J15.8, J15.9, J18.1, J18.8, J18.9, and

microbiological and radiographical testing

Pneumonia (alternate) -

- Any or none Positive pneumococcal culture or PCR from normally sterile site -

- Any or none Positive vaccine-type culture or PCR from normally sterile site

(alternate)

-

- N10, N30.0, N39.0 Urinary tract infection (alternate) -

ICD-10 chapters A10-B99 Certain infectious and parasitic diseases A40.3, B95

- C00-D48 Neoplasms -

- D50-89 Diseases of the blood and blood-forming organs and certain

disorders involving the immune mechanism

-

- E00-99 Endocrine, nutritional and metabolic diseases -

- G00-G99 Diseases of the nervous system G00-G04

- H00-99 Diseases of the eye and adnexa, Diseases of the ear and mastoid

process

H10, H65, H66

- I00-99 Diseases of the circulatory system -

- K00-99 Diseases of the digestive system -

- L00-99 Diseases of the skin and subcutaneous tissue -

- M00-99 Diseases of the musculoskeletal system and connective tissue -

- N00-99 Diseases of the genitourinary system -

- P00-99 Certain conditions originating in the perinatal period -

- Q00-99 Congenital malformations, deformations and chromosomal

abnormalities

-

- R00-99 Symptoms, signs and abnormal clinical and laboratory findings,

not elsewhere classified

-

- S00-T99 Provisional assignment of new diseases of uncertain etiology -

- U00-99 Injury, poisoning and certain other consequences of external

causes

-

- V00-Y99 External causes of morbidity -

- Z00-99 Factors influencing health status and contact with health

services

-

Other grouped and

specific outcomes

J20-22 Bronchitis, bronchiolitis and unspecified acute lower respiratory

infection

-

- B20-24 HIV -

- E10-14 Diabetes -

- I60-64 Stroke -

- A09, K52.9, K59.1, R19.7 Gastroenteritis and Diarrhea -

- P05-07 Premature delivery and low birth weight -

- K35 Appendicitis -

- K80 Cholelithiasis -

- E86 Dehydration -

- A00-Z99 All non-respiratory visits or hospitalizations J00-J99, F and O

chapters

https://doi.org/10.1371/journal.pone.0249497.t001
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Impact of PHiD-CV10

The impact of PHiD-CV10 introduction on the incidence of pneumococcal disease was calcu-

lated using Bayesian time series methods [6, 20] and the result used as an input for a cost-effec-

tiveness analysis. The pre-vaccine period was defined as 1 January 2005 to 31 December 2010,

and the post-vaccine period as 1 January 2013 to 31 December 2017. The transition period

during which neither baseline trends nor vaccine impact were estimated was defined as 1 Janu-

ary 2011 to 31 December 2012, which spans the period during which the first vaccine eligible

birth cohort 2011 started and finished its vaccination schedule. For each disease category and

age-group, four models of PHiD-CV10 impact were estimated; an interrupted time series

(ITS) with all non-respiratory visits or hospitalisations as an offset, and ITS without offset, a

principal component analysis [20], and a synthetic control model [6]. All were Bayesian Pois-

son models with observation-specific random intercepts to account for over-dispersion. Each

model utilized the pre-vaccine period to predict the monthly occurrence of the outcome of

interest in the post-vaccine period, assuming the vaccination had not occurred. These models

were then combined using a Bayesian model-stacking procedure [21]. The methods are

described further in the S1 Appendix.

From the posterior predictive distribution of the stacked model, a total of 10,000 Markov

chain Monte Carlo (MCMC) samples were drawn. These represented the number of cases that

would have occurred in the post-vaccine period, had the vaccine not been introduced. The

first 2,000 MCMC draws were discarded for optimal burn-in. For each of the remaining 8,000

draws, the rate ratio (RR) between the observed and predicted number of cases during the

post-vaccine period was calculated, and the median and 95% credible intervals (CI) extracted

from the resulting distribution of rate ratios. Vaccine impact was defined as 1-RR. To estimate

the onset of vaccine impact, the rate ratio was calculated over a rolling 12-month period, the

first of which included 11-months of pre-vaccine data and one month of post-vaccine data.

The number of cases prevented by the vaccine was calculated for each calendar-month, by sub-

tracting the observed number of cases from each of the 8,000 MCMC draws. Finally, the

cumulative sum of prevented cases was calculated, and the median and 95% credible intervals

extracted.

Cost-effectiveness analysis

The cost-effectiveness of PHiD-CV10 introduction as compared to no intervention was esti-

mated from both the healthcare and societal perspectives. The societal perspective included

both direct and indirect costs associated with productivity loss, while analysis from the health-

care perspective included only direct costs. Neither analysis included estimates of long-term

sequelae or their associated costs. The time horizon was five years and both costs and cost-sav-

ings were discounted at a 3% discount rate. All costs were presented in 2015 USD. A summary

of the cost-effectiveness parameters and assumptions are presented in Table 2.

All costs were first adjusted to constant 2015 values and converted to USD. The cost of the

vaccine, visits and hospitalisations were directly observed. The possible vaccine costs were

assumed to follow a normal distribution with mean equal to the observed costs, and the stan-

dard deviation equal to five USD. The distribution of costs associated with visits and hospitali-

sations was empirically estimated using resampling with replacement. Wage and employment

rates were obtained from Statistics Iceland and wage was optimally fitted using a lognormal

distribution.

The direct cumulative savings associated with PHiD-CV10 introduction were calculated by

multiplying the predicted number of prevented cases from the Bayesian time series analysis

with the expected cost of each case. The expected cost was obtained through sampling with
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replacement from the observed costs extracted from Landspitali University Hospital’s patient

registry. The sampling was stratified by disease category and age-group. The direct costs asso-

ciated with the introduction of PHiD-CV10 into the paediatric immunisation programme

were obtained from the Directorate of Health. Wastage was accounted for, as costs included

doses never administered. However, additional administration costs were not included, as

each dose was administered during the same visit as other established vaccines. The direct

costs associated with the vaccine were subtracted from the direct cumulative savings to obtain

the final estimate of the total cost. This resulted in 8,000 posterior draws of the total cost, from

which the median and 95% credible intervals were extracted.

The societal perspective included indirect costs due to productivity loss. The deciles of wage

extracted from Statistics Iceland were optimally fitted to a lognormal distribution to obtain a

continuous wage distribution. Days of lost work were assumed. For each case of otitis media in

primary care, days of work lost by a parent or guardian were assumed to follow a Poisson dis-

tribution with mean equaling one. For each pneumonia or IPD hospitalisation, days of work

lost were assumed to equal 1.5 times the duration of the hospital stay, with hospital length of

stay sampled with replacement from the observed data obtained from the patient registry. The

indirect costs were calculated by multiplying the days of work lost with wages sampled from

the lognormal wage distribution, accounting for the employment rate. Cost-effectiveness was

summarised with incremental cost-effectiveness ratios (ICER) with 95% CI. Return on invest-

ment was calculated as the cost-savings minus the cost expressed as a proportion of the cost.

Sensitivity analysis

Three sensitivity analyses were performed to validate the robustness of the impact models, as

well as a falsification test. Firstly, the sensitivity of the impact models to the choice of pre-vac-

cine period was evaluated by selecting different pre-vaccine periods (2005–2007, 2005–2008,

2005–2009, and 2005–2010) and refitting the models for each disease category and age-group.

Secondly, the robustness of the synthetic control models with regards to the included covari-

ates, was evaluated by removing the top covariate and re-estimating the rate ratio. This was

Table 2. A summary of the parameters and assumptions of the cost-effectiveness analysis.

Parameter or

Assumption

Description Distribution

Perspective Healthcare, Societal -

Comparators PHiD-CV10 vs no vaccine -

Model Ecological time series -

Time horizon 5 years -

Price date 2015 USD -

Discount rate 3% ~ Triangle (0, 6)

Cost of vaccine Directly observed ~ N (observed, 5 USD)

Cost of visit or

hospitalization

Directly observed Resampling with replacement

Wage Observed ~ logN (12.85, 0.35)

Employment Observed ~ Binomial (observed)

Days of work lost Estimated from observed

hospital length of stay

Resampling with replacement from hospital length of

stay + ~Pois (1/2 hospital length of stay)

Vaccine uptake Implicitly included -

Vaccine coverage Implicitly included -

Serotype replacement Implicitly included -

Herd-effect Implicitly included -

https://doi.org/10.1371/journal.pone.0249497.t002
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done iteratively three times and the resulting three rate ratios compared to the one obtained in

the main analysis. Thirdly, several different case-definitions for each disease category were

explored. The models were refitted with two additional definitions of otitis media (visits with

ICD-10 code H66 only, and visits with ICD-10 codes H65, H66, H70, H72, associated with a

filled antimicrobial prescription), and two additional definitions of pneumonia (hospitalisa-

tions with ICD-10 codes J13, J15.8, J15.9, J18.1, J18.8 and J18.9; and hospitalisations with ICD-

10 codes J13, J15.8, J15.9, J18.1, J18.8 and J18.9 in which microbiological and radiological

examinations had been performed). The impact of PHiD-CV10 on vaccine-type IPD was also

evaluated. Finally, the models were re-fitted with urinary tract infections as the outcome vari-

able, to evaluate the specificity of the results regarding infections likely to be caused by pneu-

mococci. The cost-effectiveness analysis included a built in probabilistic sensitivity analysis in

which all assumptions were simultaneously varied over their respective probability distribu-

tions (Table 2). The results of the sensitivity analysis were included in all reported credible

intervals.

All data, statistical code and raw results are accessible at https://osf.io/u9g65/.

Results

Population impact on acute otitis media in children younger than 20 years

of age

From 1 January 2005 to 31 December 2015, children younger than 20 years of age visited pri-

mary care physicians 164,453 times for AOM or its complications. Both AOM and overall vis-

its decreased in the post-vaccine period in all age-groups. (S1 Fig). With few exceptions,

observed AOM visits were fewer than predicted in the post-vaccine period (Fig 1). The poste-

rior predictions of each component model are shown in S2 Fig, and the weights used to pro-

duce the final stacked model are presented in S1 Table.

The 95% credible interval of the rate ratio between the observed and the predicted number

of AOM visits was less than one in all age-groups, indicating a 97.5% or greater probability

that the rate of AOM decreased due to the introduction of PHiD-CV10 (Fig 2, Table 3). The

decrease was largest among young children; 26% (12%-36%) in children younger than one

year of age and 28% (5%-42%) in children one year of age. In total, PHiD-CV10 prevented

13,767 (95% credible interval 2,511 to 29,410) cases of AOM between 2013–2015. The largest

decreases in the cumulative number of prevented cases were seen in the youngest age-groups

(Fig 2, Table 3). The result was invariant to different case-definitions, the inclusion of different

controls and different pre-vaccine periods (S3–S5 Figs). Additionally, the falsification test was

negative as the model did not predict a decrease in urinary tract infections (S6 Fig)

Population impact on pneumonia hospitalisations

In total, 13,373 pneumonia hospitalisations occurred between 1 January 2005 to 31 December

2017. Observed trends in pneumonia hospitalisations during the study period are shown in S7

Fig.

During most of the post-vaccine period, the observed number of pneumonia hospitalisa-

tions was equal to or below the prediction line among children zero to four years of age, and

among adults 20 to 39, 65 to 79, and 80 years of age and older (Fig 3). The posterior predictions

of the component models are shown in S8 Fig and the weights used to produce the final

stacked model are presented in S1 Table.

Among children zero to four years of age, the posterior median of the rate ratio was 0.67.

Though the 97.5% credible limit was above the threshold value of one, there was a 94%
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probability that the rate ratio was lower than one, and a 90% probability that it was lower than

0.83. Similarly, the posterior median of the rate ratio was 0.74 among children five to 19 years

of age, and there was a 90% probability that the rate ratio was lower than one. Among adults

65 to 79 years of age and 80 years of age and older, the posterior median of the rate ratio was

0.75 and 0.76 respectively, and both had a 97% probability of being lower than one. In total,

the introduction of PHiD-CV10 prevented 1,814 (95% credible interval -523 to 4,512) hospital

admissions for pneumonia from 2013–2017 (Fig 4, Table 4).

Sensitivity analysis found that stricter definitions of pneumonia resulted in significantly

greater predicted declines than the base-case analysis (S9 Fig). The inclusion of different syn-

thetic controls did not change the overall result (S10 Fig). Some component models became

unstable when only three years (2005–2007) of pre-vaccine data were used to fit them (S11

Fig 1. The observed and predicted number of AOM visits from 1 January 2005 to 31 December 2015 for each age-

group. Observed visits are illustrated as black points, the posterior predicted visits are presented as lines and 95%

credible intervals as a shaded area. The start of the vaccine period is delineated with a vertical black dashed line. The

distance between the observed and predicted visits for each calendar-month is depicted by a thin black line. Assuming

that the model was correct, and that no intervention took place, the black points would have an equal probability of

occurring above or below the prediction line. Points below the lower bound of the shaded area would then represent

observations with less than a 2.5% probability of occurring. The scale of the Y-axes differs between age-groups.

https://doi.org/10.1371/journal.pone.0249497.g001
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Fig). The falsification test was negative, as the model did not predict a decrease in hospitalisa-

tions for urinary tract infections (S12 Fig).

Population impact on hospital admissions for invasive pneumococcal

disease

From 1 January 2005 to 31 December 2016, there were 338 hospitalisations for culture-con-

firmed IPD among all age-groups. Of these, 206 occurred before the introduction of

PHiD-CV10 into the paediatric immunisation programme in Iceland. In all age-groups, stan-

dardised hospitalisations for IPD decreased relative to standardised hospital admissions

regardless of cause (S13 Fig).

Among children zero to four years of age, observed IPD hospitalisations were equal to or

fewer than the predicted hospitalisations in all but two quarters (Fig 5). Similarly, observed

Fig 2. The impact of the vaccine (PHiD-CV10) on acute otitis media (AOM) and complications. In Panel A, the

estimated 12-month rolling rate ratio between observed and predicted AOM cases is shown per age-group, and the

95% credible intervals (CI) are illustrated as a shaded area. Panel B depicts the cumulative number of prevented AOM

cases during the post-vaccine period (2011–2015) for each age-group, along with 95% CI. The total cumulative

prevented AOM cases regardless of age-group is shown in Panel C.

https://doi.org/10.1371/journal.pone.0249497.g002
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hospitalisations among individuals five to 64 years of age were fewer than predicted. The pos-

terior predictions of the component models are shown in S14 Fig and the stacking weights are

shown in S1 Table.

The posterior median of the rate ratio for children younger than five years of age was 0.27,

corresponding to a 50% probability that the vaccine impact was greater than or equal to 73%

(Fig 6, Table 5). The 95% credible intervals of the rate ratio were wide, reflecting uncertainty

due to the few number of IPD hospitalisations. However, 90% of the MCMC draws of the rate

ratio were below 0.75 and 93% were under the threshold value of one. The 95% credible inter-

val of the rate ratio among individuals five to 64 years of age was lower than one, indicating a

97.5% or greater probability that the rate of IPD hospitalisation decreased in this age-group

following the introduction of PHiD-CV10. In total, the introduction of PHiD-CV10 prevented

53 (95% credible interval -17 to 177) hospitalisations for IPD between 2013–2016.

Sensitivity analyses using restricted pre-vaccine periods were not possible as the models did

not fit with such a small amount of data. The results did not change with the inclusion of dif-

ferent controls (S15 Fig). Using vaccine-type IPD as the outcome measure resulted in larger

estimates of vaccine impact, which ranged from 100% in children zero to four years of age to

68% in adults 65 years of age and older (S16 Fig).

Cost-effectiveness of PHiD-CV10

The Primary Care Registry was complete until December 31, 2015. Therefore, cost-effective-

ness was calculated until that date.

The total cost of introducing PHiD-CV10 into the Icelandic paediatric immunisation pro-

gramme from 1 January 2011 to 31 December 2015 was 3,451,805 in constant 2015 USD.

When direct cost-savings due to reductions in primary care visits for AOM, hospital admis-

sions for pneumonia and hospital admissions for IPD were included, the overall cost of the

PHiD-CV10 introduction was -7,463,176 USD (95% CI -16,159,551 USD to -582,135 USD)

which is equivalent to a return on investment of 2.1 USD (95% CI 0.2–4.7) for every 1 USD

invested. Including the indirect costs, the overall savings PHiD-CV10 introduction was

8,164,894 USD (95% CI 1,004,553 USD to 17,197,959 USD) or 2.4 USD (95% CI 0.3–5.0) for

every 1 USD invested into the immunisation program.

Given the observed distribution of costs associated with each AOM visit, the direct savings

resulting from vaccine-prevented AOM visits was 1,389,900 USD (95% CI 704,319 USD to

2,201,925 USD). The vaccine introduction prevented 10,911 days of work lost due to AOM

Table 3. The rate ratio between observed and predicted primary care visits due to Acute Otitis Media (AOM) and complications during the post-vaccine period

(2013–2015).

Age-group Rate ratio (95% CI) Cumulative cases prevented (95% CI) Direct savings (USD, 95% CI) Indirect savings (USD, 95% CI)

0y 0.74 (0.64–0.88) 3,234 (1,008 to 5,195) 305,330 (90,933 to 514,848) 45,386 (11,143 to 84,654)

1y 0.72 (0.58–0.95) 5,802 (817 to 11,526) 530,468 (57,564 to 1,150,759) 74,298 (3,778 to 193,180)

2y 0.88 (0.66–0.98) 900 (-185 to 3,817) 92,117 (-52,649 to 407,227) 14,377 (-11,004 to 64,562)

3-4y 0.86 (0.69–0.97) 1,702 (21 to 3,576) 135,274 (-16,985 to 357,905) 23,880 (-4,324 to 62,811)

5-9y 0.88 (0.73–0.96) 979 (229 to 2,521) 134,548 (-38,612 to 430,729) 14,242 (-1,030 to 40,961)

10-14y 0.83 (0.75–0.92) 720 (411 to 1,086) 113,333 (4,669 to 285,816) 10,313 (-3,098 to 20,035)

15-19y 0.89 (0.56–0.98) 430 (210 to 1,689) 55,819 (-8,278 to 227,493 6,169 (698 to 25,248)

Estimates are presented with 95% credible intervals (95% CI) for the seven age-groups included in the study. The predicted cumulative number of prevented cases as of

1 December 2015 is also presented. A negative number indicates that there is a non-zero probability that the vaccine caused more AOM visits to occur. Direct and

indirect savings are presented in 2015 USD.

https://doi.org/10.1371/journal.pone.0249497.t003
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(95% CI 5,116 to 18,801), which translates to 194,152 USD (95% CI 78,200 USD to 364,155

USD) in productivity gains (Table 3). Including only direct costs from averted visits and hospi-

talisations associated with AOM, the ICER was -543 USD (95% CI -1,508 USD to -48 USD)

per prevented visit. The corresponding ICER from the societal perspective was -594 USD (95%

CI -1,597 USD to -76 USD) per prevented AOM case.

The direct savings from vaccine-prevented pneumonia hospitalisations was 13,330,902

USD (95% CI 933,955 USD to 26,270,332 USD). Assuming no other benefits than preventing

pneumonia hospitalisations, and considering only direct costs, the ICER was -5,315 USD (95%

CI -8,877 USD to 711 USD) per prevented pneumonia hospitalisation. When the cost-savings

due to reductions in AOM visits and hospital admissions for IPD were also included, the ICER

per prevented pneumonia hospitalisation was -5,640 USD (95% CI -10,336 USD to -1,032

Fig 3. The observed and predicted number of pneumonia hospitalisations from 1 January 2005 to 31 December

2017 for each age-group. Observed cases are illustrated as black points. The predicted number of hospitalisations are

presented as lines and 95% credible intervals as shaded areas. The start of the vaccine period is delineated with a

vertical black dashed line. The distance between the observed and the predicted hospitalisations for each calendar-

month is depicted by a thin black line. Assuming that the model was correct, and no intervention occurred, the black

points would have an equal probability of appearing above or below the prediction line. The scale of the Y-axes differs

between age-groups.

https://doi.org/10.1371/journal.pone.0249497.g003
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USD) as of 31 December 2015 (Table 4). Including loss of work resulted in an ICER of -7,440

USD (95% CI -13,701 USD to -1,175 USD) per prevented pneumonia hospitalisation.

The direct savings resulting from vaccine-prevented hospitalisations of IPD was 673,008

USD (95% CI -189,654 USD to 2,081,594 USD). The vaccine programme prevented 1,280 days

of work lost (444 to 2,410) due to IPD, which translates to 35,280 USD (95% CI 9,437 USD to

70,609 USD) in productivity gains. When cost-savings due to reductions in AOM visits and

hospital admissions for pneumonia were also included, the ICER was -119,992 USD (95% CI

-387,183 USD to -9,542 USD) per prevented IPD hospitalization (Table 5). When days of work

lost were also considered, the ICER was -130,791 USD (95% CI -416,004 USD to -15,860 USD)

per prevented IPD hospitalization.

Fig 4. The population impact of the vaccine (PHiD-CV10) on pneumonia hospitalisations is summarized. In

Panel A, the estimated 12-month rolling rate ratio between observed and predicted pneumonia hospitalisations is

shown per age-group, and the 95% credible intervals (CI) are illustrated as a shaded areas. Panel B depicts the

cumulative number of prevented pneumonia hospitalisations during the post-vaccine period (2011–2017) for each

age-group along with 95% CI. The total cumulative prevented pneumonia hospitalisations regardless of age-group is

shown in Panel C.

https://doi.org/10.1371/journal.pone.0249497.g004
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Discussion

This population-based time series analysis demonstrated a direct and indirect impact of

PHiD-CV10 introduction on AOM, pneumonia and IPD in Iceland. After considering savings

due to prevented episodes of pneumococcal infections, the PHiD-CV10 programme was

shown to be cost-saving from both the healthcare and societal perspectives. The results were

robust to sensitivity analyses and falsification tests, which did not reveal evidence of

confounding.

The study is strengthened by its long observation period and the completeness of the under-

lying data. Six years of pre-vaccine data were used to estimate secular trends occurring before

the implementation of the vaccine. Between five and seven years of post-implementation data

were included depending on outcome. Both periods are longer than most previous observa-

tional studies of PCV impact [6, 7]. The Primary Care Registry of the Directorate of Health

contains data on all primary care contacts in the country, and though Landspitali University

Hospital is a single center, it is by far the largest acute care hospital and the sole tertiary hospi-

tal in Iceland, and includes the Children’s Hospital–Iceland’s only paediatric hospital. In 2017,

the total number of non-psychiatric curative care hospital beds in Iceland was 732 (www.

statice.is). Of those, 669 (91%) were at Landspitali University Hospital. It provides primary

and secondary care for the capital area, approximately 65% of the Icelandic population.

Impact on acute otitis media

Our study builds upon the literature by providing population-based estimates of direct and

indirect PCV impact on AOM that is adjusted for several controls and for secular trends. Fur-

thermore, extensive sensitivity analyses demonstrated that the result was robust to different

case definitions of AOM, and a falsification test showed that no spurious decline in urinary

tract infections. Two systematic reviews of the impact of PCV on AOM have been published

[22, 23]. Of the nine observational studies identified by the reviews, only three adjusted for sec-

ular trends [24–26]. Lau et al. used an interrupted time series approach to estimate the sequen-

tial impact of PCV7 and PCV13 on otitis media in general practice and reported a 21.8%

reduction in the rate of otitis media visits in children younger than 10 years of age. Marom

et al. and Grijalva et al. calculated rate ratios of otitis media visits between children younger

than two years of age and children three to six years of age and estimated the impact to be 20%

and 27% respectively. Only two previous studies have suggested indirect protection of PCV

against AOM [8, 9]. Both reported fewer episodes among children younger than four months

of age, who were too young to have received direct protection from PCV. Ben-Shimol et al.

Table 4. The posterior median of the rate ratio between observed and predicted number pneumonia hospitalisations during the post-vaccine period (2013–2017).

Age-group Rate ratio (95% CI) Cumulative cases prevented (95% CI) Direct savings (USD, 95% CI) Indirect savings (USD, 95% CI)

0-4y 0.67 (0.51–1.39) 142 (-115 to 307) 444,533 (-44,181 to 1,309,917) 52,535 (-59,043 to 136,715)

5-19y 0.74 (0.54–1.35) 52 (-27 to 113) 234,848 (-236,236 to 748,522) 20,472 (-18,876 to 61,481)

20-39y 0.68 (0.51–0.95) 182 (14 to 384) 968,662 (-203,048 to 2,567,059) 70,071 (-9,442 to 164,747)

40-64y 0.92 (0.79–1.22) 141 (-270 to 445) 933,290 (-2,748,49 to 4,848,557) 71,953 (-113,414 to 223,171)

65-79y 0.75 (0.55–1.02) 666 (-49 to 1,648) 5,476,585 (-910,021 to 15,590,280) 323,964 (-4,745 to 786,252)

80+ 0.76 (0.56–1.02) 631 (-76 to 1,615) 4,664,256 (-817,266 to 13,013,699) 287,270 (-37,961 to 742,168)

The rate ratio is presented with 95% credible intervals (95% CI) for the six age-groups included in the study. The predicted cumulative number of prevented cases as of 1

December 2017 is also presented. A negative number indicates a non-zero probability that the vaccine caused more pneumonia hospitalisations to occur. Direct and

indirect savings are presented in constant 2015 USD.

https://doi.org/10.1371/journal.pone.0249497.t004
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described a decrease in positive pneumococcal cultures from samples taken from the middle

ear of children in this age-group, and Sigurdsson et al. noted fewer primary care diagnosed

AOM episodes.

Impact on pneumonia

Our results were consistent with a large direct and indirect impact on pneumonia hospitalisa-

tions. Sensitivity analyses revealed the result to be robust to different case definitions, controls

and pre-vaccine periods. A recent systematic review and meta-analysis found that the average

direct vaccine impact on clinical pneumonia was 17% (95%CI 11% to 22%) [27]. Of the obser-

vational studies identified by the systematic review, three were population-based [28–30]. The

methods used in our study are based on Bruhn et al. who demonstrated their method using

data on pneumonia hospitalisations before and after the introduction of PCV7 and

Fig 5. The observed and predicted number of IPD hospitalizations from 1 January 2005 to 31 December 2016 for

each age-group. Observed cases are illustrated as black points, and the predicted number of cases are presented as

lines with 95% credible intervals as a shaded area. The start of the vaccine period is shown with a vertical black dashed

line. The distance between the observed and predicted cases for each year-quarter is depicted by a thin black line.

Assuming that the model was correct, and no intervention took place, the black points would have an equal probability

of occurring above or below the prediction line.

https://doi.org/10.1371/journal.pone.0249497.g005
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Fig 6. The population impact of the vaccine (PHiD-CV10) on hospital admissions for invasive pneumococcal

disease. In Panel A, the estimated 12-month rolling rate ratio between the observed and the predicted number of IPD

hospitalisations in the post-vaccine period (2011–2016) is shown per age-group. In some 12-month periods, no IPD

hospitalisations were observed, and the resulting rate ratio was zero regardless of the denominator. In other periods,

2.5% or more of the MCMC draws predicted zero IPD hospitalisations, which resulted in a 95% credible intervals of

the rate ratio that extended towards infinity. These issues do not change the overall interpretation of the prediction line

presented. Panel B depicts the cumulative number of prevented IPD hospitalisations during the post-vaccine period

(2011–2015) for each age-group.

https://doi.org/10.1371/journal.pone.0249497.g006

Table 5. The rate ratio between observed and predicted number of hospital admissions for Invasive Pneumococcal Disease (IPD) during the post-vaccine period

(2013–2016).

Age-group Rate ratio (95% CI) Cumulative cases prevented (95% CI) Direct savings (USD, 95% CI) Indirect savings (USD, 95% CI)

0-4y 0.27 (0.05–3.00) 14 (-2 to 67) 227,087 (71,363 to 618,919) 16,882 (6,893 to 38,718)

5-64y 0.44 (0.31–0.68) 29 (1 to 65) 321,424 (-455,573 to 1,649,171) 12,983 (-3,606 to 33,498)

65y+ 0.94 (0.62–1.53) 10 (-16 to 45) 73,395 (-256,856 to 516,864) 4,340 (-10,903 to 23,543)

The rate ratio is presented along with 95% credible intervals (95% CI) for the three age-groups. The predicted cumulative number of prevented cases as of 1 December

2016 is also presented. A negative number indicates that there is a non-zero probability that the vaccine caused more IPD hospitalizations to occur. Direct and indirect

savings are presented in constant 2015 USD.

https://doi.org/10.1371/journal.pone.0249497.t005
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PHiD-CV10 in five countries; Brazil, Chile, Ecuador, Mexico and the United States [6]. They

showed a 14% to 45% impact on pneumonia hospitalisations among children younger than 12

months of age.

Few previous publications have examined the indirect impact of pneumococcal conjugate

vaccines on pneumonia hospitalisations among the unvaccinated population. Impact estimates

ranged from 3% to 24% among children five to 17 years of age; 0% to 26% among adults 18–39

years of age; and 0% to 19% among adults 40–64 years of age [6, 31–36]. All but two of the

studies suggested an impact among adults 65 years of age and older, with estimates ranging

from 3% to 15%, though none reached statistical significance.

Impact on invasive pneumococcal disease

Our findings are largely congruent with previous studies examining the herd-effect of PCV on

all-cause IPD. We show a robust indirect protection among individuals five to 64 years of age,

after adjusting for any secular trends in the pre-vaccine period, and the result is consistent

with visual examination of the raw data (Fig 6). Though our findings are consistent with a

slight decrease in IPD hospitalizations among adults 65 and older, the effect is not as obvious.

While surprising, this result is consistent with the body of literature which seems to suggest a

large and robust impact on vaccine-type IPD in this age-group, but a marginal impact on all-

cause IPD [5, 37]. When vaccine-type IPD was used as an outcome measure, the vaccine

impact was considerably larger and was robust in all age-groups.

Two systematic reviews identified 262 observational studies that examined the direct and

indirect impact of PCV on vaccine-type and all-cause IPD [5, 37]. The publication by Shiri

et al. was also a meta-analysis, which used a Bayesian mixed-effects model to translate the

included studies into a single estimate. The study demonstrated a yearly post-vaccine risk ratio

of vaccine-type IPD of 0.79 (95% CI 0.75–0.81), translating to a mean period to attain a 50%

population reduction of vaccine-type IPD of 2.3 years (95% CI 1.9–2.7), and 8.9 years (95% CI

7.8–10.3) to attain a 90% reduction [5].

Cost-effectiveness of PHiD-CV10

A large number of cost-effectiveness analyses of pneumococcal conjugate vaccines have been

published [13, 38, 39]. Our results are quantitatively similar to the body of cost-effectiveness

literature of PCV. Most studies show that introducing PCV into national immunization pro-

grams is cost-effective when compared to no vaccination. However, our study adds important

aspects to prior studies.

We included more granular data than have previously been used in cost-effectiveness analy-

ses of PCV. Because they are in essence predictive models, cost-effectiveness analyses are par-

ticularly sensitive to the accuracy of the modelling assumptions [40]. Most prior studies did

not collect detailed data on vaccine uptake, serotype coverage, incidence of disease in the pop-

ulation, disease sequelae, or direct and indirect costs [13, 39]. Efficacies were based on the

results of randomised controlled trials, but the existence and magnitude of herd-effect and

serotype-replacement were usually based on assumptions and expert opinion [13, 39]. Con-

trast this with our study, in which all inputs were directly measured in the population.

Our study is inherently different from most previous studies, in that it examines the cost-

effectiveness of an intervention that has already been introduced. The most obvious strength

of a post-implementation ecological design, is that it does not rely on untestable assumptions

regarding herd-effect and serotype-replacement, but rather bases them on direct observation.

To our knowledge, only two previous studies have reported the post-implementation cost-
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effectiveness of PCV [15, 16]. Neither study directly estimated the impact of PCV on AOM,

pneumonia or IPD but instead relied on previously published estimates or efficacy data.

Our study does have several limits. The results are highly dependent on indirect protection

against pneumonia hospitalisations being conferred to older adults, which was supported by

the stacked Bayesian time series model and sensitivity analyses, and congruent with the results

of several previous studies [6, 31–36]. It should however be noted that the synthetic control

model, which was the most conservative of the four included time series models, predicted

none to little indirect protection against pneumonia in these age-groups (S8 and S11 Figs), a

result consistent with a previous publication using this method [6]. The post-implementation

observational nature of the study placed several constraints on the analysis. We did not include

sequalae of infections in our analysis as we did not have access to mortality data and sequalae

of AOM, pneumonia or IPD are not routinely measured in population registries. Productivity

loss was based entirely on assumptions as no Icelandic registry keeps track of days of work lost

due to illness. Finally, the time horizon was only five years and it is likely that cost-savings

would continue to accrue if the time horizon were increased.

Conclusions

In this time series analysis of population-based data, we demonstrated a substantial direct

impact on AOM in vaccinated children and provided the first published evidence of herd pro-

tection against AOM among older unvaccinated children. We showed a large decrease in

pneumonia hospitalisations among both vaccinated and unvaccinated members of the popula-

tion, children and adults, thus confirmed previous papers showing an indirect impact. Our

results demonstrate that initially expensive vaccine interventions can be shown to produce

such a decrease in health care consumption that the resulting cost-savings offset the initial

expenditure–and simultaneously reduced suffering in the population. Our study highlights the

importance of careful post-implementation studies. These function both as a tool to validate

and calibrate the predictions made by pre-implementation cost-effectiveness studies that rely

heavily on unverifiable assumptions, and provide evidence of vaccine benefit for policy

makers.

Supporting information

S1 Appendix.

(DOCX)

S1 Fig. The number of primary care visits among children younger than 20 years of age per

calendar-month from 1 January 2005 to 31 December 2015. Children are divided into seven

age-groups, listed in the figure legend. Panel A shows the number of monthly visits due to

acute otitis media and its complications (AOM). Panels B and C, depict the standardized num-

ber of monthly AOM visits (Panel B) and all other visits (Panel C) per age-group. The Y-axis

represents the number of standard deviations the observed visits are from the mean of the

entire period, for each diagnosis and age-group. The horisontal dashed lines represent values

that are zero standard deviations from the mean, and the vertical dotted lines represent the

beginning of the vaccine intervention. Locally estimated scatter-plot smoothing (LOESS) pro-

duced an average trend. Panels B and C suggest that the number of both AOM visits and all

other visits decreased in the post-vaccine period, and that AOM visits decreased to a larger

degree.

(TIF)
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S2 Fig. The observed and predicted number of visits for Acute Otitis Media and its complica-

tions (AOM) from 1 January 2005 to 31 December 2015 for each age-group. Observed visits

are illustrated as black points and the predicted number of visits are drawn as lines for each of

the component models. The start of the vaccine period is delineated with a vertical black dot-

ted line. Each component model was fitted to the observed visits in the pre-vaccine period,

and then used to predict the number of visits in the post-vaccine period, had the vaccine not

been introduced. The distance between the observed and predicted visits for each calendar-

month is depicted with a thin black line. Longer distances suggest a larger discrepancy. Note

that the scale of the Y-axis differ between age-groups.

(TIF)

S3 Fig. The estimated rate ratio between the observed and predicted number of Acute Otitis

Media (AOM) visits in the post-vaccine period by model and the number of pre-vaccine years.

Each age-group is shown separately on the X-axis. An additional pre-vaccine year is added

from left to right, starting with the period 2005–2007 and ending with the full pre-vaccine

period 2005–2010 that was used in the main analysis. The top frame shows the estimates for

the final stacked model. The results are largely invariant to the number of pre-vaccine years,

with a slight trend towards decreasing impact as more years are added.

(TIF)

S4 Fig. The estimated rate ratio between the observed and predicted number of Acute Oti-

tis Media (AOM) visits in the post-vaccine period for the synthetic control model. The left-

most point and confidence interval represents the full synthetic model used in the analysis.

The same colored label shows the top control and its associated inclusion probability in the

Bayesian variable selection process. From left to right, the top control is removed, the model is

refitted on the remaining controls and the corresponding rate ratio illustrated with a point and

interval. The results are largely invariant to the controls used.

(TIF)

S5 Fig. The estimated rate ratio between the observed and predicted number of Acute Otitis

Media (AOM) visits in the post-vaccine period for the final stacked model, using different

case-definitions. The case-definition used in the main analysis is shown with a red point and

intervals. The green point represents the same International Classification of Diseases, 10th

revision (ICD-10) codes but only those resulting in an antimicrobial prescription. Finally the

blue point represents only H66: Suppurative otitis media. The results are largely invariant to

the case-definition with the exception of one year old children.

(TIF)

S6 Fig. The population impact of the pneumococcal conjugate vaccine (PHiD-CV10) on

outpatient visits for Urinary Tract Infections (UTI) is summarized. In Panel A, the esti-

mated 12-month rolling rate ratio between the observed and predicted number of UTI visits in

the post-vaccine period (2011–2015) is shown per age-group. Panel B depicts the cumulative

number of prevented UTI visits during the post-vaccine period (2011–2015) for each age-

group along with 95% credible intervals. The total cumulative prevented UTI visits regardless

of age-group is shown in Panel C. As expected, there was no discernible impact.

(TIF)

S7 Fig. The monthly number of hospital admissions for pneumonia and hospitalisations

regardless of diagnosis from 1 January 2005 to 31 December 2017. Panel A shows the monthly

number of pneumonia hospitalisations. Panels B and C depict the standardized monthly num-

ber of pneumonia hospitalisations (Panel B) and all other hospitalisations (Panel C) per age-
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group. The Y-axis shows how many standard deviations from the mean the observed hospitali-

zations are by diagnosis and age-group. The horisontal dashed lines represents values that are

zero standard deviations from the mean and the vertical dotted lines represent the start of the

vaccine intervention. Locally estimated scatter-plot smoothing (LOESS) is used to produce an

average trend.

(TIF)

S8 Fig. The observed and predicted number of pneumonia hospitalizations from 1 January

2005 to 31 December 2017 for each age-group. Observed cases are illustrated as black points

and the predicted number of cases are drawn as lines for each of the component models. The

start of the vaccine period is delineated with a vertical black dashed line. Each component

model was fitted to the observed number of cases in the pre-vaccine period. They were then

used to predict the number of cases that would have occurred in the post-vaccine period, had

the vaccine not been introduced. The distance between the observed and predicted cases for

each calendar-month is depicted with a thin black line. Longer distances suggest a larger dis-

crepancy between observed and predicted cases. Note that the scale of the Y-axis differ

between age-groups.

(TIF)

S9 Fig. The estimated rate ratio between the observed and predicted number of pneumonia

hospitalisations in the post-vaccine period for the final stacked model using different case-

definitions. The case-definition used in the main analysis is shown with a red point and inter-

vals. The green point represents International Classification of Diseases, 10th revision (ICD-

10) codes more specific to bacterial pneumonia. Finally the blue point represents the more spe-

cific ICD-10 definition of bacterial pneumonia, but only includes those hospitalizations in

which radiographical and microbiological testing was performed. Using the most specific defi-

nition of pneumonia (blue), the impact of the conjugate vaccine (PHiD-CV) is significantly

larger in all age-groups.

(TIF)

S10 Fig. The estimated rate ratio between the observed and predicted number of pneumonia

hospitalisations in the post-vaccine period for the synthetic control model. The leftmost point

and confidence interval represents the full synthetic model used in the analysis. The same col-

ored label shows the top control and its associated inclusion probability in the Bayesian vari-

able selection process. From left to right, the top control is removed, the model is refitted on

the remaining controls, and the corresponding rate ratio illustrated with a point and interval.

The results are largely invariant to the controls used.

(TIF)

S11 Fig. The estimated rate ratio between the observed and predicted number of pneumo-

nia hospitalisations in the post-vaccine period by model and the number of pre-vaccine

years. Each age-group is shown separately on the X-axis. An additional pre-vaccine year is

added from left to right, starting with the period 2005–2007 and ending with the full pre-vac-

cine period 2005–2010 that was used in the main analysis. The top frame shows the estimates

for the final stacked model. The results are largely invariant to the number of pre-vaccine

years. However, when only 2005–2007 are included, the estimates are severely unstable in the

principal component analysis (PCA) model. The PCA model was given undue weight in the

model stacking procedure, resulting in the same instability in the final stacked model. Despite

this, the figure does not suggest that the inclusion of 2009 has large effects on the results. The

2009 influenza pandemic therefore, does not seem to unduly influence the results.

(TIF)
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S12 Fig. The population impact of the pneumococcal conjugate vaccine (PHiD-CV10) on

Urinary Tract Infections (UTI) hospitalisations. In Panel A, the estimated 12-month rolling

rate ratio between the observed and predicted number of UTI visits in the post-vaccine period

(2011–2015) is shown per age-group. Panel B depicts the cumulative number of prevented

UTI visits during the post-vaccine period (2011–2015), for each age-group along with 95%

credible intervals. The total cumulative prevented UTI visits regardless of age-group is shown

in Panel C. As expected, there was no discernible impact.

(TIF)

S13 Fig. The number of hospitalizations per year-quarter from 1 January 2005 to 31

December 2016. The population is divided into three age-groups, listed in the figure’s legend.

Panel A shows the absolute quarterly number of hospital admissions due to invasive pneumo-

coccal disease (IPD), regardless of serotype. Panels B and C, depict the standardized quarterly

number of IPD hospitalizations (Panel B) and all-cause hospitalizations (Panel C) per age-

group. The Y-axis represents the number of standard deviations from the mean hospitaliza-

tions for each quarter and each age-group. The horizontal dotted lines represent values that

are zero standard deviations from the mean and the vertical dotted lines represent the start of

the vaccine intervention. Locally estimated scatter-plot smoothing (LOESS) produced an aver-

age trend. Panels B and C have been magnified to emphasize the interpretation of the trend

line. Panels B and C show that standardized hospitalizations for IPD decreased in all age-

groups, relative to the standardized hospitalizations, regardless of cause.

(TIF)

S14 Fig. The observed and predicted number of IPD hospitalizations from 1 January 2005

to 31 December 2016, for each age-group. Observed cases are illustrated as black points, and

predicted number of cases are drawn as lines for each of the component models. The start of

the vaccine period is delineated with a vertical black dotted line. Each component model was

fitted to the observed number of cases in the pre-vaccine period. They were then used to pre-

dict the number of cases that would have occurred in the post-vaccine period, had the vaccine

not been introduced. The distance between the observed and predicted cases for each year-

quarter is depicted with a thin black line. Longer distances suggest a larger discrepancy

between observed and predicted cases.

(TIF)

S15 Fig. The estimated rate ratio between the observed and predicted number of hospitali-

zations for invasive pneumococcal disease in the post-vaccine period for the synthetic con-

trol model. The leftmost point and confidence interval represents the full synthetic model

used in the analysis. The same colored label shows the top control and its associated inclusion

probability in the Bayesian variable selection process. From left to right, the top control is

removed, the model is refitted on the remaining controls and the corresponding rate ratio

illustrated with a point and interval. The results are largely invariant to the controls used.

(TIF)

S16 Fig. The estimated rate ratio between the observed and predicted number of hospitali-

zations for Invasive Pneumococcal Disease (IPD) in the post-vaccine period for the final

stacked model using different case-definitions. Culture- or PCR-confirmed IPD regardless

of serotype, the case-definition used in the main analysis, is shown with a red point and inter-

vals. The green point represents vaccine-type IPD. The number of nonvaccine-type IPD in the

pre-vaccine period was not large enough to fit any of the time series models. The figure shows

that the impact of the 10-valent pneumococcal Haemophilus influenzae Protein D conjugate
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vaccine (PHiD-CV) on vaccine-type is considerable in all age-groups.

(TIF)

S1 Table. The weights used to produce the final stacked model from the component mod-

els.
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