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Abstract

Analysis of gene expression data is an attractive topic in the field of bioinformatics, and a

typical application is to classify and predict individuals’ diseases or tumors by treating gene

expression values as predictors. A primary challenge of this study comes from ultrahigh-

dimensionality, which makes that (i) many predictors in the dataset might be non-informa-

tive, (ii) pairwise dependence structures possibly exist among high-dimensional predictors,

yielding the network structure. While many supervised learning methods have been devel-

oped, it is expected that the prediction performance would be affected if impacts of ultra-

high-dimensionality were not carefully addressed. In this paper, we propose a new

statistical learning algorithm to deal with multi-classification subject to ultrahigh-dimensional

gene expressions. In the proposed algorithm, we employ the model-free feature screening

method to retain informative gene expression values from ultrahigh-dimensional data, and

then construct predictive models with network structures of selected gene expression

accommodated. Different from existing supervised learning methods that build predictive

models based on entire dataset, our approach is able to identify informative predictors and

dependence structures for gene expression. Throughout analysis of a real dataset, we find

that the proposed algorithm gives precise classification as well as accurate prediction, and

outperforms some commonly used supervised learning methods.

1 Introduction

Analysis of gene expression data is an important topic in bioinformatics. A large body of

research and relevant developments have been explored in recent years. One of important

branches of gene expression data analysis is to take gene expression values as predictors to clas-

sify and predict tumors to possible cancers. A motivated example in this paper is the GCM

dataset, which contains 16,063 gene expression values and 14 human cancers among 198

tumor samples. The goal of this study is to take gene expression values as the predictors, and

use them to classify tumor samples to their corresponding cancers. In this dataset, a key feature

is ultrahigh-dimensional predictors in the sense that the dimension of predictors (number of

gene expression values) is extremely greater than the sample size (tumor samples). This feature
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further induces some challenges, including (a) pairwise interactions among gene expressions

and (b) existence of non-informative gene expressions, that affect the performance of classifi-

cation and the accuracy of prediction.

To address classification and prediction for biomedical research, many supervised learning

methods have been developed and have been widely applied in machine learning frameworks.

With the ignorance of pairwise interactions and existence of non-informative predictors

induced by ultrahigh-dimensional predictors, [1] proposed the integration of several heteroge-

neous cancer series, and performed a multi-class classification. [2] studied multicategory sup-

port vector machine (SVM) for the classification of multiple cancer. [3] presented

comprehensive discussions of SVM methods. [4] applied SVM ensembers to analyze breast

cancer prediction. [5] discussed linear discrimination analysis (LDA) and its application in the

microarray. [6] discussed the multi-class analysis by generalized sparse linear discriminant

analysis. The detailed and fundamental discussions of those methods can be found in [7, 8],

and were reviewed by [9] as well. In recent years, deep learning approaches, such as convolu-

tional neural network (e.g., [10]) or natural language processing (e.g., [11]), have been devel-

oped to deal with multicalssification. More applications can be found in some monographs,

such as [12–14].

To characterize pairwise interactions among gene expressions, which usually refers to the

network dependence among gene expressions, we employ graphical models that are powerful

methods in describing the dependence structure of variables. A general introduction of graphi-

cal models can be found in [7] (Chapter 17). In the past literature, graphical models have been

used to deal with the classification problem. For example, [15] proposed the network-based

support vector machine for the classification of microarray samples for binary classification.

[16] discussed the identification of rheumatoid arthritis-related genes by using a network-

based support vector machine. [17] proposed network linear discriminant analysis. [18] pro-

posed the nearest neighbor network. Most existing methods focused on binary responses and

restricted the predictors to follow the normal distribution because of explorations of the preci-

sion matrix. Furthermore, it is intuitive to understand that the network structure of variables

in different classes may not be exactly equal to each other. To address this issue, [19, 20]

explored SVM and logistic regressions with heterogeneous network structures accommodated,

respectively. More recently, [21, 22] developed multiclass discriminant analysis with network

structures accommodated. From the perspectives of Bayesian approaches, several methods

were also investigated with the network structure incorporated, including [23, 24].

To address non-informative gene expression values in ultrahigh-dimensional data, variable

selection or dimension reduction are perhaps commonly used strategies in the past literature.

For example, [25] applied unsupervised feature extraction, such as principal component analy-

sis, tensor decomposition, and kernel tensor decomposition, to select potentially important

genes. [26] adopted SIS method to do feature screening for gene expressions and combined

Nottingham Prognostic Index with a hybrid signature accommodated. With the combination

of supervised learning, [27] proposed the penalized method for SVM. [28, 29] explored vari-

able selection based on LDA. Those methods mainly handled the setting that the dimension is

smaller than the sample size, however, it is unknown whether those methods are able to deal

with the case that the dimension of predictors is much higher than the sample size.

From the two challenges and developments described above, we note that most existing

methods deal with either network structure or variable selection but not both. It motivates us

to propose a strategy to simultaneously retain important predictors and construct the network

structure of predictors when doing classification. Our strategy is outlined in Fig 1. Roughly

speaking,
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(i) to deal with ultrahigh-dimensional predictors where the dimension of predictors is

extremely greater than the sample size, we adopt feature screening techniques to retain

predictors that are informative to the response;

(ii) to detect network structures of predictors, we employ exponential family graphical mod-

els to detect network structure of the selected predictors under the whole dataset or dif-

ferent classes;

(iii) use the results in (i) and (ii) to develop network-based classification models to examine

class separation and make the prediction for tumor samples.

There are several contributions in the proposed method. First, unlike existing methods that

may specify a model when doing feature screening, our feature screening procedure is model-

free and does not need to specify the model formulation. Second, although there exist methods

handling network structures in classification, they assume a common network structure for

predictors of all subjects without taking into account of possible heterogeneity for different

classes. Instead, the proposed method is able to construct predictive models with possibly

class-dependent network structures of predictors taken into account. Finally, the proposed

method is able to handle multi-class labels with the accommodation of network structures in

predictors, which is different from existing methods that either handle multiclassification but

not use the information of network structure, or simply accommodate network structure to

deal with binary classification.

The remainder is organized as following. In Section 2, we introduce a motivated real dataset

and its data structure. In addition, we define the relevant mathematical notation. In Section 3,

we give detailed presentation for each step in Fig 1. In Section 4, we implement the proposed

method to analyze a real dataset and compare the proposed method with its competitors. A

general discussion is presented in Section 5.

Fig 1. Summary of key steps for the proposed classification method via ultrahigh-dimensional gene expressions.

https://doi.org/10.1371/journal.pone.0274440.g001
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2 Data structure with multi-class responses

In this section, we first introduce a motivated dataset outlined in Section 1. After that, we

define mathematical notation to describe the data structure with multi-class responses.

2.1 Description of motivated dataset

The data presented in the following are the GCM dataset collected by [30]. This dataset con-

tains 16,063 gene expression values and 198 tumor samples, including 144 training samples

(denoted as T ) and 54 testing samples (denoted as V). In addition, 14 common human can-

cers, including Breast (BR), Prostate (PR), Lung (LU), Colorectal (CO), Lymphoma (LY), Blad-

der (BL), Melanoma (ML), Uterus (UT), Leukemia (LE), Renal (RE), Pancreas (PA), Ovarym

(OV), Mesothelioma (ME) and CNS cancers, are included in the dataset. The sample sizes of

each cancer are summarized in Table 1. Our main goal is to classify tumor samples into differ-

ent categories of cancer according to gene expression values of the samples, which are treated

as predictors.

Even though this dataset is no need to pre-processing due to complete observations without

missing value, and some of its features having been well analyzed by [30], still, the dataset can

be further investigated in two aspects. First of all, we propose to note the issue of high-dimen-

tionality of the data, which usually implies the existence of irrelevant variables, i.e., not every

gene expression is dependent upon the response. Therefore, to ensure the accuracy of predic-

tion, it is necessary to exclude irrelevant variables. As a result, it is crucial to select gene expres-

sions that are informative in terms of responses. Secondly, as discussed in [31, 32], complex

dependence structures may exist among high-dimensional gene expressions. Therefore, to

increase the accuracy of predictions, it is necessary to incorporate the network structure of

gene expressions into the classification procedure.

2.2 Notation

In this subsection, we define mathematical notation to describe the data in order to develop

the method.

Suppose the data of n subjects come from I classes, where I is a fixed integer greater than 2

and the classes are nominal. Let ni be the class size in class i with i = 1, � � �, I, and hence

n ¼
PI

i¼1

ni. Let Y denote the n-dimensional vector of response with the jth component being Yj

= i, which reflects the class membership that the jth subject is in the ith class for i = 1, � � �, I and

j = 1, � � �, n.

Let p> 1 denote the dimension of predictors for each subject. Define X = [Xj, l] as the n × p
matrix of predictors for j = 1, � � �, n and l = 1, � � �, p, where the component Xj,l represents the

lth predictor for the jth subject. Furthermore, let Xj• = (Xj,1, � � �, Xj,p)> denote the p-dimen-

sional predictor vector for the jth subject in the jth row of X and let X•k = (X1,k, � � �, Xn,k)
> rep-

resent the n-dimensional vector of the kth predictor in the kth column of X. In this paper, we

Table 1. Sample sizes for each cancer. The first row with T contains sample sizes of the training data in cancer labels; the second row with V contains sample sizes of the

testing data in cancer labels; the last row with “Total” contains sample sizes of the whole data in cancer labels.

BR PR LE CO LU BL CNS UT LY RE PA OV ME ML

T 8 8 8 8 16 8 8 8 24 8 8 8 8 16

V 3 4 2 4 4 4 2 3 6 4 3 6 3 6

Total 11 12 10 12 20 12 10 11 30 12 11 14 11 16

https://doi.org/10.1371/journal.pone.0274440.t001
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consider a setting that the dimension of the predictors p is ultrahigher than the sample size n,

i.e., p = exp{O(nr)} for some constant r> 0 (e.g., [33]).

Without loss of generality, the {Xj•, Yj} are treated as independent and identically distrib-

uted (i.i.d.) for j = 1, � � �, n. We let lower case letters represent realized values for the corre-

sponding random variables.

The objective of the study is to build models to predict the class label for a new subject with

observation ~X .

3 Proposed method

In this section, we present detailed estimation procedure for each step as shown in Fig 1.

3.1 Feature screening via rank-based correlation coefficient

Let

I ¼ fk : X�k is dependent on Y 2 f1; 2; � � � ; Igg

denote the true active set which contains all relevant predictors for the response Y with q ¼ jI j
and q< n, and I c

is the complement of I that contains all irrelevant predictors for the

response Y. Basically, the goal of Step 1 in Fig 1 is to estimate the active set I . When I is deter-

mined, then the associated vector of predictors XI ¼ fX�k : k 2 Ig contains important infor-

mation in terms of the response, and its dimension is smaller than the sample size n. Thus, XI

can be adopted to the subsequent analysis.

The remaining concern is to obtain the estimated active set. Following the spirit of [33], we

employ the technique of feature screening, whose idea is to take the correlation of the response

and the predictors as a signal, and retain the important predictors with large values of signals.

We propose to take the rank-based correlation coefficient as the signal. Specifically, for the kth

predictor X•k, the rank-based correlation coefficient between X•k and Y is given by (e.g., [34,

35])

ok≜xðX�k;YÞ ¼
R
var½EfIðY � tÞjX�kg�dmðtÞR
varfIðY � tÞgdmðtÞ

; ð1Þ

where Ið�Þ denotes the indicator function and μ(�) is the law of Y. It can be shown that ωk is in

an interval [0, 1], and a higher value of ωk indicates a stronger correlation between Y and X•k.

Therefore, (1) can be regarded as similar to the classical coefficients such as Pearson’s

correlation.

To implement this idea, we estimate (1) using the sample data. For j = 1, � � �, n, denote Y(j)

as the rearranged response according to the sort of the kth predictors X•k, i.e., (X(1),k, Y(1)), � � �,

(X(n),k, Y(n)) with X(1),k� X(2),k� � � � � X(n),k and X(j),k being the jth sorted predictor in X•k.

The corresponding estimator of ωk is given by [34]:

ôk≜x̂ðX�k;YÞ ¼ 1 �

n
Xn� 1

j¼1

jrjþ1 � rjj

2
Xn

j¼1

‘jðn � ‘jÞ
; ð2Þ

where, for j = 1, � � �, n, ‘j≜# fl : YðlÞ � YðjÞg, rj≜# fl : YðlÞ � YðjÞg, and # A represents the

number of elements in a set A. In applications, one can use the R package XICOR to compute

(2).
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Therefore, the estimated active set based on (2) is given by

Î ¼ fk : ôk � cn� k for k ¼ 1; � � � ; pg; ð3Þ

where c and κ 2 (0, 1/2) are prespecified threshold values. In applications, one can specify c

and κ such that variables with the first n
log n

h i
largest values of ôk can be retained, where [�] rep-

resents the ceiling function (e.g., [33, 35, 36]).

Different from the conventional feature screening method (e.g., [33]), the main advantage

of (3) is model-free feature screening because it does not impose model formulation, and thus,

(3) is able to detect predictors that may have nonlinear relationship with the response Y. Theo-

retically, by the similar derivations of [35], the sure screening property of (3) can be justified.

That is, PðI � Î Þ ! 1 as n!1, which ensures that the estimated active set contains truly

informative predictors that are dependent on the response with a probability approaching one.

Moreover, while there are several methods to deal with feature screening, as examined by [35],

(2) generally outperforms other existing approaches and is able to handle oscillatory trajectory

between the response and predictors.

When the active set is determined, we then let Xj;Î ¼ fXj;k : k 2 Îg denote the vector con-

taining all the active predictors for the jth subject, and denote xj;Î as the realization values of

Xj;Î .

3.2 The expressions of graphical structure

Since the estimated active set Î is identified, we now explore the network structure of selected

gene expressions in Î for Step 2 in Fig 1. Graphical models are commonly used strategies to

achieve this goal.

The graph is expressed as G = (V, E), where V is the set of the vertices and E� V × V is the

set of the edges. In our case, V≜Î is treated as selected predictors with ~q ¼ jVj and E is

regarded as pairwise dependence of any two selected predictors. In graphical model frame-

works, we start by formulating the distribution function of selected predictors. In this article,

we consider exponential family graphical models because it generalizes the commonly used

models. The formulation is given by

PðXj;Î ; b;YÞ ¼ exp
X

r2V

brBðXj;rÞ þ
X

ðs;tÞ2E

ystBðXj;sÞBðXj;tÞ

(

þ
X

r2V

CðXj;rÞ � Aðb;YÞ

)

;

ð4Þ

where b ¼ ðb1; � � � b~qÞ
>

is the ~q-dimensional parameter vector, Θ = [θst] is a ~q � ~q symmetric

matrix, B(�) and C(�) are given functions that reflect the distribution of XÎ (e.g., [20, 37]), and

the function A(β, Θ) is normalizing constant which ensures (4) to be integrated as 1.

Without loss of general interest, we take B(Xj,r) as the linear function B(Xj,r) = Xj,r for r 2 V.

In addition, in the graphical model theory, the main interest is the estimation of θst because of

its interpretation that Xj,s and Xj,t are conditionally dependent if θst 6¼ 0. Therefore, to focus on

presenting the estimation of θst, we drop the main effect term, and consider the following
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graphical model

PðXj;Î ;YÞ ¼ exp
X

ðs;tÞ2E

ystXj;sXj;t þ
X

r2V

CðXj;rÞ � AðYÞ

( )

; ð5Þ

where the function A(Θ) is normalization constant which makes (5) be integrated as 1.

For the estimation method for Θ, one of the famous methods is the conditional inference

[38]. Without loss of generality, we consider the vertex s, and define the neighbourhood set

N ðsÞ ¼ ft 2 V : ðs; tÞ 2 Eg; ð6Þ

which collect vertexes that are dependent on the vertex s. To estimate the neighbourhood set

of s, it suffices to study the inference of Xj,s|Xj,V\{s}, where Xj;Vnfsg ¼ ðXj;1; � � � ;Xj;s� 1;

Xj;sþ1; � � � ;Xj;~qÞ. Let ys ¼ ðys1; � � � ; ysðs� 1Þ; ysðsþ1Þ; � � � ; ys~qÞ denote the ð~q � 1Þ-dimensional vec-

tor of parameters that is associated with Xj,V\{s}. By some algebra, we have

PðXj;sjXj;Vnfsg; ysÞ / exp Xj;s

X

t2Vnfsg

ystXj;t

 !

þ CðXj;sÞ � D
X

t2Vnfsg

ystXj;t

 !( )

; ð7Þ

where D(�) is a normalization constant ensuring that the integration of (7) is equal to 1. Then

the estimator of θs, denoted as ŷs, is given by

ŷs ¼ argmin
ys

f‘ðysÞ þ lkysk1
g; ð8Þ

where

‘ ysð Þ ¼
1

n

Xn

i¼1

� Xi;s

X

t2Vnfsg

ystXi;t

 !

þ D
X

t2Vnfsg

ystXi;t

 !( )

;

k�k1 is the L1-norm and λ is the tuning parameter.

In the penalization problem for selecting the variables, estimating the tuning parameter is

also a crucial issue. In this paper, we employ the BIC approach (e.g., [39]) to select the tuning

parameter λ. To emphasize the dependence on the tuning parameter, we let ŷsðlÞ denote the

estimator obtained from (8). Define

BICðlÞ ¼ 2n‘ðŷsðlÞÞ þ logðnÞ � dffŷsðlÞg; ð9Þ

where dffŷsðlÞg represents the number of non-zero elements in ŷsðlÞ for a given λ. The opti-

mal tuning parameter λ, denoted by l̂, is determined by minimizing (9) within suitable ranges

of λ. As a result, the estimator of θs is determined by ŷs ¼ ŷsðl̂Þ.

Finally, the estimated neighbourhood set is given by

N̂ ðsÞ ¼ ft 2 V : ŷst 6¼ 0g: ð10Þ

Note that θst is equal to θts since Θ is a symmetric matrix. However, the estimators ŷst and ŷts
are not equal. To overcome this problem, we apply the AND rule [38], which indicates that the

final estimators of ŷst and ŷts are determined by their maximum if both ŷst and ŷts are nonzero;

ŷst and ŷts are set to be zero if one of them is zero. Moreover, the estimated set of edges is given
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by

Ê ¼ fðs; tÞ : s 2 N̂ ðtÞ and t 2 N̂ ðsÞg: ð11Þ

After deriving the estimated set of edges, a crucial question is the relationship of Ê and E.

To answer this question, we present the following theorem, which gives an important result

for the estimated graph.

Theorem 3.1 (Network Recovery)

Suppose E is the set of edges, and let Ê be the estimated set of edges. Under some regular condi-
tions in [38], we have that as n!1,

PðÊ ¼ EÞ ! 1: ð12Þ

This result and regular conditions are similar to Section 2.2 in [40] and Theorem 5 (b) in [37].

Theorem 3.1 tells us that based on the mild conditions, the estimated network structure can be

recovered to the true network structure.

3.3 Multinomial logistic regression with homogeneous network structure in

predictors

After obtaining the estimated network structure based on informative predictors, we wish to

use such a network structure to examine the classification for different cancers, as demon-

strated in Step 3 of Fig 1. Therefore, to incorporate the network structures of the predictors

into a prediction model, we present two methods which can be readily implemented using the

R package glm for fitting a logistic regression model.

In the first method, called the multinomial logistic regression with homogeneous network
structure in predictors (MLR-HomoNet), we consider the case where the subjects in different

classes share a common network structure in the predictors. To build a prediction model, we

make use of the development of the logistic model with multiclass responses ([41], Section 6.1;

[42], Section 7.1).

We first identify the pairwise dependence of the predictors using the measurements of all

the subjects without distinguishing their class label. Let ŷst be the estimate for θst obtained for

(8) by using all the predictor measurements of fXj;Î : j ¼ 1; � � � ; ng, and let Ê ¼ fðs; tÞ : ŷst 6¼

0g denote the resulting estimated set of edges.

Next, for i = 1, � � �, I and j = 1, � � �, n, we let

piðxj;Î Þ≜PðYj ¼ ijXj;Î ¼ xj;Î Þ

be the conditional probability of Yj = i given Xj;Î ¼ xj;Î . Consider the parametric multinomial

logistic model

piðxj;Î Þ≜piðxj;Î ; aÞ ¼

exp ai0 þ
X

ðs;tÞ2Ê

ai;stxj;sxj;t

0

@

1

A

1þ
XI� 1

l¼1

exp al0 þ
X

ðs;tÞ2Ê

al;stxj;sxj;t

0

@

1

A

ð13Þ

for i = 1, 2, � � �, I − 1, where a ¼ ða>
1
; � � � ; a>I� 1

Þ
>

is the vector of parameters with vectors

ai≜ðai0; a>i�Þ
>

and ai� ¼ ðai;st : ðs; tÞ 2 ÊÞ> reflecting parameters for class i, and the constraint

PI

i¼1

piðxj;Î Þ ¼ 1 is imposed for every j = 1, � � �, n.

PLOS ONE Ultrahigh-dimensional multiclassification

PLOS ONE | https://doi.org/10.1371/journal.pone.0274440 September 15, 2022 8 / 25

https://doi.org/10.1371/journal.pone.0274440


For subject j = 1, � � �, n, we let Y�ij ¼ 1 if subject j is in class i and Y�ij ¼ 0 otherwise, and

hence,
PI

i¼1

Y�ij ¼ 1 for every j. Let y�ij denote a realized value of Y�ij . For i = 1, � � �, I and j = 1, � � �,

n, the log-likelihood function is given by ([42], p.273)

LðaÞ ¼
XI

i¼1

Xn

j¼1

y�ij logfpiðxj;Î ; aÞg: ð14Þ

The estimator of α, denoted â, can be derived by maximizing (14). In applications, since â

has no closed form, we usually implement the Newton-Raphson algorithm to (14) and obtain

the resulting estimator. Therefore, for the realization xj;Î of the q-dimensional vector Xj;Î ,

piðxj;Î Þ is estimated as

p̂iðxj;Î Þ≜piðxj;Î ; âÞ ¼

exp â i0 þ
X

ðs;tÞ2Ê

â i;stxj;sxj;t

0

@

1

A

1þ
XI� 1

l¼1

exp â l0 þ
X

ðs;tÞ2Ê

â l;stxj;sxj;t

0

@

1

A

ð15Þ

for i = 1, � � �, I − 1, and pIðxj;Î Þ is estimated as

p̂Iðxj;Î Þ ¼ 1 �
XI� 1

i¼1

p̂iðxj;Î Þ: ð16Þ

Finally, to predict the class label for a new subject with a selected ~q-dimensional predictor

instance ~x, we first calculate the right-hand side of (15) and (16), and let ~̂p 1; � � � ;
~̂pI denote the

corresponding values. Let i� denote the index which corresponds to the largest value of

f~̂p 1; � � � ;
~̂pIg, i.e., i� ¼ argmax

i2f1;���;Ig

~̂p i. Then the class label for this new subject is predicted as i�.

To the end, we summarize key steps in Sections 3.1–3.3 in Algorithm 1.

Algorithm 1: MLR-HomoNet
Under the training data T ;
Step 1: Determine informative predictors

Apply (2) to do feature screening and retain n
log n

h i
predictors among

p-dimensional predictors. A set of selected predictors is given by
(3).
Step 2: Determine the network structure of predictors

Based on selected predictors in Î, use (8) to determine pairwise
dependence structure and obtain (11). The resulting network structure
is formed by Ê.
Step 3: Construct the predictive model

Given a initial value α(0), then perform the following Newton-
Raphson algorithm;

for step t with t = 1, 2, � � �, T, say T = 1000 do
Step 3.1: calculate the score function evaluated at the tth iterated

value:

SðaðtÞÞ≜
@LðaÞ
@a1

�
�
�
�
�
a¼aðtÞ

; � � � ;
@LðaÞ
@aI� 1

�
�
�
�
�
a¼aðtÞ

!> 
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with

@LðaÞ
@ai

�
�
�
�
�
a¼aðtÞ

¼
Xn

j¼1

fyij xj;Î � piðxj;Î ; aðtÞÞ
� �

� yIjpiðxj;Î ; aðtÞÞg:

Step 3.2: calculate the Henssian matrix evaluated at the tth iter-
ated value:

HðaðtÞÞ≜diag
@

2LðaÞ
@a1@a

>
1

�
�
�
�
�
a¼aðtÞ

; � � � ;
@

2LðaÞ
@aI� 1@a

>
I� 1

�
�
�
�
�
a¼aðtÞ

 !

with

@
2LðaÞ

@ai@a
>
i

�
�
�
�
�
a¼aðtÞ

¼ �
Xn

j¼1

ðyij � yIjÞpiðxj;Î ; aðtÞÞf1 � piðxj;Î ; aðtÞÞg:

Step 3.3: update α(t+1)  α(t) − {H(α(t))}−1 S(α(t));
end
Let â≜aðTÞ denote the resulting estimator, and combine â with

(15) and (16) to determine the resulting predictive model p̂iðxÞ for
i = 1, � � �, I.
Under the testing data V;
Step 4: Prediction

For a new predictor ~x in V, use p̂iðxÞ with i = 1, � � �, I to compute the

corresponding probabilities ~̂p 1; � � � ;
~̂p I. The predicted class i� is then

determined by i� ¼ argmax
i2f1;���;Ig

~̂p i.

3.4 Logistic regression with heterogeneous network structured in

predictors

We now present an alternative method to that described in Section 3.3. Instead of pooling all

the predictors to feature the predictor network structure, this method, called the logistic regres-
sion with heterogeneous network structured in predictors (LR-HeteNet), stratifies the predictor

information by class when characterizing the predictor network structures. The implementa-

tion is summarized in Algorithm 2.

Algorithm 2: LR-HeteNet
Under the training data T ;
for i = 1, 2, � � �, I do

Step 0: Let Yi denote an n-dimensional vector formulated by (17).
Step 1: Class-dependent active set

Apply (18) to do feature screening and retain ni
log ni

h i
predictors

among p-dimensional predictors. A set of selected predictors for class
i is given by (19).

Step 2: Class-dependent predictor network
Based on selected predictors in Ĵ i, use (8) to determine pair-

wise dependence structure and obtain (11). Denote Êi as the resulting
network structure.

Step 3: Class-dependent predictive model
Given a initial value g

ð0Þ

i , then perform the Newton-Raphson
algorithm;
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for step t with t = 1, 2, � � �, T, say T = 1000 do
Step 3.1: calculate the score function evaluated at the tth iter-

ated value:

Siðgi;ðtÞÞ≜
@LiðgiÞ

@gi

�
�
�
�
�
gi¼g

ðtÞ
i

¼
Xni

j¼1

xj;Ĵ i
fyij � piðxj;Ĵ i

; g
ðtÞ
i Þg;

where piðxj;Ĵ i
; g
ðtÞ
i Þ is (20) with parameters replaced by g

ðtÞ
i ;

Step 3.2: calculate the Henssian matrix evaluated at the tth
iterated value:

Hiðg
ðtÞ
i Þ≜

@
2LiðgiÞ

@gi@g
>
i

�
�
�
�
�
gi¼g

ðtÞ
i

¼
Xni

j¼1

xj;Ĵ i
x>j;Ĵ i

piðxj;Ĵ i
; g
ðtÞ
i Þf1 � piðxj;Ĵ i

; g
ðtÞ
i Þg:

Step 3.3: update g
ðtþ1Þ

i  g
ðtÞ
i � fHiðg

ðtÞ
i Þg

� 1Siðg
ðtÞ
i Þ;

end
Let ĝ≜gðTÞi denote the resulting estimator, and combine ĝ and (22)

to determine the resulting predictive model p̂ iðxÞ.
end
Under the testing data V;
Step 4: Prediction

For a new predictor ~x in V, we use p̂ iðxÞ with i = 1, � � �, I to com-
pute the corresponding probabilities ~̂p 1; � � � ;

~̂p I. The predicted class i�

is then determined by i� ¼ argmax
i2f1;���;Ig

~̂p i.

Be more specific, under the training data T , we first introduce a binary, surrogate response

variable for every i = 1, � � �, I and j = 1, � � �, n. Let

Yi
j ¼

(
1; Yj ¼ i

0; otherwise;
ð17Þ

and let Yi ¼ ð0; � � � ; 0;Yi
1
; � � � ;Yi

ni
; 0; � � � ; 0Þ

>
be an n-dimensional vector whose elements cor-

responding to class i are respectively Yi
1
; � � � ;Yi

ni
, and the other elements are zero. That is,

Yi ¼ ð0; � � � ; 0
|fflfflfflffl{zfflfflfflffl}
n1þ���þni� 1

; 1; � � � ; 1
|fflfflfflffl{zfflfflfflffl}

ni

; 0; � � � ; 0
|fflfflfflffl{zfflfflfflffl}
niþ1þ���þnI

Þ
>

with i = 1, � � �, I.

After that, we adopt the similar strategy in Algorithm 1 to construct predictive models for

class i. Specifically, in Step 1 of Algorithm 2, let

J i ¼ fk : X�k is dependent on Yig

denote the true active set of the class i which contains all relevant predictors for the response

Yi with jJ ij < ni. Following (2), the signal of X•k and Yi is defined as oi
k≜xðX�k;YiÞ, and it can

be estimated by

ôi
k≜x̂ðX�k;YiÞ ¼ 1 �

n
Xn� 1

j¼1

jrijþ1
� rijj

2
Xn

j¼1

‘
i
jðn � ‘

i
jÞ

; ð18Þ

where, for j = 1, � � �, n, ‘
i
j≜# fl : Yi

ðlÞ � Yi
ðjÞg and rij≜# fl : Yi

ðlÞ � Yi
ðjÞg with Yi

ðjÞ being the
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rearranged response according to the sort of the kth predictors X•k. Therefore, J i can be esti-

mated as

Ĵ i ¼ fk : ô i
k � cin� ki for k ¼ 1; � � � ; pg; ð19Þ

where ci and κi 2 (0, 1/2) are some prespecified threshold values. Let Xj;Ĵ i
¼ fXj;k : k 2 Ĵ ig

denote the vector of all the active predictors that depends on Yi for the jth subject. Moreover,

since Yi is defined as the response with binary outcomes, similar derivations in [35] show that

(18) is valid to measure the dependence between categorical and continuous variables, and the

point-biserial correlation coefficient is a special case of (18).

In Step 2 of Algorithm 2, let Vi≜Ĵ i denote the vertex set containing predictors that are

dependent on the class i = 1, � � �, I. We apply the procedure described in Section 3.2 to deter-

mine the network structure of predictors in the class i. Let Êi ¼ fðs; tÞ : ŷ ist 6¼ 0g denote an

estimated set of edges for the class i, where ŷ ist is the estimate of θst derived from (8) based on

using the predictor measurements in the class i.
After that, Step 3 in algorithm 2 aims to fit a logistic regression model using the surrogate

response vector Yi with the estimated predictors network structure Êi incorporated for i = 1,

� � �, I. Specifically, for the jth component of Yi, say Yi
j , define piðxj;Ĵ i

Þ ¼ PðYi
j ¼ 1jXj;Ĵ i

¼ xj;Ĵ i
Þ

and consider the parametric logistic regression model

piðxj;Ĵ i
Þ≜piðxj;Ĵ i

; giÞ ¼

exp gi0 þ
X

ðs;tÞ2Ê i

gi;stxj;sxj;t

0

@

1

A

1þ exp gi0 þ
X

ðs;tÞ2Ê i

gi;stxj;sxj;t

0

@

1

A

; ð20Þ

where j = 1, � � �, n, gi≜ðgi0; g>i�Þ with gi� ¼ ðgi;st : ðs; tÞ 2 ÊiÞ
>

is the vector of parameters associ-

ated with class i. In the spirit of the maximum likelihood estimation (MLE) method (e.g.,

[42]), the log-likelihood function of (20) is given by

LiðgiÞ ¼
Xni

j¼1

½yijpiðxj;Ĵ i
; giÞ þ ð1 � yijÞf1 � piðxj;Ĵ i

; giÞg�; ð21Þ

and the estimator of γi, denoted ĝ i≜ðĝ i0; ĝ>i�Þ, is obtained by maximizing (21). In applications,

we implement the Newton-Raphson algorithm to obtain ĝ i; the detailed procedure is summa-

rized in Algorithm 2. Consequently, for the realization xj;Ĵ i
of the jĴ ij-dimensional vector

Xj;Ĵ i
, based on (20), piðxj;Ĵ i

Þ can be estimated by

p̂iðxj;Ĵ i
Þ≜piðxj;Ĵ i

; ĝ iÞ ¼

exp ĝ i0 þ
X

ðs;tÞ2Ê i

ĝ i;stxj;sxj;t

0

@

1

A

1þ exp ĝ i0 þ
X

ðs;tÞ2Ê i

ĝ i;stxj;sxj;t

0

@

1

A

ð22Þ

for i = 1, � � �, I.
Finally, when predictive models based on the training data T are obtained, we now examine

the prediction for the testing data V in Step 4 of Algorithm 2. Let ~xj;Ĵ i
denote a jĴ ij-dimen-

sional predictor vector for a new subject. We calculate (22) with xj;Ĵ i
replaced by ~xj;Ĵ i

for i = 1,
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� � �, I, and let ~̂p 1; � � � ;
~̂p I denote the corresponding values. Let i� denote the index which corre-

sponds to the largest value of f~̂p 1; � � � ;
~̂p Ig, i.e.,

~̂p i� ¼ max
i2f1;���;Ig

~̂pi : ð23Þ

Then the class label for this new subject is predicted as i�.
Remark 3.1 The main difference between the MLR-HomoNet and LR-HeteNet methods is

that the MLR-HomoNet method adopts the feature screening approach to retain informative pre-
dictors by pooling all subjects, while the feature screening approach of the LR-HeteNet method
retains predictors under subjects that are in a specific class. It suggests that the estimated active
sets (19) depend on the class and are different from each other, and thus, the resulting network
structures determined by Step 2 of Algorithm 2 are different based on different classes. Therefore,
we conclude that the MLR-HomoNet method only adopts different levels of gene expression val-
ues to classify tumor samples, while the LR-HeteNet method uses not only gene expression values
but also class-dependent network structures to do the classification.

4 Results

In this section, we aim to implement Algorithms 1 and 2 in Section 3 to the GCM dataset

introduced in Section 2.1.

4.1 Detection of informative gene expressions via feature screening

In the GCM dataset, there are I = 14 classes. The dimension of predictors is p = 16, 063 and the

sample size is n = 198, where the size of the training set is 144 and the size of the testing set is

54. Following steps in Fig 1, we first implement the proposed method in Section 3 to fit models

based on the training set, and then assess the performance of prediction by examining the test-

ing set.

Since the dimension of predictors is extremely larger than the sample size, i.e., p� n, to

determine the informative predictors, we adopt the screening signal (2) to retain informative

gene expressions. The first strategy in Algorithm 1 is to apply (2) to evaluate the signal of X•k

and Y 2 {1, � � �, 14} and determine the estimated active set (3); the second consideration in

Algorithm 2 is to calculate the signal of X•k and Yi for i = 1, � � �, 14 and then obtain the esti-

mated class-dependent active set (19). As suggested in [33, 35, 36], under the training set, we

consider to retain 144

logð144Þ

h i
¼ 29 gene expression values for the MLR-HomoNet method and

retain
ni

logðniÞ

h i
gene expression values with i = 1, � � �, 14 for the LR-HeteNet method, where ni is

the sample size of class i summarized in Table 1.

4.2 Network-based classification models

After the feature screening step, we next apply the estimation procedure in Section 3.2 to

determine the network structure of selected gene expressions in the training set. Fig 2 displays

the network structure with all samples accommodated, and the network structures of selected

gene expressions based on different cancers are displayed in Fig 3. In Fig 2, we can see that the

selected gene expressions have complex dependence structures. For example, gene expressions

with ID 10111, 9548, and 9446 are connected with several gene expressions, while three

gene expressions 10884, 15854, and 10208 have no connections with others. On the other

hand, as shown in Fig 3, different classes have different selected gene expressions and associ-

ated network structures, which verifies the discussion in Remark 3.1. That is, as different kinds
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of cancer differ in their corresponding gene expressions, according to the specific network

structures of gene expressions produced from our analysis, we can infer which cancer each

tumor sample is from.

To adopt the determined network structures to examine the classification, we implement

the network structures and the training set to the classification models proposed in Sections

3.3 and 3.4, respectively. To see the fitness of two models, we first implement the training data

to the fitted models and examine the classification. The 14×14 confusion matrices based on the

MLR-HomoNet and LR-HeteNet methods are shown in Tables 2 and 3, respectively, where

columns are labels from the training data T , rows are labels of fitted values, diagonal entries

reflect number of correct classification, and nondiagonal entries are number of misclassifica-

tion by fitted values. In general, both methods show satisfactory model fittness as the accuracy

of classification is high. Moreover, we observe that the LR-HeteNet method seems to slightly

outperform the MLR-HomoNet method since the latter method produces slightly larger mis-

classification on BR, PR, CO, and UT than those of the former method. This result makes

sense because the LR-HeteNet method is based on class-dependent network structure that can

directly reflect the corresponding cancers. For a clear visualization, we further display two

heatmaps in Fig 4, which are obtained by Tables 2 and 3 with each row divided by the class-

dependent sample size in the training data. We observe that diagonal entries have dark color,

which indicate that the proportion of true classification is high and Algorithms 1 and 2 give

well-fitted models.

10884 12268
2408

6130

2833

15174

6042

12339

10111

3587

11802

14629

15997
15272

59963791
8702

9449

9548

13522

15682

11614

10208

15854

2541

6252

11382

9446
15286

Fig 2. The whole network structure with selected gene expressions.

https://doi.org/10.1371/journal.pone.0274440.g002
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Fig 3. The network structure with selected gene expressions based on different cancers.

https://doi.org/10.1371/journal.pone.0274440.g003
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4.3 Prediction

When the predictive models are constructed, we now assess the performance of the proposed

method by examining the prediction for the testing data. We implement the predictors in the

testing data to the two proposed methods, and then make the prediction of classification. After

that, we summarize the response in the testing data and the predictive classes to 14 × 14 confu-

sion matrices in Tables 4 and 5, respectively, where columns are labels from the testing samples

V, rows are labels of predicted values, diagonal entries reflect number of correct classification,

and nondiagonal entries are number of misclassification by predicted values. Moreover, we also

display two heatmaps in Fig 5 that are obtained by Tables 4 and 5 with each row divided by the

class-dependent sample size in the testing data. From confusion matrices and heatmaps, We

can see that two proposed methods have satisfactory performance in prediction because most of

predicted classes are the same as class labels in the testing data, except for little misclassification.

Table 2. A 14 × 14 confusion matrix: Model fittness based on the MLR-HomoNet method for the training data T .

BR PR LE CO LU BL CNS UT LY RE PA OV ME ML

BR 6 1 0 0 0 1 1 0 0 1 1 0 0 0

PR 0 6 0 0 0 0 0 1 0 0 0 0 0 0

LE 0 0 6 0 0 0 0 0 0 0 0 0 0 0

CO 1 0 0 7 0 1 0 1 0 0 0 0 0 0

LU 0 0 0 0 16 0 1 0 0 1 0 0 0 0

BL 0 0 0 0 0 6 0 0 0 0 0 1 0 0

CNS 0 1 0 1 0 0 6 0 0 0 0 0 0 0

UT 1 0 1 0 0 0 0 5 0 0 0 0 0 0

LY 0 0 0 0 0 0 0 0 24 0 0 0 0 0

RE 0 0 0 0 0 0 0 0 0 6 0 0 0 0

PA 0 0 0 0 0 0 0 1 0 0 7 0 1 0

OV 0 0 1 0 0 0 0 0 0 0 0 7 0 0

ME 0 0 0 0 0 0 0 0 0 0 0 0 7 0

ML 0 0 0 0 0 0 0 0 0 0 0 0 0 16

https://doi.org/10.1371/journal.pone.0274440.t002

Table 3. A 14 × 14 confusion matrix: Model fittness based on the LR-HeteNet method for the training data T .

BR PR LE CO LU BL CNS UT LY RE PA OV ME ML

BR 7 0 0 0 0 0 1 0 0 0 0 0 1 0

PR 0 7 0 0 0 0 0 0 0 1 0 0 0 0

LE 1 0 6 0 0 0 0 0 0 0 1 0 0 0

CO 0 0 0 8 0 1 0 0 0 0 0 0 0 0

LU 0 0 0 0 16 0 1 0 0 1 0 0 0 0

BL 0 0 0 0 0 7 0 0 0 0 0 0 0 0

CNS 0 1 0 0 0 0 6 0 0 0 0 0 0 0

UT 0 0 1 0 0 0 0 7 0 0 0 0 0 0

LY 0 0 0 0 0 0 0 0 24 0 0 0 0 0

RE 0 0 0 0 0 0 0 0 0 6 0 0 0 0

PA 0 0 0 0 0 0 0 1 0 0 7 1 0 0

OV 0 0 1 0 0 0 0 0 0 0 0 7 0 0

ME 0 0 0 0 0 0 0 0 0 0 0 0 7 0

ML 0 0 0 0 0 0 0 0 0 0 0 0 0 16

https://doi.org/10.1371/journal.pone.0274440.t003
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Fig 4. Heatmaps for the fitted values based on two proposed methods under the training data. The left panel is

obtained by Algorithm 1, the right panel is obtained by Algorithm 2. Z represents the proportion of (mis)classification.

https://doi.org/10.1371/journal.pone.0274440.g004
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To assess the performance of classification and prediction numerically, we evaluate some

commonly used criteria: micro averaged metrics, macro averaged metrics, and the adjusted

Rand index. For a subject j in the testing data with j = 1, � � �, 54, let ŷnew;j denote the predicted

class label determined by the prediction models and let ynew,j denote the class label in the test-

ing data. For class i = 1, � � �, I, we respectively calculate the number of the true positives (TP),

the number of the false positives (FP), and the number of the false negatives (FN) as

TPi ¼
X54

j¼1

Iðynew;j ¼ i; ŷnew;j ¼ iÞ; ð24Þ

FPi ¼
X54

j¼1

Iðynew;j 6¼ i; ŷnew;j ¼ iÞ; ð25Þ

Table 4. A 14 × 14 confusion matrix: Prediction based on the MLR-HomoNet method for the testing data V.

BR PR LE CO LU BL CNS UT LY RE PA OV ME ML

BR 2 0 0 0 0 0 0 0 0 1 0 0 0 0

PR 0 4 0 0 1 0 0 0 0 0 0 0 0 0

LE 1 0 2 0 0 0 0 0 0 0 0 0 0 0

CO 0 0 0 3 0 0 0 0 1 0 0 0 0 0

LU 0 0 0 1 3 0 0 0 0 0 0 0 0 0

BL 0 0 0 0 0 3 0 0 0 0 0 0 0 0

CNS 0 0 0 0 0 0 2 0 0 0 0 0 0 0

UT 0 0 0 0 0 0 0 3 0 0 0 1 0 0

LY 0 0 0 0 0 0 0 0 5 0 0 0 0 0

RE 0 0 0 0 0 0 0 0 0 3 0 0 0 0

PA 0 0 0 0 0 0 0 0 0 0 3 0 0 0

OV 0 0 0 0 0 1 0 0 0 0 0 5 0 1

ME 0 0 0 0 0 0 0 0 0 0 0 0 3 0

ML 0 0 0 0 0 0 0 0 0 0 0 0 0 5

https://doi.org/10.1371/journal.pone.0274440.t004

Table 5. A 14 × 14 confusion matrix: Prediction based on the LR-HeteNet method for the testing data V.

BR PR LE CO LU BL CNS UT LY RE PA OV ME ML

BR 2 0 0 0 0 0 0 0 1 0 0 0 0 0

PR 0 4 0 0 1 0 0 0 0 0 0 0 0 0

LE 1 0 2 0 0 0 0 0 0 0 0 0 0 0

CO 0 0 0 3 0 0 0 0 1 0 0 0 0 0

LU 0 0 0 1 3 0 0 0 0 0 0 0 0 0

BL 0 0 0 0 0 4 0 0 0 0 0 0 0 0

CNS 0 0 0 0 0 0 2 0 0 0 0 0 0 0

UT 0 0 0 0 0 0 0 3 0 0 0 0 0 0

LY 0 0 0 0 0 0 0 0 4 0 0 0 0 0

RE 0 0 0 0 0 0 0 0 0 4 0 0 0 0

PA 0 0 0 0 0 0 0 0 0 0 3 0 0 0

OV 0 0 0 0 0 0 0 0 0 0 0 6 0 0

ME 0 0 0 0 0 0 0 0 0 0 0 0 3 0

ML 0 0 0 0 0 0 0 0 0 0 0 0 0 6

https://doi.org/10.1371/journal.pone.0274440.t005
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Fig 5. Heatmaps for the predicted values based on two proposed methods under the testing data. The left panel is

obtained by Algorithm 1, the right panel is obtained by Algorithm 2. Z represents the proportion of (mis)classification.

https://doi.org/10.1371/journal.pone.0274440.g005
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and

FNi ¼
X54

j¼1

Iðynew;j ¼ i; ŷnew;j 6¼ iÞ: ð26Þ

For micro averaged metrics, precision and recall are, respectively, defined in terms of (24),

(25), and (26):

PREmicro ¼

XI

i¼1

TPi

XI

i¼1

TPi þ
XI

i¼1

FPi

ð27Þ

and

RECmicro ¼

XI

i¼1

TPi

XI

i¼1

TPi þ
XI

i¼1

FNi

: ð28Þ

Then Micro-F-score is defined as

Fmicro ¼ 2�
PREmicro � RECmicro
PREmicro þ RECmicro

: ð29Þ

On the other hand, for macro averaged metrics, for i = 1, � � �, I, let PREi ¼
TPi

TPiþFPi
denote

precision for class i, and let RECi ¼
TPi

TPiþFNi
denote recall for class i. Then the overall precision

and recall are, respectively, given by

PREmacro ¼
1

I

XI

i¼1

PREi ð30Þ

and

RECmacro ¼
1

I

XI

i¼1

RECi; ð31Þ

and Macro-F-score is defined as

Fmacro ¼ 2�
PREmacro � RECmacro
PREmacro þ RECmacro

: ð32Þ

According to the definitions, when all subjects are correctly classified, then FP and FN are

equal to zero, yielding that PRE and REC are equal to one; if all subjects are falsely classified,

then TP is equal to zero, and thus, PRE and REC are equal to zero. Therefore, values of PRE

and REC are between zero to one. Moreover, the F-score falls in [0, 1] as well by treating 0/0 as

zero. In principle, higher values of PRE, REC and F-score based on both micro and macro

reflect better performance of methods ([20–22]).

In addition to criteria above, the other commonly used criterion is the adjusted Rand index

(ARI). For i, l = 1, � � �, I, let nil ¼
Pn

j¼1

Iðynew;j ¼ i; ŷnew;j ¼ lÞ. Moreover, define ai ¼
PI

l¼1

nil for
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i = 1, � � �, I and bl ¼
PI

i¼1

nil for l = 1, � � �, I. Then ARI is defined as (e.g., [43])

ARI ¼

X

i;l¼1

nil
2

� �
�

X

i

ai
2

� �X

l

bl
2

� �( )�
n
2

� �

X

i

ai
2

� �
þ
X

l

bl
2

� �( )�

2 �
X

i

ai
2

� �X

l

bl
2

� �( )�
n
2

� �
: ð33Þ

As mentioned in [43], ARI is bounded above by one, and higher value of ARI indicates accu-

rate classification.

We primarily adopt (27), (28), (29), (30), (31), (32), and (33) to assess the performance of

two proposed methods. In addition, to compare with the proposed methods, we also examine

several well established supervised learning methods, including logistic regression models

without incorporating network structure [42], the support vector machine (SVM) that was

examined by [30], K-nearest neighbor (KNN), linear discriminant analysis (LDA), Bayes, arti-

ficial neural network (ANN), XGBoost, random forest (RF), bagging, and long short-term

memory (LSTM) methods. The implementation of corresponding R packages is summarized

in Table 6.

The prediction results of the proposed and competitive methods are summarized in

Table 7. In general, we can observe that the two proposed methods have the largest values of

Table 6. A list of existing methods and corresponding packages.

Method[Reference] Function R Package

SVM [44] svm e1071

KNN [45] kNN DMwR

LDA [46] lda MASS

Bayes [44] naiveBayes e1071

ANN [47] neuralnet neuralnet

XGBoost [48] xgb.train xgboost

RF [49] randomForest randomForest

Bagging [50] ipredbagg ipred

LSTM [51] trainr rnn

https://doi.org/10.1371/journal.pone.0274440.t006

Table 7. Prediction of classification for the testing data V.

Method PREmicro RECmicro Fmicro PREmacro RECmacro Fmacro ARI

Agresti 0.693 0.697 0.695 0.688 0.696 0.692 0.453

SVM 0.801 0.812 0.806 0.813 0.820 0.816 0.786

LDA 0.705 0.705 0.705 0.699 0.694 0.696 0.474

KNN 0.677 0.663 0.670 0.654 0.666 0.660 0.433

Bayes 0.837 0.838 0.838 0.840 0.838 0.839 0.804

ANN 0.844 0.845 0.844 0.844 0.844 0.844 0.821

XGBoost 0.816 0.818 0.817 0.820 0.816 0.818 0.797

RF 0.840 0.838 0.839 0.842 0.841 0.841 0.813

Bagging 0.840 0.836 0.838 0.841 0.841 0.841 0.809

LSTM 0.835 0.837 0.836 0.837 0.840 0.838 0.794

MLR-HomoNet 0.856 0.871 0.863 0.867 0.878 0.872 0.833

LR-HeteNet 0.884 0.896 0.890 0.903 0.910 0.906 0.856

https://doi.org/10.1371/journal.pone.0274440.t007
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PRE, REC, F-score, and ARI than other existing methods. For the comparisons among existing

methods, we can see that advanced machine learning or deep learning methods (e.g., ANN,

RF, Bagging) outperform the conventional ones, such as LDA or SVM, but are less satisfactory

than the proposed methods because of slightly large misclassification. It verifies that incorpo-

rating network structures would improve the accuracy of classification and prediction. In addi-

tion, the other reason is that, unlike existing methods that possibly incur overfitting because of

direct implementation of all gene expression values to fit models, the two proposed methods

simply retain gene expression values and detect network structures that are related to the

response, yielding parsimonious models. In this way, noises and impacts induced by irrelevant

gene expression values can be eliminated. Compared with two proposed methods, we can see

that the LR-HeteNet method outperforms the MLR-HomoNet method with larger values of

criteria. The main reason is that the MLR-HomoNet model in Section 3.3 directly deals with

multi-label classification by using a common network structure to classify tumors to the corre-

sponding cancers. To simultaneously reflect information to all classes, the network structure

displayed in Fig 2 is expected to require more gene expression values and complex interac-

tions. On the other hand, the LR-HeteNet method in Section 3.4 identifies predictors and

unique network structure to reflect a specific cancer, suggesting that types of cancers can be

uniquely represented by different network structures of gene expression values. As shown in

Fig 3, one can directly adopt a given network structure to classify tumors to their cancers with

high accuracy of prediction. In summary, with noise induced by irrelevant predictors removed

and informative network structures of predictors accommodated, the accuracy of classification

and prediction has significant improvement.

5 Discussion

In this paper, we present the network-based classification method to predict the classification

of the tumor samples, which is an ultrahigh dimensional system, i.e., with multitudinous gene

expressions as predictors. In the proposed method, we first adopt model-free feature screening

technique to retain informative gene expressions from ultrahigh-dimensional data. After that,

we identify the network structures of the detected gene expressions based on different cancers,

and the property of the network structure recovery allows us to fit the nominal logistic regres-

sion based on the network structure and examine the classification and prediction. Compared

with other existing methods, the proposed method gives more precise prediction results.

There are several possible extensions based on the current work. For example, the RNA

sequences, regarded as count data, are also frequently explored in bioinformatics. The pro-

posed method can be naturally extended to deal with the RNA sequence data by treating them

as the predictors because the signal of detecting predictors (2) is free of distribution of random

variables, and the identification of network structure in Section 3.2 is based on exponential

family graphical models. For the implementation of classification models, it is interesting to

explore other machine learning methods, such as SVM, LDA, or KNN, and other deep learn-

ing approaches that are popular in data science.

Moreover, the research gap still exists and more explorations can be done by extending the

proposed method. For example, as discussed in [32], measurement error in predictors is ubiq-

uitous in data analysis, especially that mismeasurement is inevitable in gene expression data (e.

g, [52]). Ignoring measurement error effects is expected to increase the possibility of false clas-

sification and lead to wrong conclusion. Therefore, it is important to develop a new error-

eliminating strategy to deal with measurement error based on the current method. Finally, as

R packages associated with some of the existing methods have been developed, the new

method proposed here anticipates a corresponding R package.
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