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Abstract

Background: Rheumatoid arthritis (RA) is a common chronic autoimmune disease characterized by inflammation of
the synovial membrane. However, the etiology and underlying molecular events of RA are unclear. Here, we
applied bioinformatics analysis to identify the key genes involved in RA.

Methods: GSE77298 was downloaded from the Gene Expression Omnibus (GEO) database. We used the R software
screen the differentially expressed genes (DEGs). Gene ontology enrichment analysis and Kyoto Encyclopedia of
Genes and Genomes pathway were analyzed by using the DAVID online tool. The STRING database was used to
analyze the interaction of differentially encoded proteins. PPI interaction network was divided into subnetworks
using MCODE algorithm and was analyzed using Cytoscape. Gene set enrichment analysis (GSEA) was performed to
identify relevant biological functions. qRT-PCR analysis was also performed to verify the expression of identified hub
DEGs.

Results: A total of 4062 differentially expressed genes were selected, including 1847 upregulated genes and 2215
downregulated genes. In the biological process, DEGs were mainly concentrated in the fields of muscle filament
sliding, muscle contraction, intracellular signal transduction, cardiac muscle contraction, signal transduction, and
skeletal muscle tissue development. In the cellular components, DEGs were mainly concentrated in the parts of
cytosol, Z disk, membrane, extracellular exosome, mitochondrion, and M band. In molecular functions, DEGs were
mainly concentrated in protein binding, structural constituent of muscle, actin binding, and actin filament binding.
KEGG pathway analysis shows that DEGs mainly focuses on pathways about lysosome, Wnt/β-catenin signaling
pathway, and NF-κB signaling pathway. CXCR3, GNB4, and CXCL16 were identified as the core genes that involved
in the progression of RA. By qRT-PCR analysis, we found that CXCR3, GNB4, and CXCL16 were significantly
upregulated in RA tissue as compared to healthy controls.

Conclusion: In conclusion, DEGs and hub genes identified in the present study help us understand the molecular
mechanisms underlying the progression of RA, and provide candidate targets for diagnosis and treatment of RA.
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Background
Rheumatoid arthritis (RA) is an autoimmune disease
characterized by chronic inflammation, hyperprolifera-
tion of synovial tissue, and progressive destruction of
multiple joints [1, 2]. RA mainly targets the synovium of
diarthrodial joints [3, 4]. According to statistics, the
prevalence of RA in China is about 0.5-1%, 0.5-5 new
cases per 1000 people per year. RA has become one of
the most common causes of disability in patients [5]. In
RA, females are three times more affected than men [6].
RA manifests as osteoporosis around the joints, stenosis
of the joint space of the knee joint, and bone cystic de-
generation [7, 8]. The pathogenesis of RA mainly focuses
on autoantibodies and immune complexes [9]. RA in-
volves T cell-mediated antigen-specific response, T cell-
independent cytokine network, and aggressive tumor-
like behavior of rheumatoid synovium [10]. The initial
characteristics of the membrane are abnormal growth,
infiltration of inflammatory cells (macrophages, T and B
lymphocytes, plasma cells, and neutrophils), and the for-
mation of pannus [11]. Significant thickening of the
synovium is the most typical pathological change of RA
[12]. Studies have shown that synovial inflammation
plays an important role in the pathogenesis of RA. But
the exact pathogenesis of RA is unclear.
Chip technology has improved the ability to study dis-

ease pathogenesis and is an important technology for
functional genomics research [13]. In recent years, with
the commercialization of chips based on high-
throughput platforms, this technology has gradually
been used to explore disease epigenetics and screen ef-
fective biomarkers for disease diagnosis and prognosis
[14]. In the expression monitoring of RA, the chip is
mainly used to detect the gene expression profile of per-
ipheral blood cells, miRNA expression, and circRNA
expression.
With the development of next-generation sequencing

technologies and the improvement of biological data-
base, using bioinformatics methods to explore the rele-
vant mechanisms is significant.

Methods
Microarray studies and datasets from Gene Expression
Omnibus (GEO)
The microarray datasets including GSE77298 was down-
loaded from the GEO database (https://www.ncbi.nlm.
nih.gov/geo/) using “rheumatoid arthritis” as the key-
word. The microarray dataset GSE77298 from GPL570
platform contains 7 samples of RA (end-stage RA syn-
ovial biopsies) and 16 healthy controls (synovial biopsies
from individuals without a joint disease). The expression
micro-array datasets was Affymetrix Human Genome
U133 Plus 2.0 Array.

Differential genes expression analysis
Statistical programming language R (version 4.0.2) was
used for log2 transformation of the data, and the two
datasets were merged [15]. “SVA” package was used for
batch correction. Differential expressed genes (DEGs)
were defined as log |FC| > 0.5, and the corrected p <
0.05. Log |FC| > 0 means that the DEG is upregulated in
RA.

Functional annotation and pathway analysis of DEGs
DEGs were inputted into David 6.8 online tools (https://
david.ncifcrf.gov/) to perform Gene Ontology (GO) ana-
lysis and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment [16, 17]. P < 0.05 and the
gene counts > 3 were considered statistically significant.

Protein-protein interaction (PPI) network and key genes
acquisition
Using the Search Tool for the Retrieval of Interacting
Genes (STRING, version 11.0, https://string-db.org/)
database to analyze the PPI of proteins encoded by
DEGs (medium confidence = 0.04) [18]. Cytoscape soft-
ware (version 3.8.0) was used to perform visualization of
PPI network. We used cytohubba plug-in to analyze the
nodes of the genes with topological analysis methods, fil-
tering with degree and stress and obtaining the key
genes from the intersection of the first 15 genes sorted
out in degree and stress methods respectively [19].

Gene set enrichment analysis (GSEA)
Further GSEA was carried out for all genes that were de-
tected by use of GSEA software (version 4.0.0), providing
us another option to screen out significant differential
biological functions derived after bariatric surgery [20].
The gene set arrangement was performed 1000 times
per analysis. Gene sets was considered to be significantly
enriched with an alpha or P value < 5% and a false dis-
covery rate (FDR) < 25%.

Quantitative real-time polymerase chain reaction (qRT-
PCR)
RA was diagnosed based on the revised RA classification
criteria by the American College of Rheumatology. For
non-RA control, the synovial tissue samples were col-
lected from 30 patients who underwent emergency
trauma amputation. Synovial tissue was obtained and
stored in liquid nitrogen and kept at −80 °C. Extraction
of total RNA from tissues and cell lines was used Trizol
reagent (Thermo Fisher Scientific, Waltham, USA) [21,
22]. Reverse transcription of mRNA was performed
using PrimeScript RT reagent kit (TaKara, Dalian,
China). The qRT-PCR experiment accorded to instruc-
tions of a SYBR Premix Ex Taq Kit (TaKaRa, Dalian,
China) and performed on an ABI 7500 (Applied
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Biosystem). Primers used in the qRT-PCR analysis were
as follows: CXCR3 forward: 5′-GAAGGTAGGCTGA-
CAGGAAGATGAAGGG-3′, CXCR3 reverse: 5′-GAAC
TCGAGACCCCATAAGGAACCCAAACT-3′; GNB4
forward: 5′-ATGCCTTGCACTGAAAGAAG-3′, GNB4
reverse: 5′-ATACGGCTACGCCCTTCTTG-3′; GAPDH

Forward: 5′-CACGAATUATTCAACGGTCGAT
CAAGG-3′, GAPDH reverse: 5′-GTTCACACCCATCA
CAAACATGG-3′; CXCL16 forward: 5′-CTTTCA
TCGATAGCGCA-3′, CXCL16 reverse: 5′-AACGCTTC
ACGAATTTGCGT-3′. A ratio relative to the GAPDH
was used as internal control.

Fig. 1 Comparison of expression value between before normalization and after normalization

Fig. 2 Volcano plot of the differentially expressed genes; (red) upregulated genes; (green) downregulated genes; and (black) non-differentially
expressed genes
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Statistical analysis
Each experiment was performed at least three times. All
data were expressed as mean ± standard deviation (SD).
Statistical analyses were determined by Student’s t test,
and the differences between two groups or more than
two groups were detected using ANOVA. A p value of
less than 0.05 was considered statistically significant.

Results
Hierarchical clustering for sample selection
The total samples were analyzed by hierarchical cluster-
ing, no samples were with high heterogeneity and elimi-
nated. Finally, 23 samples were included for analysis.

Identification of DEGs
The blue bar represents the data before normalization,
and the red bar represents the normalized data. After
normalization, Fig. 1 depicts that the log2 ratios in the
three pairs of samples are almost identical.
A total of 4062 DEGs were screened out, including

1847 high expression genes and 2215 low expression
genes. R was used to make results visualization and draw
volcano map (Fig. 2) and heat map (Fig. 3).

GO and KEGG enrichment analysis of DEGs
In GO analysis, DEGs were divided into three categories:
biological process, cellular component, and molecular
function. In the biological process, DEGs were mainly
concentrated in the fields of muscle filament sliding,
muscle contraction, intracellular signal transduction,
cardiac muscle contraction, signal transduction, skeletal
muscle tissue development, sarcomere organization,
antigen processing and presentation of peptide antigen
via MHC class I, tricarboxylic acid cycle, and regulation
of release of sequestered calcium ion into cytosol by
sarcoplasmic reticulum (Fig. 4).
In the cellular components, DEGs were mainly con-

centrated in the parts of cytosol, Z disk, membrane,
extracellular exosome, mitochondrion, M band, cyto-
plasm, T-tubule, myofibril, sarcomere and so on (Fig. 4).
In molecular functions, DEGs were mainly concen-

trated in protein binding, structural constituent of
muscle, actin binding, actin filament binding, signal
transducer activity, calmodulin binding, sodium channel
regulator activity, SH3 domain binding, metal ion trans-
membrane transporter activity, and ATP binding (Fig.
4).
KEGG pathway analysis shows that DEGs mainly fo-

cuses on pathways about lysosome, Wnt/β-catenin sig-
naling pathway, metabolic pathways, regulation of actin
cytoskeleton, focal adhesion, chemokine signaling path-
way, adrenergic signaling in cardiomyocytes, biosynthesis
of antibiotics, NF-κB signaling pathway, and proteogly-
cans in cancer (Fig. 4).

PPI network analysis of DEGs
Protein-protein interaction network with a total of 198
nodes and 356 relationship pairs was obtained, and
genes in protein-protein interaction, such as RNF4,
CDC20, UBE2D4, and UBE2Q2, were recognized as key
nodes in protein-protein interaction (Fig. 5).

Fig. 3 Heat map of the standardized expression of the top 100
differentially expressed genes across the 23 samples
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A total of 20 core genes with a degree ≥ 20 selected by
MCODE were obtained from the protein-protein net-
work, and they were considered to be candidate core
genes. In MCODE model 1, key genes were as follows:
RNF4, UBE2D4, UBE2Q2, CUL5, NEDD4L, BXO32,
LONRF, TRIM32, UBE2Q1, KLHL13, CDC20, ATG7,
KLH41, and TRIM9 (Fig. 6).

In MCODE model 2, key genes were as follows: CALC
RL, GNG11, TAS2R10, GNAI2, CXCR3, NYP1R,
P2RY14, GNB2, RAMP1, VIP, GNB4, GNB3, CXCL16,
and ADCY9.
In MCODE model 3, key genes were as follows:

SLC44A2, CKAP4, PLAUR, HVCN1, CD36, STK10,
PTPRB, and DNAJC5 (Fig. 6).

Fig. 4 Gene Ontology (GO) and KEGG pathway enrichment analyses of DEGs

Fig. 5 Protein-protein interaction of the differentially expressed genes between RA tissue and healthy controls
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In MCODE model 3, key genes were as follows:
ARPC2, AMPH, SNX18, M6PR, NBP1L, WASL, APRC3,
and APRC4 (Fig. 6).

GSEA
The analysis indicated that the most significant-enriched
gene sets included the systemic lupus erythematosus, sele-
noamino acid metabolism, toll-like receptor signaling
pathway, ubiquitin-mediated proteolysis, valine leucine
and isoleucine degradation, and cholerae infection (Fig. 7).

PCR
The quantitative PCR (qPCR) results indicated that
CXCR3 expression was significantly upregulated in RA
synovial tissue compared with healthy control (Fig. 8).
Moreover, GNB4 was significantly upregulated in RA

synovial tissue compared with healthy control (Fig. 8).
However, CXCL16 was significantly downregulated in

RA synovial tissue compared with healthy control (Fig. 8).

Discussion
In the present study, we analyzed GSE77298 microarray
dataset to screen DEGs between end-stage RA synovial
biopsies and 16 synovial biopsies from individuals with-
out a joint disease.
GO and KEGG enrichment analyses were performed

to explore interactions among the DEGs. CXCR3 was

identified as the core gene that involved into the pro-
gression of RA. Bakheet et al. [23] found that CXCR3
antagonist AMG487 suppresses RA pathogenesis and
progression by shifting the Th17/Treg cell balance.
Therefore, CXCR3 antagonists could be used as a novel
strategy for the treatment of inflammatory and arthritic
conditions. Another core gene should be noticed is the
GNB4. Previous study found that GNB4 can be a candi-
date diagnostic biomarker in inflammatory bowel dis-
eases [24]. As for CXCL16, we also found that CXCL16
can be as a candidate core gene of RA according to the
MCODE analysis. Li et al. [25] revealed that CXCL16 is
a modulator of RA disease progression. They performed
in vitro study and found that CXCL16 upregulates
RANKL expression in RA synovial fibroblasts through
the JAK2/STAT3 and p38/MAPK signaling pathway.
The main innate immune-related signaling path-

ways include NF-κB signaling pathway and TRIM32
signaling pathway. Wang et al. [26] found that the
TRIM3 expression was significantly downregulated in
RA patients than that of the healthy controls. Over-
expression of TRIM3 promoted the p53 and p21 ex-
pression, while inhibited cyclin D1 and PCNA
expression. More importantly, knockdown of TRIM3
expression could partially reversed the inhibition ef-
fects of SB203580 (p38 inhibitor) on the inhibition
of cell proliferation.

Fig. 6 A Module 1. B Module 2. C Module 3. D Module 4. The modules are extracted using Molecular Complex Detection (MCODE) plugin of
Cytoscape software
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Rheumatoid arthritis is an autoimmune nature joint
disease with irreversible cartilage destruction and bone
erosion. The DEGs were mainly enriched in muscle fila-
ment sliding, muscle contraction, intracellular signal
transduction, and cardiac muscle contraction. KEGG
pathway analysis shows that DEGs mainly focuses on
pathways about lysosome, Wnt/β-catenin signaling path-
way, metabolic pathways, regulation of actin cytoskel-
eton, focal adhesion, chemokine signaling pathway,

adrenergic signaling in cardiomyocytes, biosynthesis of
antibiotics, NF-κB signaling pathways, and proteoglycans
in cancer.
Studies have shown that the development of RA may

depend on the common changes in the expression of
specific key genes. Xiong et al. [27] revealed that upregu-
lated genes in RA were significantly enhanced in protein
binding, the cell cytosol, organization of the extracellular
matrix (ECM), regulation of RNA transcription, and cell

Fig. 7 GSEA analysis of the 23 samples from RA tissues and healthy controls

Fig. 8 PCR results of the expression of CXCR3, GNB4, and CXCL16 between RA and healthy controls. *P < 0.05
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adhesion. Shchetynsky et al. [28] revealed that ERBB2,
TP53, and THOP1 were new candidate genes in the
pathogenesis of RA.
KEGG pathway analysis revealed that NF-KB signaling

pathway involved into the progression of OA. Xing et al.
[29] revealed that miR-496/MMP10 is involved in the
proliferation of IL-1β-induced fibroblast-like synovio-
cytes via mediating the NF-κB signaling pathway. The
NF-kB signaling pathway may also have an important
role in OA progression because NF-kB molecule has key
role in immune response regulation. In this study, we
also found that DEGs mainly enriched into the NF-KB
signaling pathway.
Lysosomes are membrane-bound organelles with roles

in processes involved in degrading and recycling cellular
waste. In KEGG pathway enrichment analysis, we found
that DEGs also enriched into the lysosomes pathway. Ly-
sosomes can be as a therapeutic target for RA [30].
There were some limitations in our study. First, all pa-

tients had a pathological diagnosis of RA; however, cor-
relation between DEGs and disease severity did not
examine in depth. Second, though we examined the ex-
pression of the DEGs between RA and healthy controls,
the potential pathway that involved into the RA was not
examined. Future studies should be performed to iden-
tify the detailed pathway that participated into the pro-
gression of RA.

Conclusions
In conclusion, DEGs and hub genes identified in the
present study help us understand the molecular mecha-
nisms underlying the progression of RA, and provide
candidate targets for diagnosis and treatment of RA.
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