
Neuro-Oncology Advances
3(1), 1–11, 2021 | doi:10.1093/noajnl/vdab044 | Advance Access date 10 March 2021

1

© The Author(s) 2021. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology.

Francesco D’Amore†, Farida Grinberg† , Jörg Mauler , Norbert Galldiks , Ganna Blazhenets, 
Ezequiel Farrher , Christian Filss , Gabriele Stoffels , Felix M. Mottaghy , Philipp Lohmann , 
Nadim Jon Shah , and Karl-Josef Langen

Institute of Neuroscience and Medicine, Research Centre Juelich, Juelich, Germany (F.D., F.G., J.M., N.G., G.B., 
E.F., C.F., G.S., P.L., N.J.S., K.-J.L.); Department of Neuroradiology, Circolo Hospital and Macchi Foundation, 
Varese, Italy (F.D.); Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of 
Cologne, Cologne, Germany (N.G.); Center for Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne 
and Duesseldorf, Germany (N.G., F.M.M., K.-J.L.); Department of Nuclear Medicine, Medical Center—University of 
Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany (G.B.); Department of Nuclear Medicine, 
RWTH Aachen University, Aachen, Germany (C.F., K.-J.L., F.M.M.); Department of Radiology and Nuclear Medicine, 
Maastricht University Medical Center (MUMC+), Maastricht, The Netherlands (F.M.M.); Department of Stereotaxy 
and Functional Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, 
Germany (P.L.); Department of Neurology, RWTH Aachen University, Aachen, Germany (N.J.S.); JARA—BRAIN—
Translational Medicine, Aachen, Germany (N.J.S.)

†These authors contributed equally to the work.

Corresponding Author: Karl-Josef Langen, MD, Institute of Neuroscience and Medicine (INM-4), Research Centre Juelich, 
Forschungszentrum Jülich GmbH Wilhelm-Johnen-Str., D-52425 Jülich, Germany (k.j.langen@fz-juelich.de).

Abstract
Background. Radiological differentiation of tumor progression (TPR) from treatment-related changes (TRC) in 
pretreated glioblastoma is crucial. This study aimed to explore the diagnostic value of diffusion kurtosis MRI com-
bined with information derived from O-(2-[18F]-fluoroethyl)-l-tyrosine (18F-FET) PET for the differentiation of TPR 
from TRC in patients with pretreated glioblastoma.
Methods. Thirty-two patients with histomolecularly defined and pretreated glioblastoma suspected of having TPR 
were included in this retrospective study. Twenty-one patients were included in the TPR group, and 11 patients in 
the TRC group, as assessed by neuropathology or clinicoradiological follow-up. Three-dimensional (3D) regions of 
interest were generated based on increased 18F-FET uptake using a tumor-to-brain ratio of 1.6. Furthermore, diffu-
sion MRI kurtosis maps were obtained from the same regions of interest using co-registered 18F-FET PET images, 
and advanced histogram analysis of diffusion kurtosis map parameters was applied to generated 3D regions of 
interest. Diagnostic accuracy was analyzed by receiver operating characteristic curve analysis and combinations of 
PET and MRI parameters using multivariate logistic regression.
Results. Parameters derived from diffusion MRI kurtosis maps show high diagnostic accuracy, up to 88%, for 
differentiating between TPR and TRC. Logistic regression revealed that the highest diagnostic accuracy of 94% 
(area under the curve, 0.97; sensitivity, 94%; specificity, 91%) was achieved by combining the maximum tumor-to-
brain ratio of 18F-FET uptake and diffusion MRI kurtosis metrics.
Conclusions. The combined use of 18F-FET PET and MRI diffusion kurtosis maps appears to be a promising ap-
proach to improve the differentiation of TPR from TRC in pretreated glioblastoma and warrants further investigation.

Combined 18F-FET PET and diffusion kurtosis MRI in 
posttreatment glioblastoma: differentiation of true 
progression from treatment-related changes
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Key Points

 • Diffusion kurtosis MRI in FET PET-positive areas provides 88% diagnostic accuracy 
in recurrent gliomas.

 • Combination of diffusion kurtosis MRI and FET PET increases diagnostic accuracy 
to 94%.

Due to its aggressive infiltrative growth and the high relapse 
rate, glioblastoma is the most lethal brain tumor in adults 
and despite maximal treatment, only 5% of patients with 
glioblastoma survive for 5 years or longer following diag-
nosis.1 The diagnosis of tumor progression (TPR) based on 
standard MRI alone is challenged by the necessity to differ-
entiate TPR from non-neoplastic, treatment-related changes 
(TRC), such as pseudoprogression or radiation necrosis.2 In 
particular, pseudoprogression manifests itself as progres-
sive or newly contrast-enhancing lesions, usually within 
3  months after completion of radiotherapy in 15–30% of 
patients with malignant glioma.3 TRC often mimic TPR and 
consequently tend to interfere with day-to-day patient care, 
representing a critical clinical dilemma.4 Despite the consid-
erable efforts already made in improving response assess-
ment and supporting clinical decision-making,5 the further 
development of reliable imaging biomarkers for more accu-
rate diagnostics of TRC remains urgently needed.

Contrast-enhanced MRI is the method of choice in 
neuro-oncology, playing a key role in diagnostics and the 
assessment of treatment response.6 However, conven-
tional MRI has a limited specificity in differentiating TPR 
from TRC,4 and a major disadvantage of anatomic MRI is 
the lack of metabolic information. In contrast, PET using 
radiolabelled amino acids, such as O-(2-[18F]-fluoroethyl)-
l-tyrosine (18F-FET), is a sensitive tool for imaging meta-
bolic tumor activity and can provide additional information 
for improved diagnostics.7 The Response Assessment in 
Neuro-Oncology (RANO) working group and the European 
Association of Neuro-Oncology advocate the use of amino 
acid PET as a complementary tool to MRI in the manage-
ment of patients with brain tumors.8 In particular, 18F-FET 
PET has been recently shown to facilitate improved differ-
entiation of TRC from TPR with high diagnostic accuracies, 
in the range of 80–90%.9,10

The establishment of advanced MRI techniques rep-
resents another rapidly developing field relevant for 

neuro-oncology,7 with diffusion MRI, which is sensitive 
to microstructural cellular tissue architecture, being in-
creasingly used in the assessment of brain tumors.11 The 
apparent diffusion coefficient derived from diffusion-
weighted or diffusion tensor imaging (DTI)12 tends to in-
versely correlate with tumor cellularity13 and was tested in 
treatment response assessment14 alongside the discrimi-
nation of TRC from TPR.15 However, the reliable use of the 
mean DTI metrics in neuro-oncology is often limited due 
to intratumor microenvironmental heterogeneity,16 the 
hallmark of most brain malignancies. On the other hand, 
histogram analysis of DTI metrics enables the considera-
tion of more detailed information and has been shown to 
provide added value in grading gliomas17 and in treatment 
monitoring.18–20

Further perspectives concerning diffusion MRI in brain 
tumors are associated with the current development of 
novel multi-shell diffusion techniques,11,21 employing high 
b values beyond the typical DTI range (≤1 μm2/ms). These 
techniques address the non-Gaussian diffusion properties 
of water in tissue and encode additional microstructural 
features. In particular, diffusion kurtosis imaging (DKI)22 
enables the estimation of diffusion tensor (DT) and specific 
kurtosis tensor (KT) metrics from the same measurement, 
at clinically practicable acquisition times. Consequently, 
it is attracting growing interest in neuroradiology, with 
applications reported for stroke, neurodegenerative dis-
eases, and tumors,11,21,23 and promising biomarkers have 
been found for assessing glioma grades and cellular 
proliferation.24,25

A small number of studies have shown the poten-
tial of combining 18F-FET PET with diffusion and/or other 
MRI methods to examine brain tumor patients26,27 with 
the help of modern hybrid PET/MRI technologies.28 
There is also growing evidence that the use of a combi-
nation of structural and advanced MRI modalities along-
side 18F-FET PET can considerably enhance the diagnostic 

Importance of the Study

The differentiation of tumor progression from 
treatment-related changes in patients with 
pretreated glioblastoma is difficult based on 
structural MRI alone. This study explores the 
combination of PET using the amino acid 
tracer O-(2-[18F]-fluoroethyl)-l-tyrosine (FET) 
and microstructural information obtained from 
diffusion kurtosis imaging (DKI). Both these 

methods may provide additional information 
for this clinically important question. The com-
bination of FET PET and DKI resulted in high 
diagnostic accuracy, warranting further inves-
tigations. The developed FET/DKI index offers 
a simple way to apply this approach in clinical 
practice.
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accuracy for the detection of TPR and predicting response 
to treatment.3,27,29,30

We hypothesize that lesions showing slightly abnormal 
or increased 18F-FET uptake in the area of suspected TPR 
might be helpful for identifying areas with abnormal micro-
structural properties, which could then be further differenti-
ated using advanced diffusion MRI modalities. The purpose 
of this exploratory hybrid PET/MRI study was to evaluate 
DT and KT parameters in lesions with increased 18F-FET up-
take and to assess their accuracy in differentiating TPR and 
TRC using histogram analysis.

Materials and Methods

Patients

From February 2013 to March 2016, 32 patients with 
histopathologically proven glioblastoma and clinical 
signs or MRI findings suggestive of TPR based on the 
RANO8 criteria were retrospectively included in the 
study. All patients were examined using a hybrid PET/
MRI scanner and fulfilled the following inclusion cri-
teria: (1) hybrid 18F-FET PET/MRI scan with DKI and struc-
tural MRI brain tumor imaging protocol, (2) prior tumor 
resection or biopsy followed by temozolomide (TMZ) 
chemoradiation, and (3) repeat biopsy or clinical fol-
low-up data and imaging follow-up data available from 
at least 6  months after the hybrid PET/MRI investiga-
tions. The local ethics committee approved the retro-
spective analysis of the data. There was no conflict with 
the Declaration of Helsinki. Before imaging, all patients 
had given written informed consent for the PET and MRI 
investigation and the use of the acquired data for scien-
tific purposes. Further details on the patient cohort are 
presented in Supplementary Table S1.

The diagnosis of TRC or TPR was based on the cri-
teria defined by Young et al.31 If no-repeat histopathology 
was available (in 20 patients), the clinical diagnosis of 
TRC or TPR was reached via consensus of 2 experienced 
neurooncologists based upon a complete chart review 
and review of follow-up MRI. The diagnosis of TRC was as-
sumed if no change in treatment was required for at least 
6 months after PET/MRI.

18F-FET PET Imaging and Data Analysis

All patients were scanned using a high-resolution 3T hy-
brid PET/MRI scanner (BrainPET, Siemens Healthcare, 
axial field of view, 19.2 cm). Image data were corrected 
for random and scatter coincidences, as well as dead 
time, prior to OP-OSEM reconstruction provided by 
the manufacturer (2 subsets, 32 iterations). The recon-
structed dynamic data set consisted of 16 time frames 
(5 × 1 min; 5 × 3 min; 6 × 5 min). Since the hybrid PET/
MRI scanner does not provide a transmission source, 
attenuation correction was performed with a template-
based approach using MRI.30

18F-FET PET data were applied and analyzed as described 
previously.32 In brief, dynamic PET studies were acquired 
for 50 min after intravenous injection of approximately 3 

MBq 18F-FET/kg of body weight. Mean 18F-FET uptake in the 
tumor was determined by a two-dimensional (2D) auto-
contouring process using a tumor-to-brain ratio (TBR) of 
at least 1.6 in the summed 18F-FET PET images from 20 to 
40 min post-injection. For calculating the maximal amino 
acid uptake, a circular region of interest (ROI) with a diam-
eter of 1.6 cm was centered on the maximal tumor uptake. 
Mean and maximum TBRs (TBRmean and TBRmax) were cal-
culated by dividing the mean and maximum standardized 
uptake value (SUV) of the tumor ROIs by the mean SUV of 
healthy brain tissue. Time-activity curves (TACs) of 18F-FET 
uptake in the tumor were obtained by applying a spherical 
volume of interest with a volume of 2 ml (diameter 1.6 cm) 
to the entire dynamic dataset. Time-to-peak values, derived 
from the TACs (TTP; minimum from the beginning of the 
dynamic acquisition up to the maximum SUV of the lesion) 
and the slope of the TAC of 18F-FET uptake, were calculated 
by fitting a linear regression line to the late phase of the 
curve (20–50 min post-injection). The slope was expressed 
in the change of SUV per hour.

MRI Acquisition Protocol

The MRI protocol used with the hybrid PET/MRI scanner 
included a T1-weighted magnetization-prepared rapid 
gradient echo (MP-RAGE) sequence, a T2-weighted 
fluid-attenuated inversion recovery sequence, and a 
contrast-enhanced T1-weighted MP-RAGE sequence (CE-
T1) conducted following the injection of the contrast 
agent, gadoteric acid (Dotarem; Guerbet), with a dose of 
0.1–0.2  mmol/kg of body weight.33 The diffusion MRI se-
quence had the following acquisition parameters: TR/
TE = 9700/105 ms; bandwidth = 1594 Hz/px; b values = 0, 
1000, 2500 s/mm2; number of averages = 2; number of gra-
dient directions = 30; voxel size = 2 × 2 × 2 mm3; matrix 
size = 112 × 112 × 68.

DKI Image Processing

Diffusion-weighted MRI images were corrected for eddy 
current distortions and head motion using the tool “eddy-
correct” available in FSL; gradient field directions were re-
oriented34 using in-house Matlab scripts (R2014a, 2014, The 
Mathworks Inc.). Positive bias in the signal was corrected 
using the power images method,35,36 with the standard 
deviation of the background noise estimated using the ap-
proach by Aja-Fernández et  al.37 and further regularized 
using ExploreDTI.38 DKI analysis was performed using the 
nonlinear least-squares estimator available in ExploreDTI. 
Finally, both DT (mean/radial/axial diffusivities, MD/RD/AD) 
and specific KT (mean/radial/axial kurtoses, MK/RK/AK) 
metrics were evaluated using ExploreDTI.

Image co-registration and tumor segmentation were car-
ried out with the Brain PET/MRI analysis tool of the PMOD 
software (version 3.707, 2015, PMOD Technologies Ltd) by 
board-certified radiologists (F.M.  and C.F.). PET images 
were co-registered via rigid matching with normalized mu-
tual information using a Gaussian smoothing algorithm 
applied to the contrast-enhanced T1-weighted 3-dimen-
sional (3D) MRI. DT/KT parameter maps were subsequently 

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab044#supplementary-data
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registered to CE-T1 via affine rigid body registration with 
normalized mutual information as a cost function. 3D ROIs 
were semi-automatically segmented on the PET images 
using a TBR threshold of 1.6.39 The corresponding voxel-
by-voxel-based 3D ROIs were thereafter extracted for all 
DT/KT metrics from parameters maps and used for histo-
gram generation. 2D ROIs were drawn on DT/KT parameter 
maps in the contralateral normal-appearing white matter, 
at the level of the centrum semiovale, avoiding CSF spaces 
and blood byproducts when present. Two readers (F.D. and 
G.B.) evaluated the accuracy of co-registrations and the ab-
sence of visible distortions.

Histogram Analysis of DT and KT Metrics

The histogram analysis was performed for DT/KT 3D ROI 
datasets using Matlab and in-house scripts. Voxel in-
tensity values outside the 0.5–3.5 μm2/ms range for DT 
maps and outside the 0.4–1.2 range for KT maps were 
discarded in order to reduce the influence of noisy 
points. Relative frequency histograms were generated 
for each subject after normalization of the individual 
voxel-per-bin histograms by the volume of the corre-
sponding 3D ROI. Histogram smoothing was performed 
using a moving average window of 0.14  μm2/ms for 
DT and 0.04 for KT histograms. Histogram means and 
centiles (C5, C10 for DT and C90, C95 for KT maps) were 
extracted from each individual subject’s histogram, thus 
providing 18 DT/KT variables in total. The normalization 
of the histogram parameters to the values in contralat-
eral normal-appearing white matter ROIs was omitted 
since intergroup differences in these regions were not 
significant (Supplementary Table S2).

Statistical Analysis

Statistical analysis was performed using the software 
MedCalc (c17.2, MedCalc Software Bvba, 2017). The 
normal distribution of variables was assessed using the 
Kolmogorov–Smirnov test. Intergroup differences in the 
mean values of DT/KT parameters relating to 2D ROIs in 
normal-appearing white matter, 3D ROI histogram param-
eters of DT/KT metrics, and 18F-FET PET parameters 
(TBRmax, TBRmean, TTP, slope) were compared using the 
Mann–Whitney U test.

3D ROI histogram parameters of DT/KT metrics were 
considered significant for P ≤ .0028 =  .05/18, where the 
value of α was set using Bonferroni correction for mul-
tiple comparisons (n  =  18). Comparisons of 4 18F-FET 
PET parameters were considered significant for P ≤ 
.0125 = .05/4. Given the exploratory nature of this work 
and the restrictive nature of the Bonferroni correction, 
we additionally regarded non-corrected α  =  0.05 and 
refer to the findings with 0.003 < P ≤ .05 for DT/KT met-
rics and with 0.0125 < P ≤ .05 as “significant prior to cor-
rection.” 40 Possible associations between the variables 
were ignored as the primary goal of this study was to 
identify the most promising biomarkers.

Receiver operating characteristic (ROC) curves were 
employed to assess the areas under the ROC curve (AUC) 

and to find optimal cutoff values of the histogram param-
eters. Only parameters that were statistically significant 
in intergroup comparisons were considered. Statistically 
significant differences among AUCs were explored using 
the DeLong methodology with an exact binomial 95% con-
fidence interval.

Univariate logistic regressions with “diagnosis” as 
the dependent binary variable were used to test the pre-
dictive ability of the DT/KT histogram parameters that 
were significant according to the Mann–Whitney U test 
results. Finally, in order to identify parameter combin-
ations that can more accurately predict TPR compared to 
individual parameters, a multivariate logistic regression 
model was constructed with diagnosis as the dependent 
variable. The regression coefficients for MK C90 (4.7) and 
TBRmax (39.2) were further used as weighting factors in 
order to produce a single, clinically applicable FET–DKI 
index for the differentiation between TPR and TRC in the 
following way:

FET−DKI index = 4.7 × TBRmax + 39.2 × MKC90.(1)

Results

Eleven patients were allocated to the TRC group and 21 pa-
tients to the TPR group. The diagnosis was based on histo-
pathology in 12 cases and on clinical follow-up in 20 cases. 
One patient from the TRC group had a history of recurrence 
prior to PET/MRI, while 11 TPR patients experienced one or 
more recurrences. The whole cohort underwent surgery 
and concurrent TMZ chemoradiation therapy plus adjuvant 
TMZ as first-line therapy. Second-line bevacizumab (BEV) 
was employed alone or in combination with other agents 
in 3 patients. At the time of PET/MRI, 17 patients were being 
treated with TMZ, 1 patient from the TPR group was treated 
with BEV, and 14 patients were off therapy (Supplementary 
Table S1).

Statistically significant (P < .0028) increases were found 
for all histogram parameters of the KT metrics in the TPR 
compared to the TRC group, except for AK C90 and AK C95 
(which were significant prior to correction, P ≤ .05). The 
histogram parameters of the DT metrics did not reach sta-
tistical significance (P > .008) after Bonferroni correction. 
However, it is worth pointing out that DT metrics showed a 
clear tendency to be lower in the TPR group and 4 of them 
(mean RD, RD C5, RD C10, and MD C10) were significant 
prior to correction (P ≤ .05). There was no significant dif-
ference in 18F-FET PET parameters TBRmean, TTP, and slope 
between the groups, whereas TBRmax was significantly 
lower in TRC. Table 1 provides a summary of the medians 
and interquartile range evaluated for the 3D ROI histogram 
parameters of the DT/KT and for the 18F-FET PET param-
eters for both groups, along with P values of the intergroup 
comparisons.

Examples of 18F-FET uptake, CE-T1, and DT/KT parameter 
maps and the histograms corresponding to the ROIs high-
lighted in the maps for one representative patient from 
each of the TRC and TPR groups are shown in Figures 1 

https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab044#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab044#supplementary-data
https://academic.oup.com/noa/article-lookup/doi/10.1093/noajnl/vdab044#supplementary-data
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and 2, respectively. In the TRC patient (Figure 1), diffusivity 
histograms constitute larger areas with higher values, 
whereas KT histograms are clearly shifted toward lower 
values in comparison to the patient from the TPR group 
(Figure 2). Accordingly, at the group level, the cumulative 
relative frequency histograms of the DT/KT parameters 
in the TPR group appear shifted toward lower diffusivities 
and higher diffusion kurtoses compared to the TRC group 
(Figure 3).

The MK C90 cutoff value of 0.62 yielded the largest 
AUC = 0.87 (P < .0001), with a sensitivity of 100%, a speci-
ficity of 64%, and an accuracy of 88%. A sensitivity of 100% 
was also reached by MK mean and RK C90 showing AUCs 
of 0.85 (P < .0001) and 0.83 (P =  .0001), respectively. The 
highest specificity (91%) was observed in MK C95 with an 
AUC of 0.86 (P < .0001). AUCs were not significantly dif-
ferent between KT parameters (P > .05). ROC analysis for 
TBRmax, the only significant parameter among the 18F-FET 
PET metrics, yielded a cutoff of 2.95 and an AUC of 0.77 
(P = .003) with a sensitivity of 71%, a specificity of 73%, and 
an accuracy of 72%.

The multivariate logistic regression model was tested for 
a combination of metrics, with the highest correct classifi-
cation rates in each of the DKI and 18F-FET PET parameter 
sets (ie, MK mean, MK C90, and TBRmax), and for various 

combinations of DKI and 18F-FET PET parameters that were 
significant in intergroup comparisons. However, as none of 
the latter combinations yielded better diagnostic accuracy 
than the combination of MK C90 and TBRmax, these tests 
were not pursued in further analysis. The combination of 
MK C90 and TBRmax resulted in the highest diagnostic accu-
racy (94%) with an AUC of 0.97 (Table 2, bottom panel). The 
ROC analysis of the single FET–DKI index (Eq. 1) yielded a 
cutoff of more than 41 to identify TPR resulting in an AUC 
of 0.97, a sensitivity of 95%, a specificity of 91%, and an 
accuracy of 94% for differentiation between TPR and TRC. 
Table 2 summarizes the results of the ROC curve and lo-
gistic regression analysis for the histogram parameters of 
the KT metrics and TBRmax of 18F-FET uptake. The results of 
the ROC analysis for differentiation between the TPR and 
TRC groups are visualized in Figure 4 for MK C90 (red), 
TBRmax (green), and FET–DKI index (black) for comparison.

Discussion

The main finding of our exploratory study shows that ex-
ploiting combined information relating to amino acid 
transport by 18F-FET PET and microstructural information 

  
Table 1. Comparison of DT/KT Metrics (Upper Panel) and 18F-FET PET Parameters (Bottom Panel) in the TRC and TPR Groups

Parameter TRC (n = 11) TPR (n = 21) P

MD Mean 1.54 (1.42/1.7) 1.32 (1.24/1.55) .060

C5 1.00 (0.94/1.10) 0.93 (0.80/1.02) .065

C10 1.13 (1.05/1.18) 1.02 (0.87/1.1) .023*

RD Mean 1.54 (1.31/1.63) 1.21 (1.13–1.43) .034*

C5 0.92 (0.85/1.00) 0.80 (0.66/0.86) .020*

C10 0.99 (0.96/1.10) 0.87 (0.73/0.94) .008*

AD Mean 1.84 (1.69/1.91) 1.57 (1.46/1.83) .100

C5 1.24 (1.13/1.30) 1.14 (0.96/1.30) .197

C10 1.32 (1.20/1.37) 1.20 (1.03/1.35) .171

MK Mean 0.50 (0.48/0.58) 0.61 (0.57/0.69) .002**

C90 0.61 (0.55/0.73) 0.78 (0.70/0.83) .001**

C95 0.68 (0.57/0.77) 0.82 (0.76/0.90) .001**

RK Mean 0.52 (0.50/0.60) 0.63 (0.58/0.68) .002**

C90 0.65 (0.57/0.76) 0.81 (0.73/0.88) .002**

C95 0.74 (0.59/0.80) 0.88 (0.78/0.98) .002**

AK Mean 0.51 (0.48/0.55) 0.59 (0.55/0.65) .002**

C90 0.62 (0.56/0.68) 0.73 (0.67/0.79) .003*

C95 0.68 (0.61/0.76) 0.78 (0.72/0.86) .015*

[18F]-FET PET TBRmean 2.00 (1.83/2.08) 2.00 (1.90/2.23) .200

TBRmax 2.50 (2.13/3.20) 3.30 (2.75/3.93) .012**

TTP 37.50 (37.5/27.5) 27.50 (32.5/22.5) .067

Slope 0.42 (0.65/0.32) 0.25 (0.61/0.03) .210

3D ROI histogram parameters (the means and the centiles) of the DT/KT metrics and FET PET parameters are presented by their medians and 
quartiles (Q1/Q3 in parentheses) and by P values of the intergroup comparisons. Diffusivities are given in units of μm2/ms. Significant (Bonferroni 
corrected) comparisons are indicated by **, suggestively significant (non-corrected) by *.
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from diffusion MRI may offer synergistic benefits for clin-
ical practice when addressing the issue of discrimination 
between TPR and TRC. That is to say, for patients with sus-
pected recurrent glioblastoma, areas of the brain with in-
creased 18F-FET uptake exhibit microstructural differences, 
which can be captured by KT histogram parameters, en-
abling the differentiation of TPR and TRC with high diag-
nostic accuracy. Another important finding is that the KT 
metrics in the areas with high 18F-FET uptake essentially 
outperformed DT metrics in differentiating TPR and TRC. 
This finding is in line with the previously reported higher 
sensitivity of KT metrics in the characterization of various 
pathological brain states.41,42 Furthermore, multivariate 

logistic regression analysis indicated that the differentia-
tion between TPR and TRC could be improved by a combi-
nation of KT histogram parameters and TBRmax. Based on 
this result, we generated a single robust FET–DKI index by 
summing up weighted values of TBRmax and MK C90 (Eq. 
1). The FET–DKI index allowed for the differentiation of TPR 
and TRC with an AUC of 0.97 at a cutoff of 41 and, thus, 
might be useful in clinical decision making. We would like 
to emphasize that the high performance of the KT metrics 
and the combined FET–DKI approach observed in this work 
can be attributed, on the one hand, to the segmentation of 
the lesions by areas with increased 18F-FET uptake rather 
than on contrast-enhanced MRI and, on the other hand, to 
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Figure 1. Examples of 18F-FET uptake, CE-T1 MRI, and DT/KT parameter maps (A), and the histograms corresponding to the ROIs highlighted in the 
maps for a patient with TRC (B).
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the application of the histogram analysis, reducing aver-
aging effects of either TPR or treatment-modulated lesion 
heterogeneity.

Our results concerning DT/KT parameters require dis-
cussion in the context of the current literature. Regarding 
the normal-appearing white matter, the values of diffu-
sivities and diffusion kurtoses observed in this work were 
in the range of those seen in previous investigations.24,25 
To date, only a small number of studies have applied the 
DKI histogram analysis to patients with brain tumors.43,44 
These studies, however, have focused primarily on glioma 
grading, so that a direct comparison with our results is 
not possible. Nevertheless, several studies have explored 

the role of conventional DTI in differentiating TPR from 
TRC30,45,46 with the majority of data indicating insufficient 
diagnostic accuracy. In our study, a clear tendency for 
lower diffusivity values in the TPR group was observed; 
however, none of the DT metrics reached statistical signifi-
cance in the intergroup differentiation.

A positive correlation between kurtosis metrics and 
Ki-67, a marker of cellular proliferation, was found by Jiang 
et  al.,25 suggesting that higher cellularity in conjunction 
with other cellular, subcellular, and extracellular changes 
contributes to the increasing microstructural complexity 
of tumorous tissue. Similarly, Hempel et  al.41 recently 
found significant variations in MK according to molecular 
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subtypes of gliomas with well-known differences in histo-
logical features. More generally, it is suggested that with 
the exception of the most straightforward quantitative 
parameters, such as cell density, various additional fea-
tures (cell size, shape, nucleoplasm to cytoplasm ratio, 
etc.) of neoplastic cells47 and extracellular matrix composi-
tion48 may also influence water diffusion.

The results indicate that posttreatment 
multicompartmental disruption of microenvironment49 re-
sults in globally lower diffusion kurtosis in TRC compared 
to the tightly organized axon bundles of normal-appearing 
white matter. In contrast, in TPR, proliferating and invading/
infiltrating cells and extracellular space tortuosity result in 

higher kurtosis than in TRC, yet not as high as in normal-
appearing white matter. A variable mixture of features sug-
gesting TPR and TRC are routinely reported at histology.49 
In this regard, our novel 18F-FET PET guided ROI defini-
tion approach allowed us to focus on metabolically active 
tissue, thereby discarding “pure” vasogenic perilesional 
edema and nonspecific blood–brain barrier disruption 
while including the surrounding normal-appearing paren-
chyma on MRI which, however, showed above threshold 
18F-FET uptake on PET imaging. Furthermore, since the 
diffusion signal may fluctuate during and after therapy, 
leading to confusing interpretations when measured at a 
single time point,18,48 the metabolic information provided 
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by 18F-FET PET may also help in reducing confounding 
factors.

In the present study, an 18F-FET uptake threshold of 1.6 
or more above background was used to identify meta-
bolically abnormal tissue. This threshold was determined 
in untreated gliomas to best differentiate glioma tissue 
from peritumoral tissue.8 In the post-therapeutic situation, 
however, reactive changes in the tissue, such as reactive 
astrocytosis, lead to a moderate increase of 18F-FET uptake 
so that the 3D ROI used in this study probably includes 
both TPR and TRC. Nevertheless, 18F-FET PET has shown 
good diagnostic accuracy in discriminating between TRC 
and TPR.9,29 Our results are in agreement with those pub-
lished,9,29 although we did not find significant differences 
for TBRmean, which might be attributed to the relatively 
small sample size in our study.

The limitations of this work refer to the relatively small 
number of patients, the absence of a validation set, the 
monocentric approach, a small number of biopsies in the 
TRC group, a wide range of timings after various treat-
ments all of which may hinder the generalizability of the 
results. Furthermore, anti-angiogenic drugs or cortico-
steroids might have an influence especially on contrast 
enhancement in MRI, that is, blood–brain barrier perme-
ability. However, the uptake of 18F-FET that was used for 
ROI definition is independent of BBB disruption. Hence, 
the influence of these drugs on the results is unlikely. 
Moreover, there is a selection bias, because only pa-
tients are referred for 18F-FET PET in whom the diagnosis 
is unclear on the basis of conventional MRI and clinical 
parameters. Thus, the collective is representative of the 
problematic cases in clinical practice, which strengthens 
the validity of the results. Nevertheless, further studies 
with neuropathological validation of neuroimaging find-
ings in a higher number of patients are warranted to con-
firm our findings.

In conclusion, our results indicate that the combined 
use of amino acid PET using the tracer 18F-FET and KT 
histogram analysis may help to pinpoint the differences 
between TPR and TRC. KT histogram analysis has been 

demonstrated to have a potential value in defining the 
subtle imaging differences between progressive glio-
blastoma and TRC and performs better than DT metrics. 
Higher diagnostic accuracy was obtained by combining 
18F-FET PET (TBRmax) and the higher-end KT histogram 
centiles (MK C90) in comparison to stand-alone 18F-FET 
PET and DT/KT metrics. Thus, the combined analysis of 
amino acid PET and advanced MRI provides more diag-
nostic information than either modality alone. Future 
studies should look for diffusion abnormalities within 
tumor subregions of highest 18F-FET uptake and make 
comparisons with histomolecular findings in order to 
shed more light on their relationship with the underlying 
microstructural and morphological features of the most 
cell-dense tumor habitat.

  
Table 2. Diagnostic Accuracy of the KT Histogram Parameters and TBRmax of FET PET for Differentiating Between the TRC and TPR as Assessed by 
the ROC and Univariate Logistic Regression Analysis (Upper Panel) and the Multivariate Logistic Regression (Bottom Panel): AUC, cutoff values, 95% 
CI values in parentheses, sensitivity, specificity, and P values

AUC 95% CI Cutoff (>) Sensitivity Specificity Accuracy P

MK Mean 0.85 0.68–0.95 0.51 100 64 88 <.0001

C90 0.87 0.70–0.96 0.62 100 64 88 <.0001

C95 0.86 0.69–0.95 0.79 67 91 75 <.0001

RK Mean 0.83 0.66–0.94 0.56 90 70 84 .0002

C90 0.83 0.66–0.94 0.67 100 64 88 .0001

C95 0.77 0.66–0.94 0.77 81 73 78 <.0001

AK Mean 0.83 0.67–0.95 0.56 90 64 81 <.0001
18F-FET PET TBRmax 0.77 0.59–0.90 2.95 71 73 72 .003

FET–DKI index TBRmax + MK C90 (weighted) 0.97 0.89–1.02 41 95 91 94 <.0001

FET–DKI TBRmax and MK C90 0.97 0.83–0.99 — — — 91 <.0001
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Figure 4. ROC analysis for differentiation between the TPR and 
TRC groups based on MK C90 (red), TBRmax (green), and FET–DKI 
index (black). AUCs are indicated in the figure legend.
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