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Simple Summary: Patients with mucinous adenocarcinoma (MAC) have been considered to have a
faster disease progression than patients with traditional adenocarcinoma (TAC) in colorectal cancer
(CRC). However, to date, the roles of MAC in long-term survival remain controversial due to a small
sample size and the nature of its relatively rare occurrence, although it potentially represents entities
with different aggressiveness and prognoses. Here, using large-scale population data, we found that
the patients with the MAC subtype had a significantly worse overall survival rate and a tendency of
worse disease-specific survival rate in stage II compared with the patients with the TAC subtype.
Furthermore, key gene signatures were identified using the established predictive models for the
disease-specific survival of stage II mucinous CRC.

Abstract: Colorectal cancer (CRC) comprises several histological subtypes, but the influences of
the histological subtypes on prognosis remains unclear. We sought to evaluate the prognosis of
mucinous adenocarcinoma (MAC), compared to that of traditional adenocarcinoma (TAC). This
study used the data of patients diagnosed with CRC between 2004 and 2016, as obtained from the
Surveillance, Epidemiology, and End Results database. We established a predictive model for disease-
specific survival using conditional survival forest, model, non-linear Cox proportional hazards,
and neural multi-task logistic regression model and identified the gene signatures for predicting
poor prognosis based on the arrayexpress datasets. In total, 9096 (42.1%) patients with MAC and
12,490 (58.9%) patients with TAC were included. Those with the MAC subtype were more likely
to have a poorer overall survival rate compared to those with the TAC subtype in stage II CRC
(p = 0.002). The eight major genes including RPS18, RPL30, NME2, USP33, GAB2, RPS3A, RPS25, and
CEP57 were found in the interacting network pathway. MAC was found to have a poorer prognosis
compared to TAC, especially in Stage II CRC. In addition, our findings suggest that identifying
potential biomarkers and biological pathways can be useful in CRC prognosis.

Keywords: colorectal cancer; mucinous; survival; biomarker; gene

1. Introduction

Traditionally, the TNM staging system has played a fundamental role in the manage-
ment of patients with colorectal cancer (CRC) as the most powerful and reliable predictor of
prognosis [1]. However, clinicians often encounter various clinical outcomes after patients
receive standard curative treatment, even among CRC patients with the same stage, which
is unexpected and inexplicable. Increasing attention is being focused on the identification
of new factors, which may enable a more accurate patient prognostic stratification within
each stage in CRC.

Apart from the TNM staging system, histological classification, which is based on
histological characteristics and genetic features traits, may influence the clinical features
and outcome in CRC; thus, clarifying the effect of the varied histological subtypes will
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help clinicians choose the appropriate treatment strategy [2,3]. Mucinous adenocarcinoma
(MAC) is defined by the World Health Organization (WHO) as ‘an adenocarcinoma con-
taining more than 50% extracellular mucin within the tumor’ [4], which was found to occur
in approximately 10% of all CRCs [5]. Compared with other subtypes, the MAC subtype
is characterized by often occurring in a younger age [6], in a more advanced stage [7,8],
and at the proximal colon [9,10]. From these findings, patients with MAC may be expected
to have a faster disease progression than patients with traditional adenocarcinoma (TAC),
which is classified as tubular, villous, or tubulovillous adenocarcinoma.

However, the actual clinical impact on the long-term survival of MAC patients com-
pared that of with TAC patients and the causal link with its tumor biology remains highly
controversial, although it potentially represents entities with different aggressiveness and
prognoses [11]. To address these issues, we applied the incidence-based mortality method
to Surveillance, Epidemiology, and End Results (SEER) data, a national population-based
cancer registry [12], to investigate the long-term survival differences between MAC and
TAC in CRC, followed by identifying the candidate biomarker genes and their pathways
related to prognosis by investigating genomic data.

2. Materials and Methods
2.1. Data Sources

We used data from the National Cancer Institute’s SEER Program database, which was
created to collect cancer incidence, prevalence, and survival data from U.S. cancer registries.
SEER collects and publishes cancer incidence and survival data from 17 population-based
cancer registries (Alaska Native tumor registry, Connecticut, Georgia Center for Cancer
Statistics, San Francisco-Oakland, San Jose-Monterey, Greater California, Hawaii, Idaho,
Iowa, Kentucky, Los Angeles, Louisiana, Massachusetts, New Mexico, New York, Seattle-
Puget Sound, and Utah), covering approximately 34.6% of the U.S. population [13]. The
database is broadly representative of the U.S. population. The SEER registry contains
information on nine million cancer cases with over 550,000 new cases added to the database
each year. It serves as a powerful resource for researchers focused on understanding the
natural history of CRC and improving patient treatment [13,14]. This retrospective cohort
study was reviewed and approved by the Institutional Review Board of the Kyung Hee
University Hospital at Gangdong, Seoul, Republic of Korea (KHNMC IRB 2020-01-015).
The need for informed consent was waived on account of the fact that all of the data used
in this study were de-identified.

2.2. Study Population

The SEER registry collects data, including age at diagnosis, sex, race, primary site,
histological type, tumor grade, tumor size, tumor depth, and survival. Using the SEER
1975–2016 database (released on 15 April 2019), we analyzed data from all of the patients
diagnosed with CRC in the years 2004–2016. We extracted clinical and/or demographic
data, including age at diagnosis, sex, race, and tumor information, including location,
size, grade, histological type, and American Joint Committee on Cancer 7th TNM stages
by using SEER disease codes. Tumor location was determined by using the following
codes: cecum (C18.0), appendix (C18.1), ascending colon (C18.2), hepatic flexure (C18.3),
transverse colon (C18.4), splenic flexure (C18.5), descending colon (C18.6), sigmoid colon
(C18.7), overlapping lesion of colon (C18.8), colon (C18.9), rectosigmoid (C19.9), and rectum
(C20.9). The morphology of cancer was categorized according to the third edition of the
International Classification of Diseases for Oncology (ICD-O-3) histology and behavior
codes: tubular adenocarcinoma, (8211/3); adenocarcinoma in villous adenoma (8261/3),
villous adenocarcinoma (8262/3), adenocarcinoma in tubulovillous adenoma (8263/3),
and MAC (8480/3). For tumor differentiation grading, we used a four-tier classification
(well-differentiated, moderately differentiated, poorly differentiated, undifferentiated),
which was proposed by the WHO grading system [15]. Patients were divided into two
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groups: the TAC group (patients with tubular adenocarcinoma, villous adenocarcinoma,
and tubulovillous adenocarcinoma) and the MAC group (patients with MAC).

2.3. Establishment of Predictive Model

To develop a clinical prediction model for disease-specific survival, we used three
predictive models for poor outcomes in CRC patients with MAC based on SEER data.
For the tree approach, a conditional survival forest model (CSF) was conducted with
200 decision trees and a maximum depth of 5 to the square root of the total number of
features [16]. The non-linear Cox proportional hazards (nCPH) model is frequently used to
model survival data or time-to-event data, particularly in the presence of censored survival
times [17]. Bent identity was used as an activation function. Furthermore, the learning rate,
dropout rate, and number of epochs were set to 0.01, 0.2 and 5000, respectively. Finally,
a neural multi-task logistic regression model (N-MTLR), which is based on a multi-task
framework allowing the use of neural networks within the original MTLR design, was
used [18]. The model was trained over 2000 epochs with a learning rate of 0.0001 using the
Adam optimizer and rectified linear unit function. The patients were randomly assigned to
a training set (80%) or a test set (20%).

2.4. Gene Signature Evaluation

To identify the different gene signatures for predicting poor outcome using the de-
veloped model, two previously published datasets (E-MTAB-863 and E-MTAB-864; Ar-
rayExpress) were retrieved. A total of 37 patients from E-MTAB-863 and 18 patients from
E-MTAB-864 were available for analysis after excluding patients with missing variables
and other histological types except for MAC. The data were executed in robust multi-array
analysis background correction and log2 transformed, then normalized through quantile
normalization.

The linear models for the microarray data package in Bioconductor were utilized
to mine statistically significant differentially expressed genes (DEGs) based on the dif-
ference in their expression values between MAC and TAC [19]. A p-value of <0.05 and
|log2 fold change of | ≥ 1 were used as the cutoff criteria for this analysis. Further analysis,
including construction of a human Protein-Protein Interaction (PPI) network, was carried
out with the web-based tool NetworkAnalyst (http://www.networkanalyst.ca), which
supports robust and reliable gene expression analysis [20,21], and pathway activations
were selected and matched according to the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database.

2.5. Statistical Analysis

The SEER data were obtained using the SEER*Stat software (8.3.6 version; Surveillance
Research Program, National Cancer Institute, Bethesda, MD, USA). To account for the
potential effect of covariates on each outcome, we created a propensity score combining
the covariates of age, sex, race, tumor grade, and tumor size and compared the prognosis
of CRC patients with TAC and those with MAC. The cumulative probabilities of survival
were assessed according to the Kaplan-Meier life-table analysis. A log-rank test was used
to compare the survival rates between the TAC and MAC groups. Demographic differences
between the two groups were tested using the Student’s t-test and Pearson chi-square
test. All analyses were performed with Python (version 3.6.9) and R statistical software
(version 3.6.0). A two-sided p ≥ 0.05 was considered statistically significant.

3. Results
3.1. Construction of the Prediction Model for Disease-Specific Survival

A total of 21,586 patients were included: 9096 (42.1%) patients with MAC and
12,490 (58.9%) patients with TAC in the SEER database. The MAC group had signifi-
cantly higher proportions of older patients, female sex (except stage III), higher grades, and
larger tumor sizes than the TAC group in all TNM stages (Supplementary Table S1). The

http://www.networkanalyst.ca
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propensity score matching eliminated significant differences between the two groups and
the distribution of patient characteristics in each group was similar to that of all patients
(Table 1).

Table 1. Baseline characteristics of the patients with stage II CRC in SEER database.

KERRYPNX
Before Matching After Matching

MAC
n = 4390

TAC
n = 2704 p-Value MAC

n = 2618
TAC

n = 2618 p-Value

Age at diagnosis, y, mean (SD) 69.8 (14.5) 68.6 (13.9) <0.001 68.8 (14.7) 68.9 (13.8) 0.877
Sex, n (%)

<0.001 0.934Male 2010 (45.8) 1326 (49.0) 1267 (48.4) 1263 (48.2)
Female 2380 (54.2) 1378 (51.0) 1351 (51.6) 1355 (51.8)

Tumor grade, n (%)

<0.001 0.151
Well-differentiated 522 (11.9) 341 (12.6) 335 (12.8) 326 (12.5)

Moderately-differentiated 3144 (71.6) 2105 (77.8) 2040 (77.9) 2036 (77.8)
Poorly-differentiated 615 (14.0) 213 (7.9) 217 (8.3) 211 (8.1)

Undifferentiated 109 (2.5) 45 (1.7) 26 (1.0) 45 (1.7)
Primary site, n (%)

<0.001

Cecum 1277 (29.1) 915 (33.8)
Ascending 1219 (27.8) 605 (22.4)

Hepatic flexure 302 (6.9) 141 (5.2)
Transverse 531 (12.1) 252 (9.3)

Splenic flexure 155 (3.5) 99 (3.7)
Descending 217 (4.9) 129 (4.8)

Sigmoid 592 (13.5) 512 (18.9)
Rectal 97 (2.2) 51 (1.9)

Race, n (%)

<0.001 0.917

Hispanic (All Races) 469 (10.7) 315 (11.6) 304 (11.6) 302 (11.5)
Non-Hispanic American Indian/Alaska

Native 12 (0.3) 10 (0.4) 8 (0.3) 7 (0.3)

Non-Hispanic Asian or Pacific Islander 261 (5.9) 174 (6.4) 173 (6.6) 168 (6.4)
Non-Hispanic Black 453 (10.3) 364 (13.5) 349 (13.3) 329 (12.6)
Non-Hispanic White 3195 (72.8) 1841 (68.1) 1784 (68.1) 1812 (69.2)
Tumor depth, n (%)

<0.001T3 3604 (82.1) 2376 (87.9)
T4 786 (17.9) 328 (12.1)

Tumor size, mm, mean (SD) 64.5 (42.4) 54.0 (47.6) <0.001 54.3 (30.0) 53.3 (30.4) 0.211

MAC, mucinous adenocarcinoma; SD, standard deviation; SEER, Surveillance, Epidemiology, and End Results; TAC, traditional adenocarci-
noma.

After adjustment, we conducted subgroup analysis by tumor stage to further investi-
gate the disease-specific and overall survival rates. The patients with the MAC subtype
were more likely to have a poor overall survival rate compared to patients with the TAC
subtype, notably patients with stage II (p = 0.002; Figure 1). It did not reach statistical
significance for disease-specific survival between the two groups in stage II (p = 0.161). In
addition, those in the MAC group showed poorer disease-specific survival rates than those
in the TAC group with stage III and stage IV (p < 0.001 and p < 0.015; Figure 1). Similar
results were also obtained by Cox proportional hazards analysis (Supplementary Table S2).
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Figure 1. Kaplan–Meier curves of disease-specific and overall survival according to the stage between
mucinous (MAC) and traditional colorectal cancer (TAC) in the SEER database.

3.2. Development and Validation of a Risk Stratification Model for MAC with Stage II

Because we found a difference in the not-cause specific survival rate between the MAC
and TAC groups in Stage II diseases, a disease-specific survival predictive model in Stage
II CRC using CSF, n-CPH, and N-MTLR models were established (Figure 2). Tested on 20%
of the SEER dataset using the predictive models, the root mean square errors (RMSEs) were
12.506, 26.714, and 11.529 in CSF, n-CPH, and N-MTLR, respectively. Similarly, the RMSEs
were 6.775, 6.447, and 6.230 as a result of the test in the E-MTAB 863 and 864 test sets.
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Figure 2. Internal and external validations of three developed models for disease-specific survival in mucinous colorectal can-
cer. The model shows reasonable discrimination in SEER database and arrayexpress datasets. RMSE, root mean square error.

3.3. Identifying the Differentially Expressed Genes in ArrayExpress Dataset

Of the E-MTAB-863 and E-MTAB-864 datasets, a total of 34 patients, commonly clas-
sified into high-risk and low-risk groups from the three established machine learning
models (CSF, n-CPH, and N-MTLR), were identified (Table 2). Of 117 DEGs, we identi-
fied the 12 DEGs (RPS18, USP33, CENPL, GAB2, RPS3A, RPS25, RPL30, HNMT, NME2,
CEP57, ZC3H8, and TRIT1) most highly associated with disease-specific survival in stage
II mucinous CRC (Figure 3, Supplementary Figure S1 and Supplementary Table S2).

Table 2. Baseline characteristics of the patients with stage II CRC in array data.

Variables High Risk Low Risk p-Value
n = 18 n = 16

Prognosis, n (%)
Good prognosis 5 (27.8) 13 (72.2) 0.006
Poor prognosis 13 (72.2) 3 (16.7)

Sex,
n (%)

male 11 (61.1) 6 (33.3) 0.303
female 7 (38.9) 10 (55.6)

Cancer-related death, n (%)
Yes 11 (61.1) 2 (11.1) 0.011
No 7 (38.9) 14 (77.8)

Tumor grade, n (%)
Well-differentiated 1 (5.6) 2 (11.1) 0.466

Moderately-differentiated 12 (66.7) 11 (61.1)
Poorly-differentiated 5 (27.8) 2 (11.1)

Undifferentiated 0 (0.0) 1 (5.6)
Lymphovascular invasion, n (%)

Yes 5 (27.8) 2 (11.1) 0.507
No 11 (61.1) 12 (66.7)

N/A 2 (11.1) 2 (11.1)
T stage, n (%)

3 13 (72.2) 16 (88.9) 0.072
4 5 (27.8) 0 (0.0)

Tumor location, n (%)
Caecum 5 (27.8) 6 (33.3)

Ascending colon 1 (5.6) 8 (44.4) 0.017
Hepatic flexure 2 (11.1) 0 (0.0)

Transverse colon 5 (27.8) 2 (11.1)
Splenic flexure 3 (16.7) 0 (0.0)

Descending colon 0 (0.0) 0 (0.0)
Sigmoid colon 2 (11.1) 0 (0.0)
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Table 2. Cont.

Variables High Risk Low Risk p-Value
n = 18 n = 16

Family history of CRC
Yes 1 (5.6) 0 (0.0) >0.999
No 10 (55.6) 6 (33.3)

N/A 7 (38.9) 10 (55.6)
Cancer recurrence

Yes 14 (77.8) 3 (16.7) 0.002
No 4 (22.2) 13 (72.2)

Age at diagnosis, y, mean (SD) 78.33 (8.02) 70.13 (5.82) 0.002
Length of follow up, y, mean (SD) 3.14 (2.16) 6.01 (2.74) 0.002
Tumor cell content, (%) 73.89 (14.61) 67.19 (16.22) 0.217
Number of regional LN assessed 14.5 (8.28) 17.5 (8.66) 0.312
Tumor size, cm, mean (SD) 7.02 (2.41) 5.28 (1.77) 0.022

CRC, colorectal cancer; LN, lymph node; SD, standard deviation.
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3.4. KEGG Pathway Analysis and Construction of the PPI Network

The interacting network analysis of responsive genes was further performed to iden-
tify the key genes. A total of 117 DEGs were subjected to KEGG pathway analysis
(Supplementary Table S3). The genes were significantly enriched in the ‘pathways in
cancer’, ‘viral carcinogenesis’, ‘PI3K-Akt signaling pathway’, ‘proteoglycans in cancer’,
and ‘Ras signaling pathway’ (Supplementary Table S3). By performing further PPI network
analysis, RPS18, RPL30, NME2, USP33, GAB2, RPS3A, RPS25, and CEP57 were indicated
to be the common hub genes (Figure 4). Among them, RPS3A constituted the super hub
node having the largest degree and highest betweenness (Supplementary Table S4).
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4. Discussion

Using a large-scaled population data, we found that the patients with the MAC
subtype had a significantly worse overall survival rate and a tendency of worse disease-
specific survival rate in stage II compared with the patients with the TAC subtype. In
addition, key gene signatures were identified using the established predictive models for
disease-specific survival of stage II mucinous CRC.

Results of the prognosis of MAC compared with TAC are still conflicting. Several
studies have reported no correlation of MAC with the oncologic outcomes of CRC patients.
Purdie and Piris [22], Xie [23], and Warschkow et al. [24] did not find the presence of
MAC to be an independent prognostic factor for overall and disease-specific survival
in patients with CRC. Similarly, a study involving 1025 unselected patients from Italy
showed that the overall survival of patients with stage II and III colon cancer with MAC
was not significantly different from those with non-MAC [25]. One study even reported
better overall survival rates in patients with MAC [26]. These discrepancies may reflect
heterogeneity in the population of patients, lack of stratification by stage, exclusion of
rectal primary tumors in some studies, and a small sample size.

In contrast, some authors reported that the MAC subtype was related with a poor
prognosis [5,7,27–29]. Common explanations are that patients with MAC were younger and
had more advanced tumor stages compared with those with TAC. Notably, in the stratified
analysis according to stage from a large-scale population-based cohort, we found stage II
in MAC is the clinically critical timepoint to have more aggressive behavior for survival
than other histological subtypes. A meta-analysis showed that MAC patients had worse
survival rates than TAC patients, even after the stage at diagnosis was similar in MAC and
TAC patients in their meta-analysis [5]. The analysis showed a slightly worse prognosis
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for MAC (hazard ratio 1.05, 95% confidence interval 1.02–1.08) even when corrected for
the stage at presentation. Another study with a stage-adjusted survival analysis from
Germany also showed that the CRC patients with MAC with the same stage had a shorter
disease-specific survival length and tended to have a worse disease-specific survival curve
with a more advanced stage compared to those with TAC, but failed to achieve a level of
statistical significance due to a small sample size [7].

However, even in the studies that showed a correlation of MAC with the prognosis,
there are conflicts regarding MAC as an independent prognostic factor for CRC. A large
retrospective study showed that MAC was not an independent prognostic factor of CRC in
multivariate analysis, although the tumor stage and histological grade were higher in MAC
than in TAC [7]. Similarly, another study reported that the MAC subtype was associated
with adverse pathologic features, but it was not an independent prognostic factor [29].
These results suggest that other approaches, including biological, molecular, or genetic
assessments, are needed to clarify the role of MAC in CRC.

Therefore, we tried to investigate novel insights into the biological differences asso-
ciated with poor survival in stage II mucinous CRC. Of 12 DEGs for the disease-specific
survival of stage II mucinous CRC, eight major genes with a biological relationship within
the PPI network (RPS18, RPL30, NME2, USP33, GAB2, RPS3A, RPS25, and CEP57) were
identified.

Most of the genes have usually been investigated as prognostic biomarkers in renal
cancer, and RPS18, RPL30, NME2, and RPS25 usually have been investigated as unfavorable
predictors, while GAB2 has been reported as favorable predictor in renal cancer [30].

RPS18, the molecules within ribosomal proteins, has been demonstrated to be up-
regulated in CRC tissues. Its upregulation is a well-known common feature of active
proliferation and the proliferation rate of tumor cells [31]. The increased number of ri-
bosomal protein L30 (RPL30) may play a central role in the CRC process and in induced
hepatocellular carcinoma [32,33]. The overexpression of NME2 was significantly associated
with not only clinical parameters related to tumor progression, invasion, and metastasis
but also resistance to 5-FU treatment [34,35]. The low expression of USP33 indicated a high
recurrence risk and poor overall prognosis in advanced CRC patients [36]. Grb2-associated
binders 2 (GAB2) contributed to tumor growth and angiogenesis through the upregula-
tion of vascular endothelial growth factor expression, and it was also important in BRAF
inhibition resistance [37,38]. RPS3A was determined to be a key gene associated with
Microsatellite instability (MSI) as an important biological feature of CRC [39]. Although the
association between RPS25, CEP57, and CRC has not yet been established, the relationship
with other tumors has been reported. RPS25 was shown to be a potential biomarker of
lung adenocarcinoma and adult T-cell leukemia [40,41], while CEP57 was associated with
prostate cancer [42]. Taken together, with applications to CRC genomic data, the hub
genes and networks for disease-specific survival of MAC in stage II revealed potential gene
biomarkers. However, this study only represents the first step toward defining the roles of
these genes in MAC, because there are only a few studies to date that investigate the roles
of these genes. Therefore, additional validation, as well as more experimental research, is
still required in order to verify the results of the present study.

Several limitations associated with our study should be noted. First, a lack of histo-
logical specificity from the ICD-O-3 codes in the SEER database may not precisely capture
all of the patients. This, therefore, could lead to underestimating the true prevalence rate
in TAC, rather than in MAC. As a result, due to the relatively higher proportion (42.1%)
of MAC in the current study compared to previous reports, the disease-specific survival
failed to confirm a statistical significance, despite the trend toward a worse outcome in
stage II MAC. Second, its retrospective nature might contain bias despite propensity score-
matching. Third is the lack of information on perioperative treatment or molecular tumor
characteristics, such as the data on the RAS, BRAF, and MSI status, and serum CEA levels.
Fourth, the mass data may reveal some confounders, for which no inter-observer agreement
data were available for the assessment of MAC and TAC. In spite of these limitations, our
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study suggested three well-established predictive models and gene expression features to
understand the MAC subtype based on the external validity and a high degree of power,
along with minimizing potential confounding. With this, our study may contribute to
a body of evidence that may identify reliable molecular biomarkers to more precisely
stratify patients with MAC through the integrative analysis of large-scale clinical and gene
expression data.

5. Conclusions

Our results indicate that the MAC subtype yielded worse overall and disease-specific
survival compared with TAC subtype in stage II CRC and more advanced stages. The eight
genes that were identified bear distinct cancer-specific attributes and, as a group, plays
important roles in stage II mucinous CRC. Further studies validating the candidate gene
biomarkers would be necessary to clarify the role of MAC in controlled clinical trials as
well as in an experimental setting.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13133280/s1, Figure S1: Volcano plot of differentially expressed genes between high
risk- and low risk- group in mucinous colorectal cancer, Table S1: Baseline characteristics before/after
propensity score matching, Table S2: Hazard ratios from Cox proportional hazards model between
TAC and MAC, Table S3: Significant genes for high risk prediction from differentially expressed gene
in stage II mucinous colon cancer, Table S4: Tissue specific protein-protein interaction in network
analysis, Table S5: Key genes selected based on topological parameters like BC and degree.
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