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Objective: To investigate the velocity and extent of cortical venous filling (CVF) and its

association with clinical manifestations in patients with severe stenosis or occlusion of the

middle cerebral artery (MCA) using dynamic computed tomography angiography (CTA).

Methods: Fifty-eight patients (36 symptomatic and 22 asymptomatic) with severe

unilateral stenosis (≥70%) or occlusion of the MCAM1 segment who underwent dynamic

CTA were included. Collateral status, antegrade flow, and CVF of each patient were

observed using dynamic CTA. Three types of cortical veins were selected to observe the

extent of CVF, and the absence of CVF (CVF-) was recorded. Based on the appearance of

CVF in the superior sagittal sinus, instances of CVF, including early (CVF1), peak (CVF2),

and late (CVF3) venous phases, were recorded. The differences in CVF times between

the affected and contralateral hemispheres were represented as rCVFs, and CVF velocity

was defined compared to the median time of each rCVF.

Results: All CVF times in the affected hemisphere were longer than those in the

contralateral hemisphere (p < 0.05). Patients with symptomatic MCA stenosis had more

ipsilateral CVF- (p = 0.02) and more delayed CVF at rCVF2 and rCVF21 (rCVF2-rCVF1) (p

= 0.03 and 0.001, respectively) compared to those with asymptomatic MCA stenosis.

For symptomatic patients, fast CVF at rCVF21 was associated with poor collateral status

(odds ratio [OR] 6.42, 95% confidence interval [CI] 1.37–30.05, p = 0.02), and ipsilateral

CVF- in two cortical veins was associated with poor 3-month outcomes (adjusted OR

0.025, 95% CI 0.002–0.33, p = 0.005).

Conclusions: Complete and fast CVF is essential for patients with symptomatic MCA

stenosis or occlusion. The clinical value of additional CVF assessment should be explored

in future studies to identify patients with severe MCA stenosis or occlusion at a higher

risk of stroke occurrence and poor recovery.
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INTRODUCTION

A series of studies have shown that patients with severe
intracranial atherosclerotic stenosis (≥70%) or occlusion are at
elevated risk of stroke occurrence and recurrence, regardless of
whether the best medical therapy is received (1–3). For patients
with symptomatic intracranial stenosis, the gradual development
of collateral circulation plays a role in protecting perfusion
and stabilizing cerebral blood flow (4, 5), including arterial
collateral compensation as well as cerebral venous autoregulation
(6). The intracranial venous system, a vital component of the
vascular neural network, accounts for up to 70% of the total
cerebral blood volume (7). However, vascular assessment in
intracranial atherosclerosis is mainly based on arterial collateral
recruitment, ignoring the significant element of intracranial
venous drainage (8).

In recent years, imaging-based venous biomarkers such as
cortical veins have been widely reported to play an essential
role in acute ischemic events (7, 9–11). The presence of cortical
venous filling (CVF) is related to a reduction in infarct volume
and decreased severity of hemiparesis (10). Slow or poor CVF of
the affected territory probably represents a delayed transmission
of cerebral microcirculation, which is more prevalent in strokes
in patients with poor collaterals (12–14). Several studies have
demonstrated that the asymmetry of CVF can accurately predict
clinical prognosis (15–18). In acute stroke patients with severe
intracranial arterial stenosis or occlusion, the asymmetrical
prominent cortical vein sign is associated with early neurological
deterioration (19). However, there have been no reports on
the combined assessment of the extent and velocity of CVF in
patients with chronic atherosclerosis.

As a non-invasive technique, dynamic computed tomography
angiography (CTA)/whole-brain CT perfusion (CTP) is a
potential adjunct to traditional digital subtraction angiography
(DSA) if time-resolved imaging is required (20). Dynamic
CTA/CTP is widely used to evaluate vascular filling from arterial
to venous phases because both the velocity and the extent of
vessel filling can be considered at the same time, showing high
diagnostic accuracy (21–27). To our knowledge, cortical veins,
such as the superficial middle cerebral vein (SMCV) and the veins
of Trolard (VOT) and Labbe (VOL), receive drainage from most
of the arterial supply territories of the middle cerebral artery
(MCA) and drain into the superior sagittal sinus (10, 28, 29).
This study aimed to investigate the extent and velocity of these
key venous fillings and determine whether there is an association
between CVF and clinical manifestations in patients with severe
unilateral MCA stenosis or occlusion using dynamic CTA/CTP.

MATERIALS AND METHODS

Subjects
The Ethics Committee of the First Affiliated Hospital of Jinan
University approved this study. From January 2018 to March
2020, we prospectively screened consecutive patients in the
Department of Neurology of the First Affiliated Hospital of Jinan
University, with unilateral MCAM1 segment stenosis (≥70%) or
occlusion confirmed byDSA or CTA. These patients were divided

into symptomatic and asymptomatic groups. Symptomatic
patients were those with ischemic stroke or transient ischemic
attack within 2 weeks following the onset of symptoms in the
distribution of severe stenotic MCA or occlusion. Asymptomatic
patients were considered for inclusion if there was no history
of cerebrovascular events related to the internal carotid system
but still had unilateral MCA M1 segment stenosis (≥70%)
or occlusion detected by DSA or CTA. All patients received
antiplatelet medication with aggressive risk factors control after
admission.Written informed consent was obtained, and dynamic
CTA/CTP examinations were performed for each patient.

Patients with any of the following conditions were excluded:
(1) internal carotid artery stenosis (≥50%) or contralateral
MCA stenosis (≥50%); (2) previous internal carotid artery
or MCA stenting, balloon dilatation, or endarterectomy; (3)
non-atherosclerotic vasculopathy, such as dissection, moyamoya
disease, or vasculitis; (4) evidence of cardiogenic embolism;
(5) poor image quality hindering further image analysis; and
(6) CT examination-related contraindications. For symptomatic
patients, the National Institutes of Health Stroke Scale (NIHSS)
score was assessed at the time of admission, and the modified
Rankin score (mRS) was obtained at 3 months by telephone
interview or outpatient visit.

CT Protocol
All patients underwent dynamic CTA/CTP examination with
a 320-slice multidetector (Aquilion ONE; Cannon Medical
Systems, Tokyo, Japan). A total volume of 50mL of contrast
material with an iodine content of 370 mg/mL (Ultravist 370;
Bayer, Leverkusen, Germany) was injected at a flow rate of 6
mL/s. The CT scanning parameters were as follows: tube voltage,
80 kV; matrix, 512 × 512; field of view, 320mm; rotation time,
0.35 s; and collimator, 0.5mm × 320. A total of 19 whole-
brain volume data were obtained for every patient and loaded
into a Vitrea Fx 6.3 workstation (Vital Images, Minnetonka,
MN). Based on the separation of the arterial and venous time
attenuation curves (TACs) using contrast enhancement of the
contralateral MCA and the superior sagittal sinus (25), the
maximum intensity projection (MIP) images at different phases
were reconstructed. We defined the time point with the best
contrast opacification of the bilateral MCA, which was less
affected by cortical veins and venous sinuses as the arterial phase
(A-TAC) and the time point at the peak points of the venous TAC
as the venous phase (V-TAC) (Figure 1A). The stenotic degree
of the MCA M1 segment was calculated using 3D CTA with
dedicated imaging software (Figure 1B) or verified by DSA (30).

Image Analysis
Using the reconstructed three-dimensional (3D) CT venography
(CTV) MIP images, we observed contrast enhancement of all
cortical veins that drained into the superior sagittal sinus. We
defined CVF1 as the time point when any cortical vein began
to appear, CVF2 as when most cortical veins reached maximum
contrast opacification, and CVF3 as the first moment when all
cortical veins had completely disappeared (13). In addition, the
difference between CVF2 and CVF1 (CVF21) represented the
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FIGURE 1 | Case 1. A 66-year-old man with a history of hypertension and lipid disorder presented with dizziness for 3 days. (A) The arterial and venous time

attenuation curves (TACs; red and blue, respectively). The selected arterial phase on TAC (A-TAC) was 16.2 s, and the time-to-peak on the venous TAC (V-TAC) was

24.8 s. (B) The arrow points to the left MCA M1 severe stenosis at A-TAC on three-dimensional (3D) computed tomographic angiography (CTA). (C–H) The 3D

computed tomography venography (CTV) shows cortical venous filling (CVF) draining into the superior sagittal sinus at early (CVF1), peak (CVF2), and late venous

phases (CVF3) in the affected (double white arrow) and contralateral (white arrow) hemispheres. Cortical veins begin to be visible in the contralateral (C, CVF1, 19.0 s)

and affected hemispheres (D, CVF1, 20.9 s). The maximum contrast opacification of all cortical veins in the contralateral (E, CVF2, 24.8 s) and affected hemispheres (F,

CVF2, 24.8 s) appear at the same time, and contrast medium in all cortical veins disappears in the contralateral (G, CVF3, 32.7 s) and affected hemispheres (H, CVF3,

37.7 s). CVF21 and CVF31 of the contralateral hemisphere are 5.8 s and 13.7 s, respectively, while the CVF21 and CVF31 of the affected hemisphere are 3.9 s and

16.8 s, respectively. The mean difference between the affected and contralateral hemispheres is 1.9 s for rCVF1, 0 s for rCVF2, 5 s for rCVF3,−1.9 s for rCVF21, and

3.1 s for rCVF31. The presence (color arrow) and absence (circle) of SMCV (green), VOL (red), and VOT (blue) across all whole venous phases (marked as

SMCV+/VOL+/VOT+ and SMCV-/VOL-/VOT-, respectively) are displayed in the 3D CTV and (I–K) axial planes of the V-TAC. SMCV-, VOL-, and VOT- are not found in

the bilateral hemispheres. (L,M) Antegrade flow assessment at TAC in the coronal and axial planes. Contrast filling of the MCA M1 segment and its distal branches in

the affected hemisphere is more than two-thirds of the contralateral hemisphere. the contralateral hemisphere, and antegrade flow is preserved. (N,O) Collateral status

assessment at A-TAC and V-TAC in the axial plane. Complete contrast enhancement of collateral flow at V-TAC in the affected hemisphere with good collateral status.

early to peak-venous phase, and the difference between CVF3
and CVF1 (CVF31) represented the whole venous phase. We
calculated the above CVF times for both hemispheres according
to the timing collection of the 19 volumes (Figures 1C–H).
Moreover, the difference in CVF times between the affected and
contralateral hemispheres was calculated (rCVFs). To further
assess CVF velocity, the fast CVF was defined as a point in time
that was less than or equal to the median rCVF, and slow CVF
was the opposite (13).

To assess the extent of CVF, we first observed contrast filling of
the three cortical veins on 3D CTV, including SMCV, VOT, and
VOL. Subsequently, we assessed the MIP reconstruction of the
cortical veins above the V-TAC in the axial plane (Figures 1I–K).
The presence of CVF at any time point in the venous phase
was defined as CVF+ (SMCV+/VOL+/VOT+), whereas the
absence of CVF during the whole venous phase was defined as

CVF- (SMCV-/VOL-/VOT-) (31). Because CVF- could be seen in
the unaffected hemisphere in subjects with anatomical variations
(32), we defined the condition of CVF- in the affected hemisphere
and CVF+ in the contralateral hemisphere as ipsilateral CVF-.
If there was ipsilateral CVF-, the type and number of ipsilateral
CVF- were recorded in symptomatic and asymptomatic patients.

The antegrade flow across the stenotic MCA was evaluated
in both the coronal and axial planes at A-TAC by referring
to the thrombolysis in cerebral infarction scale based on
DSA (33, 34) (Figures 1L,M). We reported antegrade flow as
preserved or compromised according to whether the vessel
filling of the MCA in the affected hemisphere was more
than two-thirds of the contralateral hemisphere. Moreover,
the collateral status in the affected hemisphere was evaluated
at the level of the basal ganglia and thalamus in the axial
plane at A-TAC and V-TAC by comparing it with that in the
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contralateral hemisphere (35) (Figures 1N,O). For our analysis,
we reported good collateral status if the collaterals presented
complete contrast enhancement at V-TAC or A-TAC and poor
collateral status if no contrast enhancement or peripheral
contrast enhancement was observed with V-TAC or A-TAC. Two
experienced neuroradiologists (Z.Y.C and X.R.C), blinded to all
clinical information, independently interpreted and measured
the imaging data of all patients. In case of disagreements further
judgment was made by consulting a neuroimaging radiologist
with higher qualifications.

Statistical Analyses
Statistical analyses were conducted using SPSS version 21.0 (IBM
Corp., Armonk, NY). Variables conforming to the contralateral
distribution were reported as mean ± standard deviation, and a
t-test was conducted for comparison between groups. Categorical
variables were expressed as frequencies, and Pearson’s chi-
square test was used for comparisons between groups. The time
from symptom onset or admission to the dynamic CTA/CTP
examination, NIHSS score at admission, and CVF times were
expressed as themedian of the interquartile range (IQR) andwere
compared using the Mann-Whitney U test between groups. To
study the relationship between CVF, collateral status, and clinical
outcome in the symptomatic group, univariate and multivariate
logistic models were used. Results are expressed as odds ratios
(ORs) with 95% CIs. P-values of <0.05 were considered as
statistically significant.

RESULTS

Patient Characteristics
A total of 66 consecutive patients underwent dynamic CTA/CTP
scanning. Due to poor image quality, eight patients were
excluded. Among the 58 patients included in the study, 36
were symptomatic (31 with ischemic stroke in the MCA
territory and five with transient ischemic attack) and 22
were asymptomatic. The median time from symptom onset to
dynamic CTA/CTP examination of symptomatic patients was 11
days. The traditional risk factors for intracranial atherosclerosis,
the stenotic degree of MCA, and the median time from
admission to dynamic CTA/CTP scanning were similar between
the symptomatic and asymptomatic groups (Table 1). Figure 1
shows a representative asymptomatic patient, and Figures 2, 3
show two representative symptomatic patients.

Comparison of CVF Between Symptomatic
and Asymptomatic Patients
The CVF times and instances of CVF- of the affected
and contralateral hemispheres in both symptomatic and
asymptomatic patients were compared, and the results are listed
in Table 2. In symptomatic patients, CVF-, SMCV-, VOT-, and
VOL- in the affected hemisphere were more common than
in the contralateral hemisphere (p < 0.001, p = 0.02, 0.004,
and 0.03, respectively), while there was no significant difference
in the proportion and type of CVF- between the affected
and contralateral hemispheres in the asymptomatic group. In
addition, the CVF times of the affected hemisphere were all

TABLE 1 | Baseline demographics of symptomatic and asymptomatic patients.

Symptomatic

patients (n = 36)

Asymptomatic

patients (n = 22)

p

Age, years 58.3 ± 9.2 61.3 ± 11.0 0.28

Female 9 (25%) 6 (27%) 0.85

HbA1c, % 6.7 ± 2.2 6.2 ± 1.3 0.35

LDL cholesterol, mmol/L 2.7 ± 1.1 2.4 ± 0.9 0.14

HDL cholesterol,

mmol/L

1.4 ± 1.4 0.9 ± 0.2 0.06

Cholesterol, mmol/L 4.5 ± 1.6 4.1 ± 1.3 0.35

Triglyceride, mmol/L 2.1 ± 1.0 1.6 ± 1.1 0.14

Hypertension 16 (44%) 12 (55%) 0.46

Diabetes mellitus 12 (33%) 7 (32%) 0.91

Smoking history 23 (64%) 10 (46%) 0.17

Drinking 9 (25%) 8 (36%) 0.36

Lipid disorder 26 (72%) 12 (71%) 0.9

Stenosis of MCA 0.56

Severe stenosis

(70–99%)

24 (67%) 13 (59%)

Occlusion (100%) 12 (33%) 9 (41%)

Time from admission to

dynamic CTA/ CTP,

days, median

(interquartile range)

3 (1–7) 5 (3–7) 0.12

HbA1c, hemoglobin A1c; LDL, low-density lipoprotein; HDL, high-density lipoprotein;

MCA, middle cerebral artery; CTA, computed tomography angiography; CTP, computed

tomography perfusion.

significantly longer than those of the contralateral hemisphere in
both the symptomatic and asymptomatic groups (p < 0.05 for all
CVF times).

Imaging findings of symptomatic and asymptomatic patients
are listed in Table 3. Since there was no ipsilateral SMCV-,
VOT-, or VOL- at the same time in either group, we divided
the number of instances of ipsilateral CVF- into two groups:
CVF- = 1 and CVF- = 2. Patients with symptomatic MCA
stenosis had longer CVF times at rCVF2 and rCVF21 (p =

0.03 and 0.001, respectively; e.g., 0 s in Figure 1 vs. 2 s in
Figures 2, 3 for rCVF2; −1.9 s in Figure 1 vs. 0 s in Figure 2,
0.1 s in Figure 3 for rCVF21) and more ipsilateral CVF- (p =

0.02; e.g., ipsilateral CVF+ in Figure 1 vs. ipsilateral CVF- in
Figures 2, 3) in the MCA territory of the affected hemisphere,
but were similar in the type and number of ipsilateral CVF-
compared to the asymptomatic group. In addition, there was
no significant difference in collateral status or antegrade flow
between the groups.

CVF Velocity and Collateral Status in
Symptomatic Patients
It can be concluded from Table 3 that the mean difference
between the affected and contralateral hemisphere was 2.0 s for
rCVF1, 2.5 s for rCVF2, 2.7 s for rCVF3, 1.9 s for rCVF21, and 1.7 s
for rCVF31 in symptomatic patients. Therefore, we selected fast
rCVF21 if the difference in CVF time was≤1.9 s compared to that
in the contralateral hemisphere. In patients with symptomatic
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FIGURE 2 | Case 2. A 54-year-old woman with a history of hypertension and diabetes presented with left-sided and left facial droop hemiparesis. The NIHSS score

was 5 on admission. 3 months mRS score was 1 (good outcome). (A) The selected arterial and venous phases are 12.6 s and 19.2 s, respectively. (B) The arrow

points to the right M1 severe stenosis. (C–H) The CVF1, CVF2, CVF3, CVF21, and CVF31 of the contralateral hemisphere (white arrow) are 12.6 s, 19.2 s, 25.2 s, 6.6 s,

and 12.6 s, respectively, while the CVF1, CVF2, CVF3, CVF21, and CVF31 of the affected hemisphere (double white arrow) are 14.6 s, 21.2 s, 29.1 s, 6.6 s, and 14.5 s,

respectively. The mean difference between the affected and contralateral hemisphere is 0 s for rCVF21. (C–K) The presence (color arrow) and the absence (circle) of

SMCV (green), VOL (red), and VOT (blue). SMCV- is found in the affected hemisphere, and VOL- is found in the contralateral hemisphere. (L–O) Compromised

antegrade flow and poor collateral status.

MCA stenosis, 22 had good collateral status and 14 had poor
collateral status. The relationship between CVF velocity and
collateral status at each time point is shown in Table 4. Fast CVF
at rCVF21 was present in 8 (36%) patients with good collateral
status, whereas it was found in 11 (79%) patients with poor
collateral status (p = 0.02). In univariate analysis, fast CVF
(only at rCVF21, i.e., early to peak-venous phase) was positively
associated with poor collateral status (OR 6.42, 95% CI 1.37–
30.05, p= 0.02; e.g., fast CVF at rCVF21 and poor collateral status
in Figures 2, 3).

CVF and Neurological Outcomes at 3
Months in Symptomatic Patients
At 3months after discharge, 25 patients had a favorable prognosis
(mRS score 0–2), while 11 had a poor outcome (mRS score
> 2). Table 5 shows the associations between clinical and
imaging variables and clinical outcomes at the 3-month follow-
up. There was no significant relationship between baseline
characteristics and clinical prognosis. The proportion of patients
with poor outcomes was greater in those with higher NIHSS
scores after admission (p = 0.04). Four patients underwent
elective endovascular angioplasty for severe stenotic MCAwithin
3 months; however, there was a non-significant trend toward

a good prognosis. Ipsilateral CVF-, type of ipsilateral CVF-,
absence of filling of one cortical vein, poor collateral status,
and compromised antegrade flow were not significantly related
to poor clinical outcomes. Among the 11 patients with poor
outcomes, the absence of filling of the two cortical veins was
found in six cases (56%) (p < 0.001). In univariate analysis,
the absence of filling of the two cortical veins was associated
with clinical results (OR 0.04, 95% CI 0.003–0.36, p = 0.005).
Furthermore, multivariate analysis showed that the absence of
filling of the two cortical veins was still related to the poor
outcome at the 3-month follow-up (adjusted OR 0.025, 95% CI,
0.002–0.33, p= 0.005) (Figure 2 vs. Figure 3).

DISCUSSION

To the best of our knowledge, this is the first prospective study
to describe the velocity and extent of CVF in patients with
severe stenosis or occlusion of the MCA responsible or not
responsible for recent ischemic stroke or transient ischemic
attack. Prolonged CVF times were commonly found at different
stages of the venous phase in the affected hemisphere. Patients
with symptomatic MCA stenosis also had longer CVF times
and more ipsilateral CVF- than those with asymptomatic MCA
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FIGURE 3 | Case 3. A 50-year-old man with a history of hypertension, diabetes, and smoking presented with dysarthria and right-sided hemiparesis. NIHSS score

was 6 on admission and 3-month mRS score was 3 (poor outcome). (A) The selected arterial phase and the venous phase are 14.5 s and 21.0 s, respectively. (B) The

arrow points to the left M1 occlusion. (C–H) The CVF1, CVF2, CVF3, CVF21, and CVF31 of the contralateral hemisphere (white arrow) are 14.5 s, 23.0 s, 28.9 s, 8.5 s,

and 14.4 s, respectively, while CVF1, CVF2, CVF3, CVF21, and CVF31 of the affected hemisphere (double white arrow) are 16.4 s, 25.0 s, 32.9 s, 8.6 s, and 16.5 s,

respectively. The mean difference between the affected and contralateral hemisphere is 0.1 s for rCVF21. (C–K) SMCV-, VOL-, and VOT- are not found in the

contralateral hemisphere (color arrow), while VOL- (red circle) and VOT- (blue circle) are shown in the affected hemisphere. (L–O) Compromised antegrade flow and

poor collateral status.

TABLE 2 | Instances of CVF- and CVF times of the affected and contralateral hemispheres.

Symptomatic patients (n = 36) Asymptomatic patients (n = 22)

Affected

hemisphere

Contralateral

hemisphere

p Affected

hemisphere

Contralateral

hemisphere

p

Instances of CVF-

CVF- 19 (53%) 2 (6%) <0.001 4 (18%) 5 (23%) 1

SMCV- 7 (19%) 0 (0%) 0.02 1 (5%) 1 (5%) 1

VOT- 9 (25%) 0 (0%) 0.004 2 (9%) 0 (0%) 0.47

VOL- 10 (28%) 2 (6%) 0.03 1 (5%) 4 (18%) 0.34

CVF times, s, medians

(interquartile range)

CVF1 14.7 (13.2–17.9) 12.8 (11.5–14.5) <0.001 14.2 (10.0–17.0) 12.2 (9.8–14.5) <0.001

CVF2 21.3 (19.7–26.8) 19.1 (17.3–23.0) <0.001 21.5 (17.8–23.3) 18.5 (16.9–22.0) <0.001

CVF3 29.0 (24.8–33.1) 25.6 (23.2–30.0) <0.001 30.9 (26.6–33.5) 26.9 (23.0–30.3) <0.001

CVF21 8.8 (6.6–11.7) 6.6 (5.0–7.9) <0.001 6.3 (4.8–8.3) 6.0 (4.6–8.3) 0.003

CVF31 12.9 (11.8–16.0) 12.5 (7.8–16.3) 0.04 15.3 (13.7–19.4) 14.4 (12.4–16.9) 0.02

CVF-, absence of cortical venous filling; SMCV-, absence of the superficial middle cerebral vein; VOT-, absence of the vein of Trolard; VOL-, absence of the vein of Labbé; CVF, cortical

venous filling; CVF1, early venous phase; CVF2, peak venous phase; CVF3, late venous phase; CVF21, early to peak-venous phase; CVF31, whole venous phase.
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TABLE 3 | Imaging findings in symptomatic and asymptomatic patients.

Symptomatic

patients (n = 36)

Asymptomatic

patients (n = 22)

p

Ipsilateral CVF- 19 (53%) 4 (18%) 0.02

Type of ipsilateral CVF-

SMCV- 7 (19%) 1 (5%) 0.23

VOT- 9 (25%) 2 (9%) 0.25

VOL- 10 (28%) 1 (5%) 0.07

Number of ipsilateral CVF-

CVF- = 1 12 (33%) 4 (18%) 0.34

CVF- = 2 7 (19%) 0 (0%) 0.07

CVF times, s, medians (interquartile range)

rCVF1 2.0 (1.2–3.0) 1.8 (0.3–2.0) 0.16

rCVF2 2.5 (1.9–3.9) 2.0 (0.8–2.6) 0.03

rCVF3 2.7 (0.3–4.0) 2.1 (0.0–4.0) 0.79

rCVF21 1.9 (0.4–4.5) 0.1 (0.0–0.5) 0.001

rCVF31 1.7 (−1.9–4.7) 0.2 (0.0–2.2) 0.5

Collateral status 0.2

Good 22 (61%) 17 (77%)

Poor 14 (39%) 5 (23%)

Antegrade flow 0.78

Preserved 15 (42%) 10 (45%)

Compromised 21 (58%) 12 (55%)

CVF-, absence of cortical venous filling; SMCV-, absence of the superficial middle cerebral

vein; VOT-, absence of the vein of Trolard; VOL-, absence of the vein of Labbé; CVF- = 1,

absence of one cortical vein; CVF-= 2, absence of two cortical veins; CVF, cortical venous

filling; rCVF1, relative difference in the early venous phase; rCVF2, relative difference in the

peak venous phase; rCVF3, relative difference in the late venous phase; rCVF21, relative

difference in the early to peak-venous phase; rCVF31, relative difference in the whole

venous phase.

TABLE 4 | Relationship between CVF velocity and collateral status in

symptomatic patients.

Good collateral status Poor collateral status

(n = 22) (n = 14) p OR 95% CI p

CVF velocity

rCVF1 1

Fast 14 (64%) 8 (64%)

Slow 8 (36%) 5 (36%)

rCVF2 0.31

Fast 9 (41%) 8 (64%)

Slow 13 (59%) 5 (36%)

rCVF3 0.09

Fast 8 (36%) 10 (71%)

Slow 14 (64%) 4 (29%)

rCVF21 0.02 6.42 1.37-30.05 0.02

Fast 8 (36%) 11 (79%)

Slow 14 (64%) 3 (21%)

rCVF31 0.74

Fast 11 (50%) 8 (57%)

Slow 11 (50%) 6 (43%)

CVF, cortical venous filling; rCVF1, relative difference in the early venous phase; rCVF2,

relative difference in the peak venous phase; rCVF3, relative difference in the late venous

phase; rCVF21, relative difference in the early to peak-venous phase; rCVF31, relative

difference in the whole venous phase.

TABLE 5 | Univariate associations of baseline characteristics and clinical

outcomes at 3 months.

Good

outcomes

(n = 25)

Poor

outcomes

(n = 11)

p OR 95% CI p

Age, years 57.0 ± 9.2 61.5 ± 8.6 0.18

Hypertension 10 (40%) 6 (55%) 0.48

Diabetes 7 (28%) 5 (46%) 0.45

Smoking history 16 (64%) 7 (64%) 1

Drinking 6 (24%) 3 (27%) 1

Lipid disorder 18 (72%) 8 (73%) 1

NIHSS, median

(interquartile

range)

3 (2–4) 5 (2–8) 0.04 1.36 1.00–

1.86

0.05

Angioplasty 3 (12%) 1 (9%) 1

Ipsilateral CVF- 11 (44%) 8 (73%) 0.16

Ipsilateral

SMCV-

4 (16%) 3 (27%) 0.65

Ipsilateral VOT- 6 (24%) 3 (27%) 0.57

Ipsilateral VOL- 5 (20%) 5 (45%) 0.12

CVF- = 1 9 (36%) 3 (27%) 0.71

CVF- = 2 1 (4%) 6 (56%) < 0.001 0.04 0.003–

0.36

0.005

Slow rCVF1 11 (44%) 2 (18%) 0.26

Slow rCVF2 12 (48%) 6 (55%) 1

Slow rCVF3 11 (44%) 7 (64%) 0.47

Slow rCVF21 11 (44%) 6 (55%) 0.41

Slow rCVF31 11 (44%) 6 (55%) 0.72

Poor collateral

status

11 (44%) 3 (27%) 0.47

Compromised

antegrade flow

13 (52%) 8 (73%) 0.3

NIHSS, National Institutes of Health Stroke Scale; CVF-, absence of cortical venous filling;

SMCV-, absence of the superficial middle cerebral vein; VOT-, absence of the vein of

Trolard; VOL-, absence of the vein of Labbé; CVF- = 1, absence of one cortical vein;

CVF- = 2, absence of two cortical veins; rCVF1, relative difference in the early venous

phase; rCVF2, relative difference in the peak venous phase; rCVF3, relative difference

in the late venous phase; rCVF21, relative difference in the early to peak-venous phase;

rCVF31, relative difference in the whole venous phase.

stenosis. Moreover, our preliminary study demonstrated that
fast CVF was associated with poor collateral status, and the
absence of filling of the two cortical veins was linked with
poor outcome, suggesting the essential and irreplaceable role
of cortical veins in patients with symptomatic high-grade MCA
stenosis or occlusion.

In this study, we noticed an obvious relationship between
delayed filling of the ipsilateral cortical veins and severe stenosis
or occlusion of the MCA. Adequate collateral perfusion requires
arterial and venous autoregulation to redistribute cerebral blood
flow and maintain cerebral perfusion (6, 7), which might indicate
a slowdown of venous drainage to varying degrees in response
to chronic cerebral hypoperfusion. However, there was a similar
proportion of CVF- in the bilateral hemispheres of asymptomatic
patients. A possible explanation is that compensatory venous
collaterals can extensively communicate at the cortical surface
(36, 37), resulting in delayed venous drainage, but the presence
of cortical vein collaterals (SMCV, VOT, VOL).
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Similar to previous research studies on acute MCA occlusion
(10, 38), our study demonstrated that symptomatic patients were
more likely to experience slower and asymmetrical CVF in the
affected MCA territory. No serial studies have assessed changes
in the cortical veins over time after qualifying ischemic events. If
ischemic strokes occur under the condition of chronic stenosis,
a compensatory hemodynamic function of venous collaterals
associated with increased venous blood volume and cerebral
vasodilation may be continuously and seriously impaired (39),
resulting in slower or even absent ipsilateral CVF for a long
time. Additionally, a previous study has shown that VOL and
VOT are often seen in a certain hemisphere in contralateral
subjects (40), which may partially explain why the type and
number of ipsilateral CVF- between the symptomatic and
asymptomatic groups were not enough to contribute to a
statistical difference.

We also found that fast CVF was closely related to poor
arterial collateral in symptomatic patients. This finding was not
in line with that of a previous study, which demonstrated a trend
toward slow CVF with a worse collateral grade in patients with
acute MCA occlusion (10). It is important to mention that the
clinical correlations of arterial collaterals in this study were not
evident, indicating that the rapid and effective drainage of cortical
veins may be beneficial in compensating for potential arterial
hemodynamic damage. Moreover, once chronic atherosclerosis
reaches a stage with severe stenosis or complete occlusion, it
will lead to insufficient and slow venous drainage far beyond
the nearby arterial collaterals, even if good collateral flow tends
to compensate circulation. Interestingly, delayed drainage of
cortical veins in the early to peak-phase, not the late venous phase
(41), was related to arterial collateral status and stroke occurrence
in this study. The CVF time lag in the affected hemisphere has
been proven to be associated with prolonged mean transit time
(12), which probably reflects compromised perfusion through
microcirculation at an earlier stage of venous drainage due to
progressive microvascular obstruction (16).

Our results support the effect of asymmetric CVF on the
prognosis of ischemic stroke demonstrated in previous studies
(15–18). In contrast to acute occlusion, the number of ipsilateral
CVF-, rather than the type of ipsilateral CVF- has superior
prognostic value in patients with symptomatic MCA stenosis
in this study, which might be explained by hemodynamic
mechanisms. First, the lower extent of CVF during chronic
stenosis may be explained by the upregulation of vascular
endothelial cell adhesion molecules and the downregulation of
tight junction proteins to weaken the blood-brain barrier in
hypoperfusion (42). Other explanations include active venous
contraction (43), leukocyte-platelet aggregation obstruction
(44, 45), and passive thin-walled venule compression (46).
In addition, the respective collateral pathways of venous
drainage are irrevocably impaired when the number of
ipsilateral CVF- is high (47). Furthermore, the severely impaired
venous drainage pathway around the lesions, accompanied
by long-term cerebral hypoperfusion, will ultimately damage
the required perfusion and upstream arterial regulation (48),
causing subsequent pathophysiological consequences that are
difficult to correct.

In conclusion, we used dynamic CTA/CTP to investigate the
relationships between various stages of cortical venous flow,
symptom occurrence, and clinical prognosis in the present
study. An increased proportion of CVF- or prolonged CVF
times in the early to peak-phase in the affected hemisphere
are more likely to be associated with recent ischemic events in
patients with severe MCA stenosis or occlusion. Moreover, a
lower extent of CVF is associated with worse short-term clinical
outcomes, and fast CVF is likely to be a reaction to poor
collateral flow, suggesting the importance of complete and fast
cortical venous drainage in symptomatic MCA stenosis. Further
prospective studies are warranted to validate the feasibility of
CVF assessment in identifying patients with high-grade MCA
stenosis or occlusion at a higher risk of stroke occurrence and
poor prognosis.

However, this study had several shortcomings. First, the
sample size collected in this study was small. Larger sample
sizes will be critical for moving the field forward. Second, the
period between symptom onset and imaging acquisition could
not be determined for asymptomatic patients without clinical
symptoms. Third, CVF-related MIP images were acquired in
the target subjects with unilateral MCA severe stenosis or
occlusion, which may be difficult to rule out patients with
multifocal intracranial atherosclerotic stenosis. Therefore, a
contralateral MCA with <50% stenosis was used as a control.
Fourth, there is a certain proportion of CVF- in healthy
individuals. Considering the physiological differences in each
patient, our study mainly focused on the asymmetry of CVF
in the affected hemisphere and evaluated whether ipsilateral
CVF- had any effect on the occurrence and prognosis of
stroke. Finally, the time interval of commonly used clinical
image acquisition was quite long because of the clinical
limitations of dynamic CTA/CTP. Therefore, it is necessary
to carefully compare the CVF times at different stages of
venous drainage.
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