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Objective: Thermal ablation is a minimally invasive procedure for the treatment of
pulmonary malignancy, but the intraoperative measure of complete ablation of the
tumor is mainly based on the subjective judgment of clinicians without quantitative
criteria. This study aimed to develop and validate an intraoperative computed
tomography (CT)-based radiomic nomogram to predict complete ablation of pulmonary
malignancy.

Methods: This study enrolled 104 individual lesions from 92 patients with primary or
metastatic pulmonary malignancies, which were randomly divided into training cohort
(n=74) and verification cohort (n=30). Radiomics features were extracted from the original
CT images when the study clinicians determined the completion of the ablation surgery.
Minimum redundancy maximum relevance (mRMR) and least absolute shrinkage and
selection operator (LASSO) were adopted for the dimensionality reduction of high-
dimensional data and feature selection. The prediction model was developed based on
the radiomics signature combined with the independent clinical predictors by multiple
logistic regression analysis. The area under the curve (AUC), accuracy, sensitivity, and
specificity were calculated. Receiver operating characteristic (ROC) curves and calibration
curves were used to evaluate the predictive performance of the model. Decision curve
analysis (DCA) was applied to estimate the clinical usefulness and net benefit of the
nomogram for decision making.

Results: Thirteen CT features were selected to construct radiomics prediction model,
which exhibits good predictive performance for determination of complete ablation of
pulmonary malignancy. The AUCs of a CT-based radiomics nomogram that integrated the
radiomics signature and the clinical predictors were 0.88 (95%CI 0.80-0.96) in the training
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cohort and 0.87 (95% CI: 0.71–1.00) in the validation cohort, respectively. The
radiomics nomogram was well calibrated in both the training and validation cohorts,
and it was highly consistent with complete tumor ablation. DCA indicated that the
nomogram was clinically useful.

Conclusion: A CT-based radiomics nomogram has good predictive value for
determination of complete ablation of pulmonary malignancy intraoperatively, which can
assist in decision-making.
Keywords: pulmonary malignancy, ablation, nomogram, radiomics, prediction model
INTRODUCTION

Primary lung cancer is the second most common malignant
tumor and the leading cause of cancer-related death worldwide
(1). Surgical resection is recommended for early-stage primary
lung cancer (stage I and II), and inoperable patients can be
treated with stereotactic radiotherapy and systemic
chemotherapy (2, 3). Thermal ablation is a minimally invasive
method for local treatment of pulmonary malignancies, which
has been widely used in recent years for the treatment of primary
and metastatic lung cancer (4–6). The overall survival rate of
non-small cell lung cancer (NSCLC) stage IA patients treated
with thermal ablation is not lower than that of stereotactic
radiotherapy (7). This technique has been gradually accepted
by clinicians and patients because of its effectiveness, minimal
complications, and high rate of local control (8–10).

Thermal ablation is an in situ treatment option (11), the
efficacy of which could not be determined by intraoperative
pathological findings without postoperative follow-up
monitoring for residual or recurrent lesions. Therefore, it is
important to intraoperatively evaluate whether complete
ablation of the pulmonary malignancy was achieved (12).
Current guidelines recommend that a 1-cm ground-glass
shadow around the lesion after thermal ablation is used to
judge complete ablation of the lesion (13). However, there are
difficulties associated with this approach. First, ground-glass
shadow comprises pathologically necrotic and hyperemic
exudate of the lung tissue (14, 15), and tumor cells may
remain in the hyperemic exudate area. Second, bleeding caused
by intraoperative puncture also manifests as ground-glass
shadow, which obscures the ground-glass shadow produced by
thermal ablation. It is sometimes difficult to determine the
intraoperative complete ablation of the tumor by macroscopic
observation. Intraoperative computed tomography (CT)
enhancement can be used to evaluate the efficacy of ablation,
but the use of contrast agents increases the risk of iodine allergy.
Moreover, it is difficult to visually identify smaller lesions after
enhanced scans.

Radiomics based on artificial intelligence is a noninvasive,
efficient, and reliable method, which has attracted increasing
attention. It involves the high-throughput extraction of
quantitative imaging features and screening of regions of
interest, as well as the establishment of a radiomics prediction
model (16–21). To our knowledge, no study has been reported
2

on the prediction of the immediate outcome of thermal ablation
for pulmonary malignancies based on CT radiometric features.

Therefore, we attempted to extract quantitative imaging features
from intraoperative CT images, then developed a CT-based
radiomics nomogram by incorporating the optimal configuration
of radiomics signatures and potential independent clinical predictors
to assess the immediate efficacy of thermal ablation for pulmonary
malignancies.We aimed to provide a reference for operators tomake
decisions during surgery, such as whether it is necessary to increase
the ablation parameters (power and time) or adjust the ablation
needle, to ensure complete ablation of pulmonary malignancies.
METHODS

This retrospective study was approved by the ethics committees
of Cancer Hospital of the University of Chinese Academy of
Sciences and Huzhou Central Hospital. Requirement for
informed consent was waived. This study adhered to the
Transparent Reporting of a Multivariable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) reporting guideline
for prediction model development and validation (22)
(Supplementary TRIPOD Checklist).

Study Participants
The clinical data of patients undergoing thermal ablation for
pulmonary malignancies collected from Cancer Hospital of the
University of Chinese Academy of Sciences and Huzhou Central
Hospital between May 2008 and November 2019 were analyzed.
The inclusion criteria were as follows: 1) pulmonary malignancy
confirmed by puncture biopsy or clinical diagnosis of metastatic
pulmonary malignancy; 2) enhanced chest CT examination
performed before treatment; 3) regular plain chest scan and
enhanced CT examination performed after treatment; 4) and
successful ablation of pulmonary malignancy. The exclusion
criteria included the following: 1) extensive respiratory artifacts
on CT images; 2) incomplete clinical and imaging data; 3) and/or
loss to follow-up for various reasons.The collected clinical datawere
carefully checked andverifiedby the researchers. Finally,104 lesions
in 92 patients (63 males, 29 women; mean age 60.24 ± 10.20 years;
range,35-80 years) fulfilled the criteria andwere randomly assigned
to training cohort (n=74) and validation cohort (n=30).

The clinical data included patient age and sex; imaging data
included the largest transverse and longitudinal tumor
February 2022 | Volume 12 | Article 841678
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diameters, tumor morphology, tumor location, bronchus and
blood vessels with the largest diameter around the tumor within
1 cm, and the distance between the tumor and the pleura, as
shown in Table 1 and Supplementary Table 1.

The patients were followed up for 6–38 months, with a
median follow-up of 21 months. When patients had two or
three lesions in the lung, each individual lesion was followed. In
accordance with image-guided tumor ablation recommendations
in 2014 (13), complete ablation was defined as complete
disappearance of the lesion or no enhancement on enhanced
Frontiers in Oncology | www.frontiersin.org 3
scan lasting for at least 3 months; otherwise, the ablation was
considered incomplete.

Radiofrequency and Microwave Ablation
Prior to ablation, plain CT scans were performed first. The scanning
position of the patient was determined according to the location of
the lesion and supine position was preferred to facilitate anesthesia.
Under general anesthesia with electrocardiogram monitoring, the
radiofrequency or microwave ablation instrument was adjusted. CT
scans were performed to locate the lesions and the site was marked
TABLE 1 | Characteristics of patients in the training and validation cohorts.

Training Cohort Validation Cohort

Complete ablation
(n = 47)

Incomplete ablation
(n = 27)

p Complete ablation
(n = 19)

Incomplete ablation
(n = 11)

p

Age, years (mean ± SD) 61.1 (10.9) 57.6 (9.2) 0.161 61.6 (9.7) 63.1 (9.3) 0.677

Gender (%)

Male 34 (72.3) 24 (88.9) 8 (42.1) 8 (72.7)

Female 13 (27.7) 3 (11.1) 0.172 11 (57.9) 3 (27.3) 0.142

Treatment options

Radio-frequency ablation 39 (83.0) 23 (85.2) 18 (94.7) 10 (90.9)

Microwave ablation 8 (17.0) 4 (14.8) 1.00 1 (5.3) 1 (9.1) 1.00

Nodule Shape

Class round 39 (83.0) 23 (85.2) 16 (84.2) 6 (54.5)

Irregularly shaped 8 (17.0) 4 (14.8) 1.00 3 (15.8) 5 (45.5) 0.180

LD(mean ± SD) 15.9 ± 5.6 20.2 ± 7.5 0.006* 16.0 ± 4.9 29.9 ± 12.6 <0.01*

TD(mean ± SD) 12.6 ± 4.9 16.8 ± 6.0 0.001* 13.0 ± 4.4 20.6 ± 8.6 0.001*

LD/TD 1.3 (0.3) 1.2 (0.2) 0.114 1.2 (0.2) 1.5 (0.4) 0.028*

Bronchial diameter

1mm 7 (14.9) 4 (14.8) 1.00 5 (26.3) 1 (9.1) 0.507

2mm 23 (48.9) 3 (11.1) 0.002* 7 (36.8) 2 (18.2) 0.508

3mm 11 (23.4) 9 (33.3) 0.513 6 (31.6) 3 (27.3) 1.00

4mm 4 (8.5) 4 (14.8) 0.651 1 (5.3) 2 (18.2) 0.613

5mm 2 (4.3) 5 (18.5) 0.108 0 (0.0) 2 (18.2) 0.244

6mm 0 (0.0) 2 (7.4) 0.251 0 (0.0) 1 (9.1) 0.778

Blood vessel diameter

1mm 20 (42.6) 9 (33.3) 0.593 9 (47.4) 1 (9.1) 0.082

2mm 17 (36.2) 9 (33.3) 1.00 7 (36.8) 4 (36.4) 1.000

3mm 8 (17.0) 5 (18.5) 1.00 3 (15.8) 4 (36.4) 0.403

4mm 2 (4.3) 4 (14.8) 0.246 0 (0.0) 2 (18.2) 0.244

Tumor location

The right lung superior
lobe

11 (23.4) 9 (33.3) 0.513 4 (21.1) 2 (18.2) 1.000

middle
lobe

6 (12.8) 1 (3.7) 0.384 2 (10.5) 0 (0.0) 0.723

inferior
lobe

9 (19.1) 6 (22.2) 0.987 5 (26.3) 3 (27.3) 1.000

The left lung superior
lobe

6 (12.8) 6 (22.2) 0.462 3 (15.8) 3 (27.3) 0.776

inferior
lobe

15 (31.9) 5 (18.5) 0.328 5 (26.3) 3 (27.3) 1.000

Distance from nodule to pleura
(mean ± SD)

14.1 (10.6) 12.5 (10.3) 0.532 11.1 (8.9) 10.5 (8.0) 0.846
February 2022 | Volume 12 | Article 84167
D, nodule shortest diameter; LD, nodule longest diameter; BL2, the largest vessel diameter within 1cm around the nodules was 2 mm; LD/TD, ratio of long diameter to short diameter;
Bronchial diameter, the largest vascular diameter within 1cm around the nodule; Blood vessel diameter, the largest diameter bronchus within 1cm around the nodule.
In Bold: *statistically significant (P < 0.05).
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on the skin surface. The surgical area was disinfected, and local
anesthesia was provided at the puncture site with 5 ml 1% lidocaine
hydrochloride. Under CT guidance, an ablation needle was inserted
into the lesion site. The position of the needle tip was adjusted to
find the optimal position. A tumor ablation instrument (KY-2000,
Kangyou Medical Instruments Company, Nanjing, China) with an
operating frequency of 2,450MHz&an output power of 0~150 W
and an RF ablation system (CTRF-220, Tyco Healthcare, Puritan
Bennett, California, US) with an operating frequency of 480 kHz
and an output power of 0~200W were used (Supplementary
Table 2). Following manufacturer’s instructions, appropriate
parameters (power and time) were selected to determine the
success of thermal ablation when more than 1 cm ground-glass
shadows around the tumor lesions were shown. The needle passage
was then ablated to prevent tumor implantation along the needle
track. The ablation needle was removed, and the surgery finished.
Electrocardiogram monitoring was performed continuously over
24 h. Hemostasis and other symptomatic treatments were also
carried out. Plain chest CT examinations were performed
immediately post-operation to detect any pneumothorax,
bleeding, or other complications. Patients were evaluated 1 month
postoperatively and every 3 months by enhanced CT scans to
evaluate the treatment effect after ablation.

CT Image Acquisition and
Imaging Evaluation
Thermal ablation was performed under the guidance of CT scan.
The detailed scan and reconstruction parameters are listed in
Supplementary Table 3. CT scans were performed during the
operation. When a more than 1-cm ground-glass shadow around
the lesion was observed, it was judged as complete ablation of the
lesion. The original CT images were collected at this time.

Two reviewers who had 5 years (Hong Yang) and 12 years
(Guozheng Zhang) of experience with chest CT image
interpretation reviewed all CT images to evaluate the following
characteristics of each pulmonary malignancy: (a) tumor location
and number; (b) the long and short diameters of the maximum
tumor layer;(c)maximum diameters of vessels and bronchi around
the tumor (defined as maximum diameters of bronchi and vessels
within 1 cm from the tumor); (d) shape of the tumor lesion (defined
as class round or irregular); (f) and distance between tumor and
pleura (defined as the shortest distance between tumor and pleura).
Both radiologists knew that thermal ablation of the pulmonary
malignancyhadbeenperformed, but they hadnoprior information
regarding whether a particular tumor had been completely ablated.
For4weeks, theCTimageswere revieweddaily; disagreementswere
resolved by a senior radiologist (with 15 years of chest tumor
imaging experience).

Segmentation of the Region of Interest
and Radiomics Feature Extraction
ROI Segmentation
Manual delineation of the ROI was performed on selected CT
images of each patient’s pulmonary lesion using ITK-SNAP
software (Version 3.4.0, http://www.itksnap.org/) and 3-
dimention volume of interest (VOI) was synthesized. The VOI
Frontiers in Oncology | www.frontiersin.org 4
included the lesion, 1-cm ground-glass shadows around the
tumor lesions after thermal ablation and regions depicted in a
layer-by-layer manner along the ground-glass shadows. Adjacent
aorta, ribs, and pneumothorax were excluded. All target lesions
were delineated by 2 radiologists. Disagreements were resolved
by a senior radiologist.

Radiomics Feature Extraction
AK software (artificial intelligence suite V3.0.0.R, GE Healthcare)
was used to extract 396 radiomics features (e.g., first-order
features, second-order features, and morphological parameters)
from the VOI of CT images in 104 ablation foci of pulmonary
malignancies. First-order features generally described the
distribution of individual voxels, regardless of the spatial
relationship among voxels. Second-order features generally
comprised “texture” features, including gray level co-occurrence
matrix (GLCM) and gray level run-length matrix features
(GLRLM). They described the surface appearance and the
spatial distribution of voxels (21, 23, 24). Prior to feature
dimension reduction, each feature value for all patients was
normalized using a Z-score as follows: Z = (x-m)/s, where x was
the value of the feature, m was the mean value of the feature for all
patients in the cohort, and s was the corresponding standard
deviation. Z-score was used to remove the unit limitation for each
feature before machine learning classification. Figure 1 shows the
radiomics workflow and study flow chart.

Agreements Within and
Between Observers
The intraclass correlation coefficient (ICC) was used to evaluate
consistency between observers. CT image data in 45 thermal
ablation foci of pulmonary malignancies treated at Cancer
Hospital of the University of Chinese Academy of Sciences
were randomly selected from the study cohort. After 3 months,
intra-observer segmentation was performed by a radiologist with
12 years of chest imaging experience and inter-observer
segmentation reproducibility was performed by another
radiologist with 5 years chest imaging experience. Independent
samples t-tests were used for statistical comparisons (p-value <
0.05). When the ICC was greater than 0.75, the consistency was
considered good (25).

Model Construction and Validation
Minimum redundancy maximum relevance (mRMR) and least
absolute shrinkage and selection operator (LASSO) were used to
select CT feature from the training cohort. First, high-throughput
CT image processing was performed using mRMR method. The
top 20 most powerful features with the greatest correlation with
complete ablation and the least redundancy were selected. The
LASSO algorithm with ten-fold cross validation was used to select
the optimal subset of predictive features and evaluate the
corresponding feature coefficients. The radiomics feature score
(Rad_score) was calculated for each lesion using a linear
combination of selected features and feature coefficients; these
features were weighted with their respective coefficients. The
performance of the prediction model was measured by
February 2022 | Volume 12 | Article 841678
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calculating the area under the receiver-operating-characteristic
curve (AUC) in the validation cohort (26, 27).

Univariate and multivariate logistic regression analysis were
used to identify independent predictors of complete ablation in
patients with pulmonary malignancy, including clinical predictors
and the rad-score of the training cohort. Then a CT-based
radiomics nomogram integrating the radiomics signature and
clinical predictors was constructed based on the result of the
multivariate logistic regression analysis, which was used to predict
the complete ablation of pulmonary malignancies.

Clinical Application
In the validation cohort, decision curve analysis (DCA) was
used to compare the net benefit from the application of the
clinical model, the radiomics signature model and combined
nomogram model at various threshold probabilities to select the
optimal model for individual prediction of the efficacy of thermal
ablation for pulmonary malignancies.

Statistical Analysis
All statistical analyses were performed using R statistical software
(R version 3.5.2). Univariate logistic regression analyses were
used to assess the associations between clinical risk factors and
ablation outcomes. To determine potential associations between
variables and ablative efficacy, we compared continuous variables
using independent samples t-tests, non-parametric Wilcox test
or the Mann–Whitney U test. We analyzed categorical variables
using the chi-squared test or Fisher’s exact test. The stepwise
logistic regression model was applied for multivariate analysis to
identify independent predictors among a combination of factors.
Receiver operating characteristic (ROC) curves and the areas
under the curves (AUCs) were used to evaluate the performance
Frontiers in Oncology | www.frontiersin.org 5
of predictive model. The AUCs among these models were
compared using DeLong’s method. The sensitivity, specificity
and positive and negative predictive values were calculated to
evaluate the diagnostic performance. The clinical utility of an
individual predictive model was evaluated by a decision curve
analysis that quantified the net benefits of the two cohorts at
various threshold probabilities. A two-tailed analysis was used,
and P < 0.05 was considered statistically significant.
RESULTS

Patient Characteristics
A total of 104 lesions were detected in 92 patients in our study.
Of these, one lesion was detected in 83 patients, two in 7 patients
and three in 2 patients. In addition, 38 lesions were confirmed
incomplete ablation by enhanced chest CT examination, while 66
were complete ablation. Twenty-seven incomplete and 47
complete ablation lesions were grouped in the training set,
while 11 incomplete and 19 complete ablation lesions in the
validation set. We applied chi-square or Fisher’s exact test for
categorical variables and independent t test or Mann–Whitney U
test for continuous variables to examine the differences in
baseline variables between the training and validation sets.
Except for the longest, shortest nodule diameter and ratio of
long diameter to short diameter, no significant differences were
observed in terms of other clinical and CT characteristics
between the training and validation data sets. The patient
baseline characteristics in two sets are shown in Table 1 and
Supplementary Table 1. Supplementary Figure 1 illustrates the
work flowchart of the study.
FIGURE 1 | The framework for the radiomic workflow. (A) CT acquisition (B) Ablation lesion segmention (C) Feature extraction (D) Heatmap of the correlation of the
radiomic features.
February 2022 | Volume 12 | Article 841678
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Inter-Observer and Intra-Observer
Reproducibility of Radiomics Feature
Extraction
Theintra-observerintraclasscorrelationcoefficientrangedfrom0.827
to 0.934 and the intraclass correlation coefficient between the two
observers ranged from0.783 to 0.905. The results demonstrated good
reproducibility of feature extraction within and between observers.

Selection of Radiomics Features and
Establishment of Radiomics Signature
A total of 396 radiomics features were extracted from CT lung
window images during pulmonary malignancy ablation by
MRMR selection; 20 features were retained following the
exclusion of redundant and irrelevant features. Then, LASSO
was used to select the optimized feature subset to establish the
radiomics signature. Finally, the 13 most valuable variables and
their coefficients were retained (Figure 2). The values of 13
features were input into the formula, and the Rad-score was
obtained to reflect the total ablation value.

The resulting formula was as follows:
Rad-score = -0.525*InverseDifferenceMoment_angle0_

offset1+-0.803*HighIntensityLargeAreaEmphasis+0.614*Long
RunHighGreyLevelEmphasis_AllDirection_offset1_SD+-
0.529*HighGreyLevelRunEmphasis_AllDirection_offset4_SD+-
0.481*SurfaceVolumeRatio+-0.227*HaralickCorrelation_
AllDirect ion_offset4_SD+0.132*ShortRunEmphasis_
angle45_offset4+-0.454*InverseDifferenceMoment_angle90_
o ff s e t 1+ -0 . 411*LongRunHighGreyLeve lEmphas i s _
angle135_offset4+-0.287*Correlation_angle135_offset7+
-0.169*SurfaceArea+0.392*HighGreyLevelRunEmphasis_
AllDirection_offset7_SD+0.166*Variance + 0.315).
Frontiers in Oncology | www.frontiersin.org 6
A significant difference was found in the Rad-score between
incomplete and complete ablation groups in the training set
[median -0.60 (IQR, -2.20, 0.60) vs. median 1.10 (IQR 0.30, 2.00);
p < 0.001], which was then confirmed in the validation set
[median -0.90 (IQR, -2.50, 0.20) vs. median 0.80 (IQR 0.30,
1.50); p = 0.002]. The Rad-score predicting the complete ablation
yielded a C-index of 0.82 (95% CI, 0.72–0.91) in the training set,
and 0.84 (95% CI, 0.70–0.99) in the validation set. The AUC of
the combined radiographic–radiomics model was 0.88 (95% CI,
0.80–0.96) in the training set, and 0.87 (95% CI, 0.71–1.00) in the
validation set (Figure 3).

Construction of the Radiomics Nomogram
A multivariate logistic regression analysis using backward
stepwise selection identified that the Rad-score, BL2, and TD
were statistically significant independent differentiators of
complete ablation from incomplete ablation (Table 2), which
were incorporated to develop the nomogram (Figure 4).

Performance of the Radiomics Nomogram
in the Training Set and Validation Set
Table 3 shows the sensitivity and specificity of the three models
in the training and validation cohorts, indicating that the
radiometric nomograms had good discriminant efficiency.
Figure 5 shows the calibration curve of the radiomics
nomogram. The correction curve showed a good correction
effect in the training cohort. The validation cohort confirmed
favorable calibration of the radiomics nomogram. Decision curve
analysis was used to evaluate the clinical usefulness of the clinical
model, the radiomics signature model and combined nomogram
model in the validation cohort (Figure 6). If the threshold
A B

FIGURE 2 | Textural feature selection using least absolute shrinkage and selection operator (LASSO) binary logistic regression. (A) Tuning parameters (l) for the
LASSO model were selected by 10-fold cross-validation using the minimum criteria. Partial likelihood deviance was plotted against log (l). The dotted vertical
lines correspond to the optimal values according to the minimum criteria and 1-SE criterion. The 10 features with the smallest binomial deviance were selected.
(B) LASSO coefficient profiles of texture features. Vertical lines correspond to the values selected by 10-fold cross-validation of the log (l) sequence; the 10 non-
zero coefficients are indicated.
February 2022 | Volume 12 | Article 841678
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probability of clinical decision is between 0.0 and 1.0, it is more
advantageous to predict complete ablation of pulmonary
malignancies using the radiomics nomogram. In addition, the
clinical–radiomics nomogram to predict complete pulmonary
malignancy ablation provided more net benefits than the
radiomics prediction model alone or clinical prediction model
alone. The results of Delong test suggested that in the training
cohort, there was a significant difference in AUC between the
combined model and the clinical model (p=0.02), combined
model and the radiomics model (p=0.03).There was no
Frontiers in Oncology | www.frontiersin.org 7
significant difference in AUC between the radiomics model
and clinical model (p= 0.38).
DISCUSSION

In our study, we developed and validated a CT-based radiomics
nomogram which combined the radiomics signature with
independent clinical predictors to predict the outcome of
thermal ablation for lung malignancies. In the radiomics
A B

DC

FIGURE 3 | Box plot showing the rad-score distribution of incomplete ablation and complete ablation on training and validation cohorts. p-value from Wilcoxon
Rank-Sum test (A, B). Receiver operator characteristic (ROC) curves (training and validation cohorts) (C, D). The prediction performance of the ROC curves for
radiomics signature for training and validation cohorts.
February 2022 | Volume 12 | Article 841678
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prediction model and clinical prediction models, the training and
validation cohorts showed good differentiation. The
discrimination ability of the clinical–radiomics nomogram was
superior to that of the other two models, which provides
important information for intraoperative decision-making.

The “heat sink effect” has a substantial impact on thermal
ablation of pulmonary malignancies. Our study demonstrated
Frontiers in Oncology | www.frontiersin.org 8
that the largest diameter of blood vessels within 1 cm from the
lesion was 2 mm; this was an independent predictor of
intraoperative complete ablation. When the largest diameter
of the blood vessels around the lesion is 2 mm, the possibility
of complete ablation of the lesion is high, which has important
clinical significance. A previous study showed that the ablation
volume would decrease when the vessel diameter was larger than
TABLE 2 | Clinically significant factors and independent predictors.

Characteristic Univariate Logistic Regression Multivariate Logistic Regression

OR (95% CI) p OR (95% CI) p

LD 0.90 (0.83;0.98) 0.011 – –

TD 0.86( 0.78;0.95) 0.004 0.90 (0.81;1.00) 0.0479
BL2 0.77 (2.00;28.97), 0.003 5.21 (1.30;20.85) 0.0195
February 2022 | Volume 12 | Ar
OR, odd ratio; TD Nodule shortest diameter, LD Nodule longest diameter, BL2 The largest vessel diameter within 1cm around the nodules was 2 mm.
A B

C

FIGURE 4 | Receiver operating characteristic (ROC) curves of the clinics, radiomics and combinations of computed tomography (CT)-based radiomics signatures
used to discriminate between complete and incomplete ablation of pulmonary malignancies in the training and validation cohorts (A, B). Radiomics nomogram (C)
used to discriminate complete and incomplete ablation of pulmonary malignancies. The nomogram was based on the training cohort; the rad-scores are shown.
Initially, vertical lines were drawn at the rad-score values to determine the values of the points. The final point value was the sum of those of the two points. Finally, a
vertical line was drawn at the total point value to determine the probability of complete pulmonary malignancy ablation.
ticle 841678
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3 mm (28). This finding is similar to ours in that when the largest
diameter of the blood vessels adjacent to the lesion is close to
3mm, it can increase the possibility of incomplete ablation (29).
The findings provide important insights for clinicians during
intraoperative decision-making. Giraud et al. found that 95% of
lung malignancies had microinvasion. In general, the invasive
depth of adenocarcinoma is about 8mm, and that of squamous cell
carcinoma is about 6mm (30). Therefore, we should obtain a 10-
mm safe ablation zone around the lesion to ensure coagulation
necrosis of all tumor cells during thermal ablation (13). However,
during the operation, inflammatory exudation, hyperemia, and
acute bleeding around the ablation foci also present as ground
glass shadow; thus, visual assessment of complete ablation
depends on the knowledge and experience of the clinicians. The
judgment of complete ablation has high subjectivity and low
accuracy. Simple visual analysis cannot detect deeper lesions
intraoperatively; thus, it cannot meet the requirements for
precision medicine and individualized treatment.

Imaging omics reflects tumor heterogeneity and provides
pathophysiological information regarding tumor lesions (25). The
coagulation necrosis of tumor cells after ablation of pulmonary
malignancies involves unique pathophysiological changes.
Therefore, we established a high-throughput database of CT
images during thermal ablation of pulmonary malignancies, then
Frontiers in Oncology | www.frontiersin.org 9
used the mRMR and LASSO algorithm to screen and select
radiomics features, and finally obtained 13 potential predictors.
Among these features, the characteristics of tumor shape (surface
area, surface to volume ratio) and gray level co-occurrence matrix
(correlation and inverse difference moment) were more negatively
correlated with complete ablation. Larger lesion size was associated
with greater surface area and greater possibility of incomplete
ablation, consistent with our clinical experience. The surface-to-
volume ratio and gray level co-occurrence matrix features reflect
the complexity and heterogeneity of tumor internal structure; the
higher the value of these two indexes, the more complex and
heterogeneous the tumor is (31, 32). The theoretical basis is
presumably that the less coagulative necrosis of tumor cells after
thermal ablation, the more tumor cells remain. Due to the existence
of heterogeneity of tumor cells, the whole ablation focus shows
great heterogeneity. Complete ablation is positive correlated with
gray trip matrix characteristics (short run emphasis, high gray level
run emphasis, and long run high gray level emphasis), implying
that higher image intensity and smooth texture are indicators of
lower heterogeneity of ablation lesions (33, 34).

To the best of our knowledge, this is the first radiological
combined model based on CT images during pulmonary lesion
ablation, which can predict the complete ablation of pulmonary
lesions and serve as a tool to help clinicians make informed
A B

FIGURE 5 | Calibration curves of the nomograms of the training (A) and validation (B) cohorts. The diagonal dotted lines represent the ideal predictions; the solid
lines represent nomogram performance. A closer fit to the diagonal line indicates more accurate prediction.
TABLE 3 | Predictive performance of three prediction models for the training and validation sets.

Training cohort AUC 95%CI Sensitivity Specificity Accuracy PPV NPV

Clinical prediction model 0.77* 0.66-0.88 0.681 0.815 0.730 0.865 0.595
Radiomics signature 0.82* 0.72-0.91 0.596 0.889 0.703 0.903 0.558
Clinical–radiomics nomogram 0.88 0.80-0.96 0.811 0.889 0.766 0.923 0.686
Validation cohort AUC 95%CI Sensitivity Specificity Accuracy PPV NPV
Clinical prediction model 0.76 0.55-0.96 0.579 1.00 0.733 1.00 0.579
Radiomics signature 0.84 0.70-0.99 0.369 0.819 0.5339 0.778 0.429
Clinical–radiomics nomogram 0.87 0.71-1.00 0.941 0.769 0.867 0.842 0.909
F
ebruary 2022 | Volum
e 12 | Article 8
CI, confidence interval; AUC, area under the curve; PPV, positive value; NPV, negative predictive value.
*P < 0.05 indicates statistically significant differences between AUCs of clinical prediction model (or radiomics model) and clinical–radiomics model with DeLong’s test.
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decisions during the operation. This study has several strengths.
Firstly, the prediction model is developed based on a multicenter
study and internal validated. Secondly, through multivariate
analysis using clinical and imaging data, we firstly found that
the largest diameter of blood vessels within 1 cm from the lesion
being 2 mm is a significant predictor for complete ablation of
pulmonary lesions. Third, mRMR and LASSO methods were used
as feature selection and dimension reduction schemes for high-
throughput data of intraoperative CT images, and a radiomics-
based prediction model is developed based on these features.

The AUC value, sensitivity, specificity, and accuracy were high in
the training and validation cohorts, suggesting that the radiomics-
based prediction model has a good predictive performance. The
predictive efficiency of the radiomics model based on CT radiomics
features was better than the clinical prediction model based on
clinical risk factors in the training and validation cohorts. Moreover,
the radiological combined model demonstrated the best calibration
and discrimination performance than both the clinical prediction
model and the radiomics prediction model, demonstrating its
superiority in clinical practice.

This study has some limitations. Firstly, the number of
patients and lesions were small. To further validate the
robustness and repeatability of our prediction model, larger
scale prospective cohort studies involving patients from some
more other centers are warranted for external validation.
Secondly, we suspected that different machines and different
CT scanning parameters might influence the radiomics features
and analyses of prediction model (35). However, the actual
results were good. Whether this finding is generalizable to
other hospitals using other CT scanner parameters requires
further prospective and multicenter studies. Thirdly, diagnostic
biopsy is not routinely performed for lung metastases. Therefore,
newly discovered or enlarged focal lung tumors within a short
period of time were regarded as lung metastases because of
previously identified primary cancer in these patients.

In conclusion, our study shows that a radiological combined
prediction model based on CT lung window images can be a
Frontiers in Oncology | www.frontiersin.org 10
good predictor of complete ablation in patients with pulmonary
malignancies, which can aid in clinical decision-making during
thermal ablation of pulmonary malignancies. Furthermore,
based on the results of our study and future validation using
larger samples, maybe we will translate the prediction model into
a visual and operational WeChat Mini Program, which can be
used for real-time evaluation of the complete ablation of
pulmonary lesions during operation.
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