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As implementation of artificial intelligence grows more prevalent in perioperative

medicine, a clinician’s ability to distinguish differentiating aspects of these algorithms

is critical. There are currently numerous marketing and technical terms to describe

these algorithms with little standardization. Additionally, the need to communicate with

algorithm developers is paramount to actualize effective and practical implementation.

Of particular interest in these discussions is the extent to which the output or

predictions of algorithms and tools are understandable by medical practitioners. This

work proposes a simple nomenclature that is intelligible to both clinicians and developers

for quickly describing the interpretability of model results. There are three high-level

categories: transparent, translucent, and opaque. To demonstrate the applicability and

utility of this terminology, these terms were applied to the artificial intelligence and

machine-learning-based products that have gained Food and Drug Administration

approval. During this review and categorization process, 22 algorithms were found with

perioperative utility (in a database of 70 total algorithms), and 12 of these had publicly

available citations. The primary aim of this work is to establish a common nomenclature

that will expedite and simplify descriptions of algorithm requirements from clinicians to

developers and explanations of appropriate model use and limitations from developers

to clinicians.

Keywords: artificial intelligence, AI, machine learning, algorithm, FDA approval

INTRODUCTION

The list of medical uses for Artificial Intelligence (AI) and Machine Learning (ML) is expanding
rapidly (1). Recently, this trend has been particularly true for anesthesiology and perioperative
medicine (2, 3). Deriving utility from these algorithms requires medical practitioners and their
support staff to sift through a deluge of technical and marketing terms (3). This paper provides an
aid for separating the signal of utility from the noise of jargon.

This work proposes a straightforward nomenclature for describing the interpretability and
appropriate use of AI/ML products that will be intuitive to developers and clinicians alike.
The applicability and utility of this terminology of these terms is then applied to Food and
Drug Administration (FDA) approved AI/ML algorithms (1) with perioperative utility. Such a
standardized language may speed discussion and understanding among technical developers and
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clinical users. To this end, there are three standardized terms
for conveying interpretability and indicating the appropriate
use of systems and products based on AI/ML. The terms are
transparent, translucent, and opaque.

Opaque describes a system that (a) estimates non-linearly
applied parameters that require advanced analysis (external to
the product itself) to be understood, (b) estimates such a large
set of parameters that a human cannot interpret them unless
aided by a tool external to the product, or (c) provides a
prediction with no indication as to the reason for the prediction.
Translucent describes a product that incorporates non-specific
methods for assisting the end user in understanding possible
reasons for a prediction that would otherwise be categorized
as “opaque.” Transparent describes a product that estimates a
linearly applied parameter or relatively small set of parameters
and is implemented to indicate to the user how much each
feature influences the output or indicates the rationale for a
prediction (e.g., providing exact weights for features considered).
Alternatively, a transparent system’s prediction is easily verifiable
at the time the prediction is made using information the
system provides.

For example, consider a clinician wanting to predict future
glucose values for a patient (4). A careful developer for such
a model would be concerned with several factors including
whether the clinician desires simply a prediction (opaque) or
a prediction with an explanation (translucent or transparent).
If an explanation is needed, the developer may wonder how
specific to each patient the explanation needs to be. Would a
list of factors considered be sufficient (translucent), or does the
clinician need to know exactly howmuch each factor contributed
to the prediction for each patient (transparent)?

This imagined developer seeks to understand the level of
interpretability required for this algorithm. However, there is
also a tradeoff that the developer is considering. Requiring
more interpretability limits the types of algorithms that
can be used. The deep learning algorithms that currently
automate driving, image recognition, and recently folded protein
structure estimation (among many other things) tend to lack
interpretability (opaque). On the other end of the spectrum,
generalized linear models (such as logistic regression) tend
toward high interpretability (transparent) but often have less
accuracy than deep learning algorithms.

The situation also works in reverse. Consider a developer
attempting to explain a new model to a randomly selected
clinician. The clinician may wonder how an algorithm works
or why it makes certain predictions. For some products, such
questions are easy to answer (transparent). For others, it is
exceedingly difficult (opaque). And the distinction between
such systems at times seems arbitrary. Rather than developers
and clinicians continuously engaging in this discussion de
novo for every project and collaboration, presented here are
three standardized terms for conveying the interpretability and
indicating the appropriate use of AI/ML models—transparent,
translucent, and opaque.

These ideas behind the terms are not new (5–7). Phrases
such as “glass box,” (8) “white box,” (9) “gray box,” (10)
“interpretable,” (11) “explainable,” (6, 8, 11–15) and “black box”

(8, 10–14) are often used to describe the complexity of algorithms
from a somewhat technical perspective. Proposed here are less
technically intended terms meant to describe the perspective of
the end user rather than the developer—a distinction discussed
later with several examples. In addition to being first and
foremost clinician-friendly, these terms are intended to convey
sufficient technical information to developers for understanding
the types of algorithms appropriate for the desired use case. Note
that these terms do not describe the underlying mathematics
of an algorithm or even the technical details of a particular
implementation; rather, they describe the experience of the
end user.

For readers familiar with technical usages of “black box,” (8,
10–14) our usage of opaque is similar with the exception it focuses
on the experience of the end user and what they reasonably know
or are presented with by a specific algorithm implementation.
For readers familiar with the concept of “Explainable AI,” the
“explainable” piece often refers to a secondary technology applied
to a trained AI/ML model that extracts information about why
the model makes certain predictions (6, 8, 11–15). An algorithm
that makes use of such a technology and shows the output
to an end user would be classified under our nomenclature
as translucent.

METHODS AND DEFINITIONS

The initial source of algorithms for consideration in this
review is a constantly updated online database of FDA-
approved algorithms. At the time of this writing, the database
contained 70 such algorithms (1). As reported by the primary
citation for the database (1), the majority of algorithms in this
database were approved with 510(k) clearance. Other approval
methods seen in the database are de novo pathway clearance
and premarket approval clearance. The database makes broad
categorizations of applicable fields for these algorithms. The
fields most represented are Radiology, Cardiology, and Internal
Medicine/General Practice.

Perioperative medicine is not explicitly mentioned in the
database. Therefore, the categorization of “perioperative utility”
in this review was made under the best judgment of the
authors. The primary purpose of this work, though, is to
establish a nomenclature, using the algorithms labeled as having
perioperative utility in examples of applying this terminology. Of
the 70 algorithms in the database, 22 were determined to have
perioperative utility.

Each record in the database includes the name of the
algorithm and the parent company. Using this information,
along with the details in the corresponding FDA announcements
themselves, journal reviewed articles describing the function of
these algorithms were sought. This search included—but was not
limited to—searching the parent company’s website for mentions
of journal articles. From this search, citations for 12 of the 22
algorithms were found.

The categories applied to these 12 algorithms were opaque,
translucent, and transparent. Table 1 summarizes these
categories. Opaque describes a system that (a) estimates
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TABLE 1 | Summary of category definitions.

Category and example usage Defining features

Opaque

Concrete example: A clinician

desires a prediction of future

glucose values for a patient with

no need to understand how the

prediction was made

• Estimates non-linearly applied

parameters that require advanced

analysis to be understood

• OR estimates such a large set of

parameters that a human cannot

interpret them unaided

• OR provides a prediction with no

indication as to the reason for

the prediction

Translucent

Concrete example: A clinician

desires a prediction of future

glucose values for a patient with

an explanation of what clinical

factors were involved in making

the prediction

• Includes techniques for explaining

the predictions from an otherwise

opaque algorithm

• Examples:

• Plotting non-linear functions of

features

• Variable importance methods

• Providing a list of factors considered

Transparent

Concrete example: A clinician

desires a prediction of future

glucose values for a patient with

an explanation of exactly how

much each involved factor

contributed to the prediction for

each patient

• Estimates a linearly applied parameter

or relatively small set of parameters

that indicate how much each feature

influences the output

• OR indicates the specific rationale for

a prediction

• Example: providing the exact features

and weights responsible for a given

prediction

• OR provides a prediction that is easily

verifiable at the time of the prediction

non-linearly applied parameters that require advanced analysis
(external to the product itself) to be understood, (b) estimates
such a large set of parameters that a human cannot interpret
them unless aided by a tool external to the product, or (c)
provides a prediction with no indication as to the reason for
the prediction. That is, an opaque system meets at least one of
the criteria (a), (b), or (c). The general theme of this definition
is whether the end consumer of the product’s prediction also
receives some measure of explanation as to why the specific
prediction was made. Succinctly, if the user does not receive such
an explanation, then the system is categorized as “opaque.”

Translucent describes a product that incorporates non-
specific methods for assisting the end user in understanding
possible reasons for a prediction that would otherwise be
categorized as “opaque.” Examples include plotting non-
linear functions of features, variable importance methods, and
providing a list of factors considered. The general theme for
the “translucent” category is that non-specific information about
factors influencing the prediction is provided.

A system predicting diabetes diagnosis that considers weight,
age and diet in its algorithm is translucent; if modified
to provide the relative weights of each of these factors in
making the diagnostic prediction, the algorithm would be
considered transparent. The first case provides non-specific
prediction factors (translucent) while the second includes specific
information for the end-user (transparent). Similarly, for image
recognition, placing the corresponding image (or wave form)

next to a predicted label or highlighting a segment of an image
corresponding to a prediction for image recognition would
be translucent. Again, the distinction between translucent and
transparent is non-specific vs. specific rationale for the prediction
from the perspective of the end user. For comparison, the term
explainable is used to describe tools used by a developer to
make the output of a product more easily interpretable (16–18).
While translucent conveys a similar idea, we emphasize that its
definition is from the perspective of the end user and the kind
of information a particular system based on an AI/ML algorithm
provides to them. For an exploration of various meanings and
uses of “Explainability” in the context of artificial intelligence and
machine learning, see the work by Bhatt et al. (17).

Transparent describes a product that estimates a linearly
applied parameter or relatively small set of parameters and
is implemented to indicate to the user how much each
feature influences the output or indicates the rationale for a
prediction (e.g., providing exact weights for features considered).
Alternatively, a transparent system’s prediction is easily verifiable
at the time the prediction is made using information the system
provides. Consider the previous example of system that predicts
a diabetes diagnosis and indicates BMI, age, and diet. This system
is translucent, but an algorithm that provides the weights used for
these features would be transparent.

EXAMPLES OF FDA-APPROVED
ALGORITHMS

Through the process described above, three of the 12 products
with a located citations and clear perioperative utility were
categorized as opaque (Table 2). These are RhythmAnalytics
from Biofourmis Singapore Pte. Ltd., and the Guardian
Connect System from Medtronic. RhythmAnalytics along
with its underlying Biovitals Analytics Engine monitors,
which categorizes cardiac arrhythmias via a convolutional
neural network—a deep learning technique—that consumes
wavelet transforms and short-time Fourier transforms of
electrocardiogram (ECG) signals (19). Such a deep learning
technique is inherently opaque, as the number of weights and
their non-linear combination makes unaided understanding of
the reasons for a prediction not feasible. The Guardian Connect
System alerts users to interstitial glucose levels outside of a
specified range. The system offers two alert types, “threshold”
and “predictive.” The “threshold” alerts are transparent in that
they indicate if the sensor glucose reading is above or below
a threshold. The “predictive” alerts indicate whether glucose is
predicted to be outside the specified range within the next 10–
60min (4).While themanufacturer’s user guide (20) explains that
these predictions are formula-based, prediction-based alerts are
provided using the name of the prediction, not the reasons for
the prediction. The categorizations presented here are based on
the information provided to a user when a prediction is provided.
Therefore, this system is opaque.

In the translucent category are products that provide a
prediction alongside an upfront list of features considered—
but no specific weights—or a non-specific visualization of signal
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TABLE 2 | System classifications.

Name of device or

algorithm

Online database description (1) Description based on primary citation Classification

Biovitals analytics engine “Cardiac monitor” Detects prolonged QT interval (19) Opaque

Rhythm analytics “Monitoring cardiac arrhythmias” Deep learning to classify rhythm (19) Opaque

Guardian connect system “Predicting blood glucose changes” Predicts glucose levels outside of the normal

range and gives predictive alerts (4, 20)

Opaque

eMurmer ID “Heart murmur detection” Determines if murmurs are innocent or

pathologic (22)

Translucent

physIQ heart rhythm and

respiratory module

“Detection of atrial fibrillation” Uses patients’ own baseline to detect changes

(21)

Translucent

DreaMed “Managing type 1 diabetes” Recommends insulin doses (23, 24) Translucent

ECG app “Detection of atrial fibrillation” Watch-based atrial fibrillation detection (25) Transparent

FibriCheck “Cardiac monitor” Smartphone atrial fibrillation detection (26, 27) Transparent

Irregular rhythm notification

feature

“Detection of atrial fibrillation” Smartphone irregular rhythm notification (28) Transparent

WAVE clinical platform “Monitoring vital signs” Remote vital sign monitoring and alerts (29, 30) Transparent

EchoMD automated

ejection fraction software

“Echocardiogram analysis” Helps place echo device. Calculates ejection

fraction (31)

Transparent

Caption guidance “Software to assist medical professionals in the

acquisition of cardiac ultrasound images”

Works with EchoMD above (31) Transparent

used in making the prediction. Of the 12 systems, three fit the
criteria for this category (Table 2). For example, the physIQHeart
Rhythm and Respiratory Module from physIQ Inc. collapses
improving or declining factors related heart failure into a single
index. The signals related to this index are viewable by patients
and providers along with the corresponding calculated index
(21), which led to categorizing this algorithm as translucent.
Another cardiac monitoring product, eMurmer ID from CSD
Labs GmbH, predicts whether murmurs are pathologic. Along
with the prediction, the algorithm shows the systolic and diastolic
phases considered; however, the specifics of the predictions
“are protected under proprietary regulations,” (22) leading to
inclusion of this algorithm in the translucent category. Likewise,
the DreaMed algorithm from DreaMed Diabetes, Ltd., produces
reports with important features related to its insulin dose
recommendations (23, 24), placing it in the translucent category.

The remaining six (of 12) products fall in the transparent
category (Table 2). Of these, three are implementations of atrial
fibrillation detection that provide either annotated signals along
with predictions in the case of ECG App from Apple Inc. (25)
and FibriCheck from Qompium NV (26, 27) or use explicit “if. . .
then. . . ” rules in the case of the Irregular Rhythm Notification
Feature from Apple Inc. (28). Similarly, the Wave Clinical
Platform from Excel Medical Electronics LLC provides vital sign
alerts based on a set of rules and provides the reason for the alert
when triggered (29, 30). Also, in the transparent category is the
EchoMDAutomated Ejection Fraction Software which integrates
with the Caption Guidance system from Caption Health Inc. to
indicate when an a echocardiogram transducer is correctly placed
for the automated calculation of ejection fraction (31). Since the
reasons for the provided feedback are intuitively obvious (the
transducer is or is not physically placed correctly), these systems
are transparent.

Additional Examples and Future Work
Here we have applied our proposed common language to FDA-
approved algorithms, as initial examples of how these terms
might be used in clinical contexts. We recognize there are many
tools and devices in the world of perioperative medicine used
for patient care, education, research, quality improvement, and
operations. Covering all of these would be at least a book-
length task, well beyond the scope of this project. However,
we consider the next step in developing this nomenclature to
be a review article addressing the (additional) most common
algorithms for patient care. As a small sample, such a review
article might include products such as BIS (Bispectral Index)
(32, 33), Sedline (34), Datex-Ohmeda Entropy (35), and Edwards
Hemosphere (36).

Beyond these additional examples in perioperative medicine,
these terms are immediately extensible to other medical fields.
While all examples provided herein dealt with algorithms
surrounding surgery, note that the definitions themselves
(Table 1) are agnostic to any medical subfield.

Additionally, some commentary seems warranted with
respect to proprietary algorithms. Indeed, in this review, some
products were given opaque or translucent classifications,
which may change if the algorithmic details and/or source
code for such products were ever released by the intellectual
property owners. This dimension of the nomenclature whereby
a products categorization could be changed by a public release
of information further emphasizes that these terms are from the
perspective of the end user rather than technical details.

CONCLUSIONS

This work presents a nomenclature for describing algorithm
implementations and applies it to several examples in the
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literature. This terminology is composed of three high-level
categories: transparent, translucent, and opaque. These terms are
applied the point of view of the clinician. To indicate how these
terms can be used to categorize AI systems, AI/ML systems with
FDA are presented as examples. A database of these examples that
will be updated as new systems gain FDA approval is available
at https://sites.uab.edu/periop-datascience/algo-database.

This nomenclature aids in understanding the appropriate use
of models. In high-risk situation, the requirement for accuracy
may be paramount. Alternatively, in high-profile situations,
predictions may need to be explainable to stakeholders. For
example, the FDIC in the United States requires financial
institutions to develop “conceptually sound” (37) models. An
assessment of conceptual soundness would be easiest for
transparent models and most difficult for opaque models.

The primary values of common nomenclature are expediting
and simplifying descriptions of model requirements and
appropriate use between clinicians and developers.
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