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Objective: To develop a fusion model combining clinical variables, deep learning (DL),
and radiomics features to predict the functional outcomes early in patients with adult anti-
N-methyl-D-aspartate receptor (NMDAR) encephalitis in Southwest China.

Methods: From January 2012, a two-center study of anti-NMDAR encephalitis was
initiated to collect clinical and MRI data from acute patients in Southwest China. Two
experienced neurologists independently assessed the patients’ prognosis at 24 moths
based on the modified Rankin Scale (mRS) (good outcome defined as mRS 0–2; bad
outcome defined as mRS 3-6). Risk factors influencing the prognosis of patients with
acute anti-NMDAR encephalitis were investigated using clinical data. Five DL and
radiomics models trained with four single or combined four MRI sequences (T1-
weighted imaging, T2-weighted imaging, fluid-attenuated inversion recovery imaging
and diffusion weighted imaging) and a clinical model were developed to predict the
prognosis of anti-NMDAR encephalitis. A fusion model combing a clinical model and two
machine learning-based models was built. The performances of the fusion model, clinical
model, DL-based models and radiomics-based models were compared using the area
under the receiver operating characteristic curve (AUC) and accuracy and then assessed
by paired t-tests (P < 0.05 was considered significant).

Results: The fusion model achieved the significantly greatest predictive performance in
the internal test dataset with an AUC of 0.963 [95% CI: (0.874-0.999)], and also
significantly exhibited an equally good performance in the external validation dataset,
with an AUC of 0.927 [95% CI: (0.688-0.975)]. The radiomics_combined model (AUC:
0.889; accuracy: 0.857) provided significantly superior predictive performance than the
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DL_combined (AUC: 0.845; accuracy: 0.857) and clinical models (AUC: 0.840;
accuracy: 0.905), whereas the clinical model showed significantly higher accuracy.
Compared with all single-sequence models, the DL_combined model and the
radiomics_combined model had significantly greater AUCs and accuracies.

Conclusions: The fusion model combining clinical variables and machine learning-
based models may have early predictive value for poor outcomes associated with anti-
NMDAR encephalitis.
Keywords: autoimmune encephalitis, anti-N-methyl-D-aspartate receptor, deep learning, radiomics, clinical
features, prognosis, predictor, multiparametric MRI (mpMRI)
INTRODUCTION

Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis
is the most common type of autoimmune encephalitis (AE) that
targets neuronal surfaces or synaptic antigens (1). Patients present
with typical neuropsychiatric syndromes, including abnormal
behavior or cognitive dysfunction, speech disorders, seizures,
dyskinesias, decreased consciousness and autonomic instability
(2, 3). Favorable clinical outcomes critically depend on early and
aggressive immunotherapy (4). First-line immunotherapies
include corticosteroids, intravenous immunoglobulins (IVIg),
and plasma exchange, while rituximab and cyclophosphamide
are considered when the first-line treatments fail (5). Several risk
factors, such as disturbance of consciousness, ICU admission and
no use of immunotherapy have been demonstrated to
be associated with poor prognosis in anti-NMDAR encephalitis
(5–7). However, previous studies were mainly observational and
retrospective, did not evaluate predictive effects, and used a variety
of observation periods with mixed results (8, 9). Furthermore,
several studies were conducted with AE ofmultiple antibody types,
neglecting the differences in age distribution, clinical presentation,
and prognosis across different subtypes of AE (10, 11). There is no
standard tool to accurately predict long-term functional outcomes
of anti-NMDAR encephalitis. Moreover, sophisticated and
automated methodologies are required to improve the accuracy
and efficiency of prognostic prediction.

Noninvasive MRI has been widely used for differential
diagnosis and follow-up assessment in patients with anti-
NMDAR encephalitis (12, 13). In contrast to traditional MRI
methods, machine learning has been introduced due to its
potential to reveal disease characteristics that are invisible to
the naked eye (14, 15). In general, machine learning can be
divided into two major categories: radiomics, where image
features are manually extracted, and deep learning (DL), where
computers can automatically extract content without
handcrafted features but require a larger pool of training
images (16, 17). Both categories have been successfully applied
to provide accurate diagnosis and prognostic evaluation of
neurodegenerative diseases, psychiatric diseases, and tumors
(18–20). Nevertheless, to our knowledge, the application of
multiparametric MRI-based machine learning for prognosis
prediction in anti-NMDAR encephalitis has not been
fully explored.
g 2
In this study, we aimed to conduct a two-center prospective
study for the structured evaluation of clinical and machine
learning features in prognosis prediction for adult patients
with anti-NMDAR encephalitis. We implemented and tested
the clinical model and two machine learning models (DL and
radiomics) on multiparametric MRI data and compared their
performance. Then, we developed a new fusion model to assess
the prognosis of anti-NMDAR encephalitis, a novel machine
learning framework that combines a large number of clinical
variables with deep learning and radiomics features trained on
multiparametric MRI through stacking algorithms. To further
evaluate the performance of our new model, we used an
independent external dataset for validation.
MATERIALS AND METHODS

Study Design and Participants
Patients diagnosed with anti-NMDAR encephalitis were
consecutively enrolled from two large general hospitals in
Chongqing, Southwestern China between January 2012 and
October 2019. Eligible patients were selected using the
following inclusion criteria: (1) acute onset in patients ≥18
years old; (2) no pre-existing disability before the first clinical
symptoms associated with anti-NMDAR encephalitis; (3)
positive CSF and/or serum tests for NMDAR antibodies; and
(4) reasonable exclusion of other diseases. The exclusion criteria
were as follows: (1) a neurological disease other than anti-
NMDAR encephalitis; (2) incomplete clinical information and
radiological data; (3) concurrent anti-NMDAR encephalitis
following a herpes simplex virus encephalitis diagnosis; (4)
positive CSF and/or serum tests for another AE: a-amino-3-
hydroxy-5-methyl-4-isoxazol-propionic acid receptor antibody
encephalitis, contactin-associated protein 2 antibody
encephalitis, leucinerich glioma-inactivated protein 1 antibody
encephalitis, gamma-aminobutyric acid receptors B1/B2
receptor antibody encephalitis, voltage-gated potassium
channel complex antibody encephalitis, and glutamate
decarboxylase antibody encephalitis; and (5) images of poor
quality or with artifacts. The flowchart of the patient selection
process is presented in Supplementary Figure 1.

The radiographic data of anti-NMDAR patients at the acute
stage in the radiology department were collected. The patients’
June 2022 | Volume 13 | Article 913703
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medical records, laboratory results and prognoses were
registered and reviewed by two experienced neurologists. The
standardized data collection included (1) epidemiological data
such as age and gender at disease onset; (2) clinical data
including typical manifestations (behaviour and cognition,
memory, speech, seizures, movement disorder, loss of
consciousness , autonomic dysfunction, and central
hypoventilation), prodromal symptoms such as headache and
fever, complications (pneumonia, hypohepatia, electrolyte
disturbance, urinary tract infections and gastrointestinal
bleeding), ICU admission, tracheotomy, hospitalization days,
relapse, rescue, status epilepticus, physical examination results
such as meningeal irritation sign and pyramid sign, time to start
of treatment after symptom onset and presence of tumor; (3)
laboratory results including routine CSF test parameters such as
CSF cell count, glucose, chloride and protein, routine blood test
parameters such as leucocyte and neutrophil and antibody titers
in CSF and serum; (4) EEG, ECG and conventional MRI results;
and (5) treatments including first-line immunotherapies
(corticosteroids, IVIg, and plasma exchange alone or in
combination), second-line immunotherapies (rituximab and
cyclophosphamide alone or in combination), long-term
immunotherapies (azathioprine or mycophenolate) and no use
of immunotherapy.

Finally, a total of 139 patients (81 women; mean age: 33.09
± 15.61 years) in our hospital fulfilled the eligibility criteria and
were subsequently randomly divided into training (n = 97) and
internal testing (42) sets at a ratio of 7:3 (see Table 1). To
validate the clinical, radiomics and DL models, we collected
clinical and brain MRI data performed between January 2012
and October 2019 at another site (the Southwest Hospital) as
an external testing dataset. The dataset comprised 87 patients
with anti-NMDAR encephalitis (52 women; mean age: 44.24 ±
15.10 years). These patients were equally randomly divided
into a training group (n = 61) and an internal testing group (n
= 26) in a 7:3 ratio. The studies involving human participants
were reviewed and approved by the Institutional Review Board
of the First Affiliated Hospital of Chongqing Medical
University (approval number 2016-67). The patients
provided their written informed consent to participate in
this study.

Prognostic Evaluation and Operational
Definitions
Two experienced neurologists objectively and independently
evaluated follow-up information at 4, 8, 12, 18, and 24 months
after symptom onset, based on Titulaer’s previous study (5).
Clinical relapse of anti-NMDAR encephalitis was defined as new
onset or worsening of symptoms after at least 2 months of
improvement or stability. All patients underwent at least one
systemic tumor screening with an ultrasound scan, enhanced
computed tomography, and/or tumor markers. We excluded
patients with a follow-up of less than 4 months from the
prognostic assessment.

The modified Rankin Scale (mRS) was used to assess the
prognosis of patients. Dichotomous outcome status at 24
Frontiers in Immunology | www.frontiersin.org 3
months was used as the ground truth for clinical, radiomics
and DL analyses. A good outcome was defined as an mRS score
≤ 2, which ranged from fully recovered (mRS = 0) to mildly
disabled but able to take care of oneself independently (mRS =
2). In contrast, a poor outcome (defined as mRS > 2)
represented the range from moderate disability (mRS = 3)
assistance with activities of daily living to severe disability
(mRS = 5) requiring continuous care and death (mRS = 6).

MR Image Acquisition and Hippocampus
Annotation
MRI scans were performed using two 3.0 T scanners (GE
Healthcare, Milwaukee, WI; Siemens Healthcare, Erlangen,
Germany) with an eight-channel head coil and a 20-channel
head-neck coil respectively in our hospital. Three 2D axial fast
spin-echo sequences, including T1-weighted imaging (T1WI),
T2-weighted imaging (T2WI) and fluid-attenuated inversion
recovery imaging (FLAIR) sequences, and a 2D axial fast spin-
echo echo-planar diffusion weighted imaging (SE-EP DWI)
sequence were collected. The independent external data were
collected using a 3.0 T scanner (Siemens Healthcare, Erlangen,
Germany) at another site (Southwest Hospital). The more
detailed parameter settings are displayed in Table 2.

All of the patients’multiparametric MRI data were uploaded
to a commercial research platform (inferScholar, infervision,
Bei j ing, China; http://research. infervis ion.com) for
deidentification and annotation of 3D images. The region of
interest (ROI) delineation method was the same as in one of
our previous studies (21). Two neuroradiologists with 5 and 20
years of experience who were blinded to the clinical
information outlined representative bilateral hippocampal
areas on axial images from the four MRI sequences
(T1WI/T2WI/FLAIR/DWI). The inter- and intraobserver
reproducibility of ROI delineation was assessed using intra-
and interclass correlation coefficients (ICCs). We initially chose
40 random images for independent ROI segmentation by two
neuroradiologists. Within a 1-week period, each reader
repeated the same manual procedure a second time to
evaluate intraobserver reproducibility. Good agreement was
defined as an ICC greater than 0.75.

Data Preprocessing
Whole-brain MR images (T1WI, T2WI, FLAIR and DWI) as
Digital Imaging and Communications in Medicine (DICOM)
files from the Picture Archiving and Communication System
(PACS) were exported for data preprocessing. All images were
converted to Portable Network Graphics (PNG) format without
annotation using the Python programming language (version
3.8.3) and the Nibabel library (version 3.2.1), scaled to 171 ×
128 pixels, and randomly flipped in both directions. Next, we
transformed each series of PNG images into an audio video
interactive (AVI) video, reduced the video’s pixels per frame to
112 × 112, and then randomly extracted 16 frames into the 3D
convolutional neural network.

Additionally, all whole-brain images were matched in space
location, orientation, and origin to annotate the bilateral
June 2022 | Volume 13 | Article 913703

http://research.infervision.com
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xiang et al. Fusion Model Helps Predict Prognosis
hippocampal images one by one for further radiomics analysis.
Isotropic 3D resampling of DICOM images was performed by
adjusting the X, Y and Z spacing size to 1 × 1 × 1 mm with linear
interpolation. The signals were then smoothed with a Gaussian
Frontiers in Immunology | www.frontiersin.org 4
filter with a standard deviation of 0.5. To compensate for
inhomogeneity artifacts and a lack of template intensity
distribution, bias field correction and intensity standardization
(gray level discretization from 0 to 255) were also applied.
TABLE 1 | Clinical variables associated with poor functional outcomes at the 24-month follow-up in 139 patients with adult anti-NMDAR encephalitis.

Variables No. of patients (%) Univariate analysis

Good outcome (n = 105) Poor outcome (n = 34) OR (95%CI) P-value

Age, mean (SD), y 31.17 (± 14.81) 40.68 (± 14.15) 0.968 (0.939-0.996) 0.029*
Gender (female) 64 (61.0) 17 (50.0) 0.652 (0.263-1.629) 0.355
Symptoms
Abnormal psychiatric/behaviour 65 (61.9) 25 (73.5) 0.320 (0.107-0.849) 0.029*
Seizures 61 (56.5) 17 (50.0) 1.354 (0.544-3.336) 0.510
Dyskinesias and movement disorders 15 (14.3) 14 (41.2) 0.159 (0.055-0.437) <0.001*
Cognitive dysfunction 28 (26.7) 18 (52.9) 0.346 (0.136-0.866) 0.024*
Decreased consciousness 23 (21.9) 26 (76.5) 0.106 (0.035-0.289) <0.001*
Autonomic instability 25 (23.8) 6 (17.6) 1.523 (0.530-5.069) 0.457
Speech disorder 30 (28.6) 22 (64.7) 0.214 (0.080-0.541) 0.001*

Prodromal symptoms 36 (34.3) 14 (41.2) 2.782 (1.048-8.342) 0.049*
Complications
Pneumonia 36 (34.3) 14 (41.2) 0.979 (0.387-2.591) 0.964
Hypohepatia 25 (23.8) 9 (26.5) 0.798 (0.276-2.517) 0.685
Electrolyte disturbance 10 (9.5) 6 (17.6) 0.489 (0.141-1.798) 0.260
Urinary tract infections 22 (21.0) 8 (23.5) 0.704 (0.263-1.973) 0.490
Gastrointestinal bleeding 17 (16.2) 2 (5.9) 4.847 (0.873-90.894) 0.140

ICU admission 58 (55.2) 29 (85.3) 0.207 (0.056-0.605) 0.008*
Tracheotomy 4 (3.8) 7 (20.6) 0.212 (0.050-0.811) 0.025*
Hospitalization days, mean (SD), d 26.74 (± 17.70) 33.95 (± 32.10) 1.008 (0.993-1.032) 0.420
Relapse 16 (15.2) 18 (52.9) 0.133 (0.047-0.039) <0.001*
Rescue 69 (65.7) 27 (79.4) 0.464 (0.141-1.305) 0.169
Status epilepticus 11 (10.5) 7 (20.6) 0.951 (0.418-2.624) 0.907
Physical exam
Meningeal irritation sign 19 (18.1) 8 (23.5) 0.875 (0.306-2.740) 0.809
Pyramid sign 20 (19.0) 20 (70.6) 0.200 (0.074-0.507) 0.001*

Time to start of treatment after symptom onset 0.934 (0.895-0.966) <0.001*
Tumor 8 (7.6) 4 (11.8) 0.348 (0.077-1.580) 0.158
Initial mRS, mean (SD) 4.35 (± 0.69) 3.85 (± 0.10) 0.529 (0.290-0.894) 0.026*
Treatments
No use of immunotherapy 8 (7.6) 11 (32.4) 0.234 (0.067,0.785) 0.018*
First-line immunotherapy 44 (41.9) 21 (61.8) 0.389 (0.137-1.010) 0.061
Adding second-line immunotherapy 34 (32.4) 1 (2.9) 22.887 (4.645-414.634) 0.625

CSF results
Weakly positive CSF antibody titers 50 (47.6) 18 (52.9) 0.929 (0.379-2.265) 0.870
Positive CSF antibody titers 35 (33.3) 5 (14.7) 1.760 (0.619-5.822) 0.314
Strongly positive CSF antibody titers 25 (23.8) 11 (32.4) 0.567 (0.235-1.326) 0.186
CSF pleocytosis 72 (68.6) 22 (64.7) 1.127 (0.437-2.816) 0.780
CSF abnormal protein 38 (36.2) 13 (38.2) 0.860 (0.348-2.168) 0.744
CSF abnormal glucose 15 (14.3) 7 (20.6) 0.910 (0.299-3.130) 0.873
CSF abnormal chloride 6 (5.7) 1 (2.9) 1.576 (0.220-31.602) 0.690

Blood results
Weakly positive serum antibody titers 15 (14.3) 7 (20.6) 0.591 (0.207-1.777) 0.332
Positive serum antibody titers 20 (19.0) 3 (8.8) 3.125 (0.793-20.852) 0.151
Strongly positive serum antibody titers 4 (3.8) 3 (8.8) 0.970 (0.237-6.076) 0.969
Elevated leucocyte 53 (50.5) 15 (44.1) 1.181 (0.485-2.921) 0.715
Elevated neutrophil 61 (58.1) 15 (44.1) 1.767 (0.724-4.396) 0.213

Abnormal ECG 22 (21.0) 11 (32.4) 0.762 (0.287-2.125) 0.590
Abnormal EEG 82 (78.1) 24 (70.6) 1.714 (0.528-5.217) 0.349
Extreme delta brush 29 (27.6) 12 (35.3) 0.785 (0.319-1.950) 0.597
Abnormal conventional MRI 61 (58.1) 27 (79.4) 0.464 (0.141-1.305) 0.169
J
une 2022 | Volume 13 | Article
*P < 0.05.
Anti-NMDAR, anti-N-methyl-D-aspartate receptor; SD, standard deviation; OR, odds ratio; ICU, intensive care unit; mRS, modified Rankin Scale; CSF, cerebrospinal fluid; ECG,
electrocardiogram; EEG, electroencephalogram.
Reference interval: CSF WBC count: 0–5 × 106/L; CSF protein level, 200 – 400 mg/L; CSF glucose level, 2.5 – 4.4 mmol/L; CSF chloride level, 120 – 130 mmol/L; blood WBC count, 3.5–
10 × 109/L; blood neutrophil count, 1.8-6.3×109/L; weakly positive CSF antibody titers, 1:1; positive CSF antibody titers, 1:3.2 - 1:10; strongly positive CSF antibody titers,≧ 1:32; weakly
positive serum antibody titers, 1:10; positive serum antibody titers, 1:32 - 1:100; strongly positive serum antibody titers, 1:320.
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Clinical Model Building
The clinical model was constructed using univariate and
multivariate logistic regression methods. Clinical characteristics
were screened using univariate analysis to find independent
predictors of poor prognosis. Variables with a P-value less than
0.05 were considered statistically significant. Then, for
subsequent modeling, significant clinical variables were
included, and a clinical model was developed using
multivariate logistic analysis. We used bootstrap sampling to
draw the calibration curve, and the data were sampled 1000
times. ROC curves were used to describe the predictive ability of
the model. The relationships between various variables in the
predictive model were described using a nomogram.
Frontiers in Immunology | www.frontiersin.org 5
DL-Based Predictive Model Building
Since 3D convolutional neural networks are computationally
expensive, the R(2 + 1)D network separates the original
spatio-temporal 3D convolution into a 2D spatial convolution
and a 1D temporal convolution (22). A previous study found that
R(2 + 1)D network was superior to other 3D convolutional neural
networks in recognition tasks while keeping network parameters
similar to those of other 3D backbone networks (23). As a result,
we chose the R(2 + 1)D network, which is a relatively new image
classification and segmentation architecture.

Five DL models trained on four single or combined MRI
sequences (T1WI/T2WI/FLAIR/DWI) were developed (Figure 1).
First, we compressed the whole-brain images from the
TABLE 2 | Parameters setting of the MRI scanning in our hospital.

Manufacturer GE MEDICAL SYSTEMS SIEMENS MEDICAL SYSTEMS

Sequence T1WI T2WI FLAIR DWI T1WI T2WI FLAIR DWI

TR (ms) 2,050 4300 7600 4800 240 4030 9000 3300
TE (ms) 8.7 106 148 82 4.88 94 120 84
Slice thickness (mm) 5 5 5 5 5 5 5 5
Spacing between slices (mm) 6.5 6.5 6.5 6.5 6.5 6.5 6.5 6.5
FOV (cm2) 2.4×2.4 2.4×2.4 2.4×2.4 2.4×2.4 2.0×2.4 2.0×2.4 2.0×2.6 2.6×2.6
Matrix size 320×192 288×224 288×192 128×130 256×156 256×156 256×184 128×128
Flip angle 90 90 90 90 90 90 90 90
NEX 1 1 1 1 1 2 1 3
June 2022 | V
olume 13 | Articl
TR, repetition time, TE, echo time, FOV, field of view, NEX, number of excitation.
A

B

FIGURE 1 | Data preprocessing pipeline. (A) Data preprocessing process and the workflow of the deep learning model. Data augmentation was performed only in
the training set, including random reduction, center reduction, random flipping and brightness adjustment. (B) Overall architecture of R(2 + 1)D network. C, s, p, and
b represent the number of input channels, the step size of the 3D convolution kernel, the size of padding, and spatio-temporal Resblock module, respectively. This
module is a residual network structure. In the convolution layers of layer 1, layer 3, layer 4 and layer 5 of the model, the spatio-temporal Resblock module performs
down sampling. The input tensor is (C, x, y) and the output tensor is (out_channels, X/2, Y/2). In the second layer of the model, the spatio-temporal Resblock
module is not downsampled, and the input and output tensor shapes are the same.
e 913703
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foursequences into 112 × 112 × 16 formats and fed them into the R
(2 + 1)D network. The network outputs were successively passed
through the 3D average pool layer and the fully connected layer. It
was converted to a class probability vector by a sigmoid activation
function as the prediction result.

Traditional data augmentation techniques such as rotation,
zooming, flipping, and cropping were applied to process the 3D
patches to artificially increase the training images up to eight
times in the training set. To ensure the validity of the prediction
results, this study did not perform data augmentation in the
validation and test sets. In the training process, we used the
SGD optimization strategy, with an initial learning rate of 0.01.
After 30 iterations, the learning rate was multiplied by 0.1,
the momentum was 0.9, the weight decay was 0.0001, and the
model was implemented on the PyTorch library with 4 NVIDIA
GPUs (GeForce GTX 3060Ti).

Radiomics-Based Predictive
Model Building
We used the Pyradiomics (https://pyradiomics.readthedocs)
open source toolkit to extract features from each slice of the
MR images of the annotated bilateral hippocampal areas.
Radiomics features were extracted from each of the T1WI,
T2WI, FLAIR and DWI images, which comprise first-order
statistical features, shape- and intensity-based features, and
high-order textural features such as gray-level cooccurrence
matrix (GLCM), gray-level run-length matrix (GLRLM),
gray-level size zone matrix (GLSZM), gray-level dependence
matrix (GLDM) and neighborhood gray-tone difference
matrix (NGTDM) (24). Finally, a total of 4420 features
were extracted.

In order to improve the generalization of features and
optimize the model, Student’s t-test, least absolute shrinkage
and selection operator (LASSO), and principal component
analysis (PCA) were used to select radiomics features. Finally,
the optimal method for feature selection was determined to be
the Student’s t-test followed by the LASSO regression model.
Then, the random forest algorithm was utilized to construct the
predictive model. We used an out-of-bag error curve to evaluate
Frontiers in Immunology | www.frontiersin.org 6
the performance of the model and determined the number
of subtrees to be 130 (25). Figure 2 shows the detailed
radiomics workflow.

Fusion Model
A stacking algorithm, a subset of ensemble learning, combines
the clinical, DL, and radiomics models to develop a new
machine learning framework. The stacking algorithm refers
to training one model to integrate data from multiple models
(26). The clinical, DL_combined, and radiomics _combined
models were built separately, and their prediction results were
then input to the fusion model. These inputs were fed into a
multivariate logistic regression model to obtain the final output
as the predictions of the fusion model. We chose two layers for
the fusion model since more layers increase the probability
of overfitting.

Model Evaluation
Due to our relatively small amount of data, all four models
(clinical, DL, radiomics and fusion) were evaluated based on
fivefold cross-validation. We randomly divided the samples into
five subsets, with four subsets as the training set and one subset
as the test set. To further reduce overfitting, a 12% no-
replacement sampling of the training set was performed and
the sampling results were put into the test set. The above
operation was repeated in each folded cross-validation, and the
sample size of the test set was 30% of the total sample size based
on fivefold cross-validation. We applied this method to all
four models.

The area under the receiver operating characteristic curve
(AUC) and accuracy were used to evaluate the performance of
different models. The Delong test was applied to test for
significant differences in the ROCs between the fusion
model and the clinical model, DL models and radiomics
models in the internal and external datasets (P-value <0.05
was considered significant). To validate the generalizability of
the nomograms, stratified analyses were performed using
the Delong test on the subgroups of age, gender and
MRI versions.
FIGURE 2 | Radiomics workflow in the study.
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Statistical Analysis
Statistical analysis was performed using SPSS (version 24.0; IBM,
New York, USA) and R software (version 4.1.1; http://www.
Rproject.org). The t–tests or Mann–Whitney U-tests were
performed to compare continuous variables, while chi-squared
or Fisher’s exact tests were used for classifying variables between
groups. The Delong test was used to assess the difference in ROCs
between clinical, DL, radiomics, and fusion models. The paired
Student t-test was applied to compare the predictive performance
of the fusion DL model to other clinical, DL, and radiomics
models. A P-value < 0.05 was considered statistically significant.
RESULTS

Clinical Characteristics
Of a total of 185 patients, 139 had complete clinical data with
functional status at 24 months and were included for the
univariate analysis. Of these 139 patients, 105 (75.5%) had a
good functional outcome at 2 years, while 34 (24.5%) had a poor
functional outcome. The associations between epidemiological,
clinical, laboratory data, and treatment information and
functional outcomes at 24 months are summarized in Table 1.
Univariate analysis revealed that poor outcomes were associated
with clinical data such as age (P = 0.029), symptoms (abnormal
psychiatric/behaviour, P = 0.029; dyskinesias and movement
disorders, P < 0.001; cognitive dysfunction, P = 0.024;
decreased consciousness, P < 0.001; speech disorder, P = 0.001,
prodromal symptoms, P = 0.049), and no use of immunotherapy
(P = 0.018). In addition, ICU admission (P = 0.008), tracheotomy
(P = 0.025), relapse (P < 0.001), pyramid sign (P = 0.001), time to
start of treatment after symptom onset (P < 0.001), and initial
mRS (P = 0.026) were associated with worse prognosis of anti-
NMDAR encephalitis. In contrast, there were no significant
differences in laboratory results, including CSF results, blood
results, ECG, EEG and conventional MRI results (P >
0.05) (Table 1).

We found that dyskinesias and movement disorders,
decreased consciousness, relapse and time to start of treatment
Frontiers in Immunology | www.frontiersin.org 7
after symptom onset were the most important factors for
predicting poor functional outcomes of anti-NMDAR
encephalitis (P < 0.001), and were significantly better
predictors than other clinical characteristics (Table 1).

Predictive Performance of the Clinical, DL
and Radiomics Models
All clinical variables with a P-value < 0.05 in Table 1 were
included in a multivariate logistic regression model. As shown
in Table 3 and Figure 3, the clinical model achieved high
performance with an AUC of 0.840 (95% CI: [0.774-0.973]) and
a consistently high accuracy of 0.905. The clinical variable-based
nomogram was built to reveal the significant factors for predicting
poor outcomes of anti-NMDAR encephalitis (see Figure 3A). The
nomogram calibration curve of the clinical model demonstrated
good agreement between prediction and observation in both the
training and testing datasets (see Figures 3C, D).

Regarding the DL models, the ROC curves (Figure 4) showed
that DL models using T1WI, T2WI and FLAIR sequences had
AUCs of 0.721 (95% CI: [0.659-0.914]), 0.747 (95% CI: [0.560-
0.861]) and 0.771 (95% CI: [0.659-0.914]), respectively, which
were lower than that of a model using the DWI sequence with an
AUC of 0.805 (95% CI: [0.686-0.930]). The DL_combined model
that was trained with the four MRI sequences combined exhibited
higher performance than that of any single-sequence models, with
an AUC of 0.845 (95% CI: [0.715-0.946]) and an accuracy of 0.857.

The intraobserver ICCs ranged from 0.865 to 0.998 and the
interobserver ICCs ranged from 0.792 to 0.958, indicating
satisfactory inter- and intraobserver reproducibility of manual
delineation. All radiomics models using a single sequence
showed comparable performance with AUCs of 0.773 (95% CI:
[0.686-0.930]) for T1WI, 0.786 (95% CI: [0.686-0.930]) for T2WI,
0.823 (95% CI: [0.632-0.897]) for FLAIR and 0.803 (95% CI:
[0.686-0.930]) for DWI. The radiomics_combined models
provided greater performance than any of the single-sequence
models, with an AUC of 0.889 (95% CI: [0.715-0.946]) and a
desirable accuracy of 0.857 (Table 3 and Figure 4).

In the comparison across models, the DL model trained
with combined sequences and the radiomics model trained
TABLE 3 | Performance measurements generated by clinical model, DL models and radiomics models trained on different sequences in the internal test dataset.

Models AUC (95% CI) P-value Accuracy Specificity Sensitivity

Clinical Variables 0.840 (0.774-0.973) 0.047* 0.905 0.914 0.857
Radiomics_T1WI 0.773 (0.686-0.930) 0.036* 0.833 0.882 0.625
Radiomics_T2WI 0.786 (0.686-0.930) 0.038* 0.833 0.906 0.600
Radiomics_FLAIR 0.823 (0.632-0.897) 0.004* 0.786 0.929 0.500
Radiomics_DWI 0.803 (0.686-0.930) 0.014* 0.833 0.906 0.600
Radiomics_Combined 0.889 (0.715-0.946) 0.029* 0.857 0.936 0.636
DL_T1WI 0.721 (0.659-0.914) 0.035* 0.810 0.838 0.600
DL_T2WI 0.747 (0.560-0.861) 0.032* 0.738 0.806 0.333
DL_FLAIR 0.771 (0.659-0.914) 0.014* 0.810 0.903 0.546
DL_DWI 0.805 (0.686-0.930) 0.011* 0.833 0.861 0.667
DL_Combined 0.845 (0.715-0.946) 0.019* 0.857 0.886 0.714
Fusion 0.963 (0.874-0.999) Na 0.976 1.000 0.900
Ju
ne 2022 | Volume 13 | Art
*P < 0.05. The paired Student t-test was used to compare the prediction performance of the prognosis in patients with anti-NMDAR encephalitis between the fusion model and all the other
models (The fusion model is the reference).
AUC, area under the receiver operating characteristic curve; CI, confidence interval; DL, deep learning; anti-NMDAR, anti-N-methyl-D-aspartate receptor; Na, Not available.
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with combined sequences had higher AUCs and accuracies
than the single-sequence models, and the predictive
performance of the radiomics_combined model was superior
to that of the DL_combined model and clinical model
(Table 3 and Figure 5A). The fusion model integrated by
the predictor scores based on clinical, DL_combined, and
radiomics_combined models performed significantly better
than all other models, with an AUC of 0.963 [95% CI:
(0.874-0.999)] and a satisfactory accuracy of 0.976 in the
internal dataset (P < 0.05). As shown in Table 4 and
Figure 5B, the fusion model consistently significantly
Frontiers in Immunology | www.frontiersin.org 8
outperformed all other models, with an AUC of 0.927 (95%
CI: [0.688-0.975]) and an accuracy of 0.880 in the
independent external dataset (P < 0.05). The nomogram of
the fusion model was built to help predict the prognosis of
anti-NMDAR encephalitis (Figure 6A). All three variables
(clinical variables, DL-based imaging predictors, and
radiomics-based imaging predictors) were clinically and
significantly predictive of functional outcomes in anti-
NMDAR encephalitis (Figure 6B). Supplementary Figure 2
shows the confusion matrix for the internal testing dataset of
all the models.
A

B D

C

FIGURE 3 | Performance of the clinical model’s nomogram. (A) The clinical variable-based nomogram revealed the significant factors for predicting poor outcomes
of anti-NMDAR encephalitis. (B) The final total points are calculated by summing the score of each point represented for each variable. The prediction score of each
patient is shown in the test dataset. Calibration curves of the clinical model are displayed in the training set (C) and validation set (D). The predicted probabilities are
shown on the x axis and the actual observed probability is represented on the y axis. The closer the two are to the dotted line, the better the prediction outcome.
anti-NMDAR, anti-N-methyl-D-aspartate receptor.
A B C

FIGURE 4 | Receiver operating curves (ROC) of the models on the internal test dataset. (A) ROC of clinical model on the train and test dataset. (B) ROC curves of
DL models trained on the four single sequences (T1WI/T2WI/FLAIR/DWI) and combined sequence. (C) ROC curves of the radiomics models trained on the four single
sequences and combined sequence. ROC, receiver operating characteristic curve; DL, deep learning.
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Stability and Predictive Values of Models
As shown in Supplementary Figure 3, the stratified analyses
showed that the predictive performances of the clinical, DL and
radiomics nomograms were not influenced by patient age,
gender, or MRI versions (Delong test: all P > 0.05). The details
are presented in the Supplementary Material.
DISCUSSION

In this study, we constructed a fusion nomogram that combined
DL- and radiomics-based imaging predictors from multiparametric
MRI and a large of clinical variables to predict the functional
outcomes of anti-NMDAR encephalitis early and effectively. The
proposed fusion model achieved high predictive accuracy and
significantly outperformed all other single-method-based models.
The radiomics_combined model exceeded both the DL_combined
and the clinical models, providing a better way to predict the disease
outcomes. We developed an automated, pretreatment and
individualized tool for the prognostic prediction of anti-NMDAR
encephalitis, which could aid in the development of novel treatment
strategies and improvement of patient prognosis.

Among the clinical risk factors, we found that dyskinesias and
movement disorders, decreased consciousness and time to start
of treatment after symptom onset were the most important
univariate predictors, which was consistent with prior studies.
Frontiers in Immunology | www.frontiersin.org 9
In a retrospective study of 382 patients with anti-NMDAR
encephalitis, Balu R et al. discovered that ICU admission,
treatment delay, and movement disorder were the most
important univariate predictors (9). A previous systematic
study also found that decreased consciousness, ICU admission,
and lack of immunotherapy were all related to poorer outcomes
in anti-NMDAR encephalitis (7). In our study, several other
clinical features such as older age, tracheotomy, pyramid sign,
and symptoms (e.g., abnormal psychiatric/behaviour,
dyskinesias and movement disorders, cognitive dysfunction,
decreased consciousness, and speech disorder), were also found
to be associated with poor prognosis in anti-NMDAR
encephalitis. All of these risk factors are linked to severe anti-
NMDAR encephalitis (27), suggesting that physicians should pay
special attention to older anti-NMDAR patients and intervene
early to avoid their conversion from mild to refractory severe
encephalitis. A few studies have revealed that second-line
immunotherapy could reduce the risk of recurrence, but the
relationship between relapse and patient prognosis has not been
well investigated (5, 9). Based on our findings, relapsed patients
with anti-NMDAR encephalitis had a worse prognosis.
Therefore, we emphasize that second-line immunotherapy
should be given as soon as possible in the acute phase of the
disease to reduce relapses and further improve prognosis.

In our previous study, DL methods using convolutional neural
networks were used to effectively detect and characterize AE.
A B

FIGURE 5 | Receiver operating curves (ROC) of the clinical model, DL_combined model, radiomics_model and fusion model on the (A) internal and (B) external test
dataset. Fusion model was developed by combing clinical variables, DL_combined features and radiomics_combined features. ROC, receiver operating characteristic
curve; DL, deep learning.
TABLE 4 | Performance measurements generated by DL models and radiomics models trained on four combined sequences (T1WI/T2WI/FLAIR/DWI) and clinical model
trained on clinical variables in the external test dataset.

Models AUC (95% CI) P-value Accuracy Specificity Sensitivity

Clinical Variables 0.837 (0.639-0.955) 0.017* 0.840 0.818 1.000
Radiomics_Combined 0.807 (0.549-0.906) 0.024* 0.760 0.889 0.429
DL_Combined 0.754 (0.639-0.955) 0.007* 0.840 0.900 0.600
Fusion 0.927 (0.688-0.975) Na 0.880 0.947 0.667
Ju
ne 2022 | Volume 13 | Art
*P < 0.05. The paired Student t-test was used to compare the predictive performance of the prognosis in patients with anti-NMDAR encephalitis between the fusion model and the other
three models (The fusion model is the reference).
AUC, area under the receiver operating characteristic curve; CI, confidence interval; DL, deep learning; anti-NMDAR, anti-N-methyl-D-aspartate receptor; Na, Not available.
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However, the study did not utilize information from the whole
brain but only from the bilateral hippocampal regions (21).
Although the hippocampus is considered to be the characteristic
structure involved in anti-NMDAR encephalitis, conventional
MRI shows diffuse encephalitis across multiple brain regions,
including the hippocampus (13, 28). In this study, we selected
the whole-brain areas as signature ROIs and used them as inputs
into the R(2 + 1)D network for prognostic analysis. Our findings
showed satisfactory performance of DL models trained with
whole-brain MRI features for predicting the prognosis of anti-
NMDAR encephalitis, which could be useful for helping patients
develop personalized treatment plans early.

Radiomics techniques have been widely applied to generate
identification and prognostic biomarkers for neuropsychiatric
diseases because they can assess and quantify a vast variety of
imaging parameters to extract highly predictive imaging features
(29–31). To our knowledge, the utilization of radiomics features
based on multiparametric MRI to predict the prognosis of anti-
NMDAR encephalitis has rarely been reported. Previous studies
have shown that MRI findings of anti-NMDAR encephalitis,
particularly in the hippocampal region, can help reveal the
clinical features and disease outcomes (12, 28, 32). Finke et al.
used advanced MRI to show that hippocampal atrophy and
impaired microstructural integrity were associated with disease
severity in patients with anti-NMDAR (33, 34). The existence of
disease-specific damage in the hippocampal area was revealed by
Heine et al., which was related to prognosis (12). We therefore
chose to extract features from bilateral hippocampal regions for
the radiomics prediction task. The results of the proposed
radiomics models suggested that the extracted bilateral
hippocampal features can be used as an effective biomarker for
early prognostic prediction in anti-NMDAR encephalitis.
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Our results showed that the combined model trained with all
MRI sequences has superior predictive performance than single-
sequence models from both DL and radiomics approaches. This
suggested that multiparametric MRI parameters based
on machine learning can improve prediction abilities by better
comprehending the characteristics of anti-NMDAR encephalitis
than single sequences (35, 36). In predicting the prognosis of anti-
NMDAR encephalitis, the combined radiomics model marginally
exceeded the DL_combined and clinical models. This could be
attributed to machine learning’s high performance in analyzing
medical images. The properties of radiomics make it more
suitable for relatively small sample size of data than DL (37, 38).

With a high AUC of 0.963 and a satisfying accuracy of 0.976,
the fusion framework combining clinical, DL_combined, and
radiomics_combined models performed significantly better than
all other models (P < 0.05). This artificial intelligence scheme
appears to be a promising model for anti-NMDAR encephalitis
prognostic prediction with broad development prospects.

There are several limitations to this study. First, we did not
include biomarkers associated with treatment response because
they were not available in the dataset, but these data could further
improve the model’s capacity to predict ultimate clinical
outcomes. Second, the bilateral hippocampal areas used for
radiomics analysis were manually segmented layer by layer by
experienced radiologists, which was time-consuming. Automated
detection and segmentation of the hippocampal region is
desirable. Finally, we developed a prognostic model based on
clinical and machine learning methods for the early prediction of
anti-NMDAR encephalitis, which could be extended to other
subtypes of AE in the future. We will include more data on
anti-NMDAR encephalitis and other subtypes of AE in further
trials to improve the accuracy and clinical value of our model.
A

B

FIGURE 6 | The nomogram of the fusion model. (A) The nomogram of the fusion model combining the clinical model’s prediction score, the DL-based image
prediction score, and the radiomics-based image prediction score. (B) The multivariable logistic regression analysis of the clinical variables, the radiomics_combined
model, and the DL_combined model. DL, deep learning.
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In conclusion, we provided an integrated fusion nomogram
using clinical variables and machine learning imaging predictors
based on multiparametric MRI. Our two-center results suggest
that the fusion model could be used as a noninvasive computer-
aided diagnostic tool for early identification of patients who may
require more active monitoring. It also identifies patients with a
poor prognosis who may experience relapses after receiving
definitive treatment. These individuals could benefit from early
second-line immunotherapy.
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